中考数学经典截长补短法突破(含答案)
- 格式:doc
- 大小:29.50 KB
- 文档页数:5
全等三角形的截长补短板块一、截长补短【例1】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交 于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明. D O E C B A 4321F D OEC B A【解析】 BE CD BC +=,理由是:在BC 上截取BF BE =,连结OF ,利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=+∠=,∴120DOE ∠=, ∴180A DOE ∠+∠=,∴180AEO ADO ∠+∠=,∴13180∠+∠=,∵24180∠+∠=,∴12∠=∠,∴34∠=∠,利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =,∴BC BF CF BE CD =+=+.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外), 作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?N E B M A DG NEB M A D【解析】 猜测DM MN =.过点M 作MG BD ∥交AD 于点G ,AG AM =,∴GD MB =又∵120ADM DMA +∠=∠,120DMA NMB +=∠∠∴ADM NMB =∠∠,而120DGM MBN ==∠∠,∴DGM MBN ∆∆≌,∴DM MN =.【例3】 如图2-9所示.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点, 且∠BAE =2∠DAM .求证:AE =BC +CE .【解析】 分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和(BC CE +),再证所构造的线段与求证中那一条线段相等.(2)通过添辅助线先在求证中长线段(AE )上截取与线段中的某一段(如BC )相等的线段,再证明截剩的部分与线段中的另一段(CE )相等.我们用(1)法来证明. 证 延长AB 到F ,使BF CE =,则由正方形性质知AF AB BF BC CE =+=+下面我们利用全等三角形来证明AE AF =.为此,连接EF 交边BC 于G .由于对顶角BGF CGE ∠=∠,所以()Rt ΔBGF CGE AAS ∆≌, 从而12BG GC BC FG EG ===,,BG DM = 于是()Rt ΔRt ΔABG ADM SAS ≌, 所以12BAG DAM BAE EAG ∠=∠=∠=∠,AG 是EAF ∠的平分线 过G 引GH AE ⊥于H .因为AG 是∠EAF 的平分线,所以GB =GH ,从而Rt △GBF≌Rt △GHE (HL ),所以∠F =∠HEG ,则 AF =AE (底角相等的三角形是等腰三角形),即 AE =BC +CE .说明 我们也可以按分析(2)的方法来证明结论,为此可先作∠BAE 的平分线AG 交边BC 于G ,再作GH ⊥AE 于H ,通过证明△ABG ≌△AHG 知AB =AH =BC .下面设法证明HE =CE 即可,请同学们自证.【例4】 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°, 则AB 的长为 ( )A . aB . kC . 2k h + D . hM DC B A E MD CBA【解析】 过点D 作BC 的垂线,垂足为E .∵∠AMD =75°,∠BMC =45° ∴∠DMC =60°∵DM =CM ∴CD =DM∵AD ⊥AB ,DE ⊥BC ,CB ⊥AB ,∠AMD =75°∴∠ADM =∠EDC∴△ADM ≌△CDE∴AD =DE故ABED 为正方形,AB =AD =h ,选D .【例5】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .FE D C B A MF E DC B A【解析】 延长CB 至M ,使得BM =DF ,连接AM .∵AB =AD ,AD ⊥CD ,AB ⊥BM ,BM =DF∴△ABM ≌△ADF∴∠AFD =∠AMB ,∠DAF =∠BAM∵AB ∥CD∴∠AFD =∠BAF =∠EAF +∠BAE =∠BAE +∠BAM =∠EAM∴∠AMB =∠EAM∴AE =EM =BE +BM =BE +DF .【例6】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三 角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NMD C BA E AB C D M N【解析】 如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=,BM CE =,所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=,60MDN ∠=,所以60BDM NDC ∠+∠=.又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=.在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=,DM DE =,所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【例7】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三 角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.DN MC B AF E A B C M N D E A B C D M N【解析】 如图所示,过D 作DE 交BC 于E ,使得BE BM =;过D 作DF 交BC 于F ,使得CF CN =.因为120BDC ∠=︒,BDC ∆为等腰三角形,所以30DBC ∠=,又因为ABC ∆为正三角形,所以60ABC ∠=︒.注意到DBC MBD ∠=∠,BM BE =,BD BD =,所以DBE ∆≌DBM ∆,可知AM CE =.同理,DCF DCN ∆∆≌,AN BF =.则有DE DM =,DF DN =,M DB EDB ∠=∠,NDC FDC ∠=∠.又因为60MDN ∠=,120BDC ∠=,则180MDB NDC ∠+∠=.而120120EDC EDB MDB ∠=︒-∠=︒-∠,120120BDF FDC NDC ∠=︒-∠=︒-∠, 故24060EDC BDF MDB NDC ∠+∠=︒-∠-∠=︒,因此60FDE ∠=︒,则FDE NDM ∆∆≌,MN EF =,进而可知AMN ∆的周长为1.另解:如图所示,在AB 上取一点E ,使得BE AN =.在DAN ∆和DBE ∆中,DA DB =,AN BE =,DAN DBE ∠=∠,因此DAN DBE ∆∆≌,从而DN DE =.在DMN ∆和DME ∆中,DN DE =,MD MD =,60MDN ∠=,()180MDE DEM DME ∠=-∠+∠()()180EBD EDB MAD MDA =-∠+∠+∠+∠⎡⎤⎣⎦()()1803030EDB MDA =-︒+∠+︒+∠⎡⎤⎣⎦120EDB MDA =-∠-∠()12060EDB NDA =-∠--∠()1206060EDB EDB =-∠--∠=.因此DMN DME ∆∆≌,从而MN ME =,进而可知AMN ∆的周长为1.【例8】五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDEC ED B A AB DEFC【解析】 延长DE 至F ,使得EF =BC ,连接AC .∵∠ABC +∠AED =180°,∠AEF +∠AED =180° ∴∠ABC =∠AEF∵AB =AE ,BC =EF ∴△ABC ≌△AEF∴EF =BC ,AC =AF∵BC +DE =CD ∴CD =DE +EF =DF∴△ADC ≌△ADF ∴∠ADC =∠ADF即AD 平分∠CDE .板块二、全等与角度【例9】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.D C B AE D CB A【解析】 如图所示,延长AB 至E 使BE BD =,连接ED 、EC .由AC AB BD =+知AE AC =,而60BAC ∠=,则AEC ∆为等边三角形.注意到EAD CAD ∠=∠,AD AD =,AE AC =,故AED ACD ∆∆≌.从而有DE DC =,DEC DCE ∠=∠,故2BED BDE DCE DEC DEC ∠=∠=∠+∠=∠.所以20DEC DCE ∠=∠=,602080ABC BEC BCE ∠=∠+∠=+=.ED C B A【另解】在AC 上取点E ,使得AE AB =,则由题意可知CE BD =.在ABD ∆和AED ∆中,AB AE =,BAD EAD ∠=∠,AD AD =,则ABD AED ∆∆≌,从而BD DE =,进而有DE CE =,ECD EDC ∠=∠,AED ECD EDC ∠=∠+∠=2ECD ∠.注意到ABD AED ∠=∠,则:1318012022ABC ACB ABC ABC ABC BAC ∠+∠=∠+∠=∠=-∠=, 故80ABC ∠=︒.【点评】由已知条件可以想到将折线ABD “拉直”成AE ,利用角平分线AD 可以构造全等三角形.同样地,将AC 拆分成两段,之后再利用三角形全等亦可,此思路也是十分自然的.需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想.上述方法我们分别称之为“补短法”和“截长法”,它们是证明等量关系时优先考虑的方法.【例10】在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.DE C B A D EC B A【解析】 如图所示,连接DC .因为AD BD =,AC BC =,CD CD =,则ADC BDC ∆∆≌,故30BCD ∠=.而DBE DBC ∠=∠,BE AB BC ==,BD BD =,因此BDE BDC ∆∆≌,故30BED BCD ∠=∠=.练习1、点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .21E ABC M N NMC B A【解析】 (旋转、等腰三角形、等边三角形、线段证明)延长NC 至E ,使得CE =MB∵ △BDC 是等腰三角形,且∠BDC =120°∴∠DBC =∠DCB =30°∵ △ABC 是等边三角形.∴∠ABC =∠ACB =∠BAC =60°∴∠MBD =∠ABC +∠DBC =∠ACB +∠DCB =∠DCN =∠DCE =90°在Rt △DBM 和Rt △DCE 中,BD =DC ,MB =CE ,∴ Rt △DMB ≌Rt △DCE .∴ DE =DM , ∠1=∠2.又∵ ∠1+∠NDC =60°∴ ∠2+∠NDC =∠END =60°.在△MDN 与△EDN 中,ND =ND ,∠MDN =∠EDN =60°,DE =DM∴ △MND ≌△END∴ MN =EN =NC +MB2、如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的 平分线交于点N ,MD 与MN 有怎样的数量关系?N C D E B M A NCD EB M A【解析】 猜测DM MN =.在AD 上截取AG AM =,∴DG MB =,∴45AGM =∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠,∴DGM MBN ∆∆≌,∴DM MN =.。
专题11 截长补短模型模型的概述:该模型适用于求证线段的和差倍分关系,该类题目中常出现等腰三角形、角平分线等关键词,可以采用截长补短法构造全等三角形来完成证明。
其中截长指在长线段中截取一段等于已知线段,补短指将短线段延长,使短线段加上延长线段长度等于长线段。
图解:已知线段AB、CD、EF,简述利用截长补短法证明AB=CD+EF的方法截长法:在线段AB上,截取AG=CD,判断线段GB和线段EF长度是否相等补短法:延长线段CD至点H,使DH=EF,判断线段AB和线段GH长度是否相等【过关练】1.(2022秋·湖北黄石·八年级黄石八中校考期中)如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB 于点D,已知AC=16,BC=9,则BD的长为( )A.6B.7C.8D.9【答案】B【分析】如图,在上截取连接证明利用全等三角形的性质证明求解再证明从而可得答案.【详解】解:如图,在上截取连接平分故选:【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键.2.如图,在中,AD平分,,,,则AC的长为()A.3B.9C.11D.15【答案】C【分析】在AC上截取AE=AB,连接DE,证明△ABD≌△AED,得到∠B=∠AED,AB=AE,再证明CD=CE,进而代入数值解答即可.【详解】在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,∠ADB =∠ADE,AB=AE,又∠B=2∠ADB∴∠AED=2∠ADB,∠BDE=2∠ADB,∵∠AED=∠C+∠EDC=2∠ADB,∠BDE=∠C+∠DEC=2∠ADB,∴∠DEC =∠EDC,∴CD=CE,∵,,∴AC =AE+CE=AB+CD = 5+6=11.故选:C.【点睛】本题考查全等三角形的判定和性质;利用了全等三角形中常用辅助线-截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.3.如图,△ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且∠D+∠E=180°,若BD=6,则CE的长为__.【答案】6【分析】在AD上截取AF=AE,连接BF,易得△ABF≌△ACE,根据全等三角形的性质可得∠BFA=∠E,CE=BF,则有∠D=∠DFB,然后根据等腰三角形的性质可求解.【详解】解:在AD上截取AF=AE,连接BF,如图所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D,BF=BD,BD=6,CE=6.故答案为6.【点睛】本题主要考查全等三角形的性质与判定及等腰三角形的性质与判定,熟练掌握全等三角形的判定方法及等腰三角形的性质与判定是解题的关键.4.如图,中,平分,,,则的度数为_______.【答案】【分析】如图(见解析),在线段AC上取点E,使得,先根据角平分线的定义得出,再根据三角形全等的判定定理与性质得出,,然后根据线段的和差、等量代换得出,最后根据等腰三角形的性质、三角形的外角性质即可得.【详解】如图,在线段AC上取点E,使得平分在和中,,又故答案为:.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质等知识点,通过作辅助线,构造全等三角形是解题关键.5.(2022秋·八年级单元测试)如图,已知中,,D为上一点,且,则的度数是_________.【答案】20°【分析】延长至点E使,连接,证明是等边三角形,设,则,再证明,即可得到结果.【详解】解:如图,延长至点E使,连接.∴,∵,∴.∵,∴是等边三角形,∴,∵,∴设,则.在与中,∵,∴,∴.∵,∴,∴,∴.故答案是.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,准确分析计算是解题的关键.6.如图,在△ABC中,∠ACB=∠ABC=40o,BD是∠ABC的角平分线,延长BD至点E,使得DE=DA,则∠ECA=________.【答案】40°【分析】在BC上截取BF=AB,连接DF,由题意易得∠A=100°,∠ABD=∠DBC=20°,易得△ABD≌△FBD,进而可得DF=AD=DE,由此可证△DEC≌△DFC,然后根据全等三角形的性质、三角形内角和及外角的性质可求解.【详解】解:在BC上截取BF=AB,连接DF,∠ACB=∠ABC=40°,BD 是∠ABC 的角平分线,∠A=100°,∠ABD=∠DBC=20°,∠ADB=60°,∠BDC=120°,BD=BD ,△ABD ≌△FBD ,DE=DA ,DF=AD=DE ,∠BDF=∠FDC=∠EDC=60°,∠A=∠DFB=100°,DC=DC ,△DEC ≌△DFC ,;故答案为40°.【点睛】本题主要考查全等三角形的判定与性质、三角形内角和及外角的性质,熟练掌握三角形全等的判定条件及外角性质是解题的关键.7.(2022秋·全国·八年级专题练习)如图,在中,平分交于点D ,若,求的度数.【答案】【分析】在上截取,连接,证明,再证明,设,再得到,证明然后利用内角和定理求解即可.【详解】解:如图,在上截取,连接.∵平分,.∵,,∴∵,,∴,∴,∴.∵,∴.设,则.∵在中,,解得,∴.【点睛】本题考查的是角平分线的定义,三角形全等的判定与性质,三角形的内角和定理,等腰三角形的性质,掌握以上知识是解题的关键.8.如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,则AB的长与AD+BC的大小关系是( )A.AB>AD+BC B.AB<AD+BC C.AB=AD+BC D.无法确定【答案】C【分析】在AB上截取AF=AD,连接EF,易得∠AEB=90°和△ADE≌△AFE,再证明△BCE≌△BFE,利用全等三角形对应边相等即可得出三条线段之间的关系.【详解】解:如图所示,在AB上截取AF=AD,连接EF,∵AD∥BC,∴∠ABC+∠DAB=180°,又∵BE平分∠ABC,AE平分∠DAB∴∠ABE+∠EAB==90°,∴∠AEB=90°即∠2+∠4=90°,在△ADE和△AFE中,∴△ADE≌△AFE(SAS),所以∠1=∠2,又∠2+∠4=90°,∠1+∠3=90°,所以∠3=∠4,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),所以BC=BF,所以AB=AF+BF=AD+BC;故选C.【点睛】本题考查全等三角形的判定和性质,截长补短是证明线段和差关系的常用方法.9.已知:如图所示,四边形中,是上一点,且平分平分,若,求四边形的面积.【答案】12.【分析】在AB上截,根据SAS易证,∠AOD=∠AOE,根据平行线和角平分线的性质可得出∠AOB=90°,则,可得,继而证明△BOE ≌△BOC,可得S四ABCD =2S△AOB,即可得出答案.【详解】解:在AB上截,∵AO平分∠BAD,∴∠DAO=∠EAO,在△AOD和△AOE中,∴,,,平分,平分,∴∠AOB=90°,,∵BO平分∠ABC,∴∠ABO=∠CBO,在△BOC和△BOE中,∴,四边形ABCD的面积的面积==12.故答案为12.【点睛】本题考查角平分线的性质,平行线的性质,全等三角形的判定与性质,三角形面积的计算,由全等三角形的性质得出S四ABCD =2S△AOB是解题的关键.10.(2021秋·福建福州·八年级校考阶段练习)如图,在四边形ABCD中,∠DAB=∠BCD=90°,AB=AD,若这个四边形的面积是4,则BC+CD等于( )A.2B.4C.2D.4【答案】B【分析】延长CB到点E,使BE=DC,连接AE,AC,可以证明△ADC≌△ABE,可得△EAC是等腰直角三角形,再根据△EAC的面积等于四边形的面积是4,可得EC的长,进而可得结论.【详解】解:如图,延长CB到点E,使BE=DC,连接AE,AC,∵∠DAB=∠BCD=90°,∴∠D+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠D=∠ABE,在△ADC和△ABE中,,∴△ADC≌△ABE(SAS),∴AC=AE,∠DAC=∠BAE,S△AEC=S四边形ABCD,∵∠DAC+∠CAB=90°,∴∠BAE+∠CAB=90°,∴∠EAC=90°,∴△EAC是等腰直角三角形,∵,∴AE=,∴EC=4,∴BC+CD=BC+BE=EC=4.故选:B.【点睛】本题考查了全等三角形的判定与性质、面积及等积变换、三角形面积公式、勾股定理,解题的关键是综合运用以上知识.11.(2020秋·江苏无锡·八年级统考期中)如图,与有一条公共边AC,且AB=AD,∠ACB=∠ACD=x,则∠BAD=________.(用含有x的代数式表示)【答案】180°-2x【分析】在CD上截取CE=CB,证明△ABC≌△AEC得AE=AB,∠B=∠AEC,可进一步证明∠D+∠B=180°,再根据四边形内角和定理可得结论.【详解】解:在CD上截取CE=CB,如图所示,在△ABC和△AEC中,∴△ABC≌△AEC(SAS)∴AE=AB,∠B=∠AEC,∵AB=AD,∴AD=AE,∴∠D=∠AED,∵∠AED+∠AEC=180°,∴∠D+∠B=180°,∵∠DAB+∠ABC+∠BCD+∠CDA=360°∴∠DAB+∠BCD =360°-∠ABC-∠CDA=360°-180°=180°,∵∠BCD =∠ACB +∠ACD =x+x=2x∴∠DAB=180°-∠BCD=180°-2x故答案为:180°-2x【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质以及四边形的内角和等知识,作辅助线构造全等三角形是解答此题的难点.12.(2021秋·广东佛山·八年级佛山市南海区石门实验学校校考阶段练习)如图,在等腰△ABC中,AB=AC,∠BAC=120°,点D是线段BC上一点,∠ADC=90°,点P是BA延长线上一点,点O是线段AD 上一点,OP=OC,下面的结论:①∠APO=∠ACO;②∠APO+∠DCO=30°;③AC=AO+AP;④PO=PC,其中正确的有______.【答案】①②③④【分析】连接BO,由线段垂直平分线的性质定理,等腰三角形的判定与性质,三角形的内角和定理,角的和差求出∠APO=∠ACO,∠APO+∠DCO=30°,由三角形的内角和定理,角的和差求出∠POC=60°,再由等边三角的判定证明△OPC是等边三角形,得出PC=PO,∠PCO=60°,由角的和差,等边三角形的判定与性质,全等三角形的判定与性质,线段的和差和等量代换求出AO+AP=AC,即可得出结果.【详解】解:连接BO,如图1所示:∵AB=AC,AD⊥BC,∴BO=CO,∴∠OBC=∠OCB,又∵OP=OC,∴OP=OB,∴∠OBP=∠OPB,又∵在等腰△ABC中∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠OBC+∠OBP=∠OCB+∠ACO,∴∠OBP=∠ACO,∴∠APO=∠ACO,故①正确;又∵∠ABC=∠PBO+∠CBO=30°,∴∠APO+∠DCO=30°,故②正确;∵∠PBC+∠BPC+∠BCP=180°,∠PBC=30°,∴∠BPC+∠BCP=150°,又∵∠BPC=∠APO+∠CPO,∠BCP=∠BCO+∠PCO,∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,又∵∠POC+∠OPC+∠OCP=180°,∴∠POC=60°,又∵OP=OC,∴△OPC是等边三角形,∴PC=PO,∠PCO=60°,故④正确;在线段AC上截取AE=AP,连接PE,如图2所示:∵∠BAC+∠CAP=180°,∠BAC=120°,∴∠CAP=60°,∴△APE是等边三角形,∴AP=EP,又∵△OPC是等边三角形,∴OP=CP,又∵∠APE=∠APO+∠OPE=60°,∠CPO=∠CPE+∠OPE=60°,∴∠APO=∠EPC,在△APO和△EPC中,,∴△APO≌△EPC(SAS),∴AO=EC,又∵AC=AE+EC,AE=AP,∴AO+AP=AC,故③正确;故答案为:①②③④.【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的性质定理、等腰三角形的判定与性质、等边三角形的判定与性质、角的和差、线段的和差、等量代换等相关知识点;作辅助线构建等腰三角形、等边三角形、全等三角形是解题的关键.13.(2022秋·浙江·八年级专题练习)(1)如图(1),在四边形中,,,E,F分别是上的动点,且,求证:.(2)如图(2),在(1)的条件下,当点E,F分别运动到的延长线上时,之间的数量关系是______.【答案】(1)详见解析;(2)【分析】(1)延长到点G,使,连接,先证明,得到,然后证明,得到,根据,可得;(2)在上截取,连接,先证明△ABG≌△ADF(SAS),得到AG=AF,∠BAG=∠DAF,再证明△EAG≌△EAF(SAS),得到EG=EF,根据BG=DF,即可得EF=BE-BG=BE-DF.【详解】(1)如图,延长到点G,使,连接.,,又,,∴,,,.,∴,.,;(2).如图,在上截取,连接,,,在△ABG和△ADF中,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∠BAD=2∠EAF,∴∠BAG+∠GAE+∠EAD=∠EAD+∠DAF+∠EAD+∠DAF,∴∠GAE=∠EAF,在△EAG和△EAF中,∴△EAG≌△EAF(SAS),∴EG=EF,∵BG=DF,∴EF=BE-BG=BE-DF.【点睛】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键.14.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N 是CA延长线上一点,且∠MDN=60°.试探BM,MN,CN之间的数量关系,并给出证明.【答案】CN=MN+BM,见解析【分析】采用“截长补短”法,在CN上截取点E,使CE=BM,连接DE,结合等边及等腰三角形的性质利用SAS可证△MBD≌△ECD,继而可证△MND≌△END,由全等的性质可得结论.【详解】解:CN=MN+BM.证明:如图,在CN上截取点E,使CE=BM,连接DE,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°.又∵△BDC为等腰三角形,且∠BDC=120°,∴BD=CD,∠DBC=∠BCD=30°.∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°.在△MBD和△ECD中,∴△MBD≌△ECD(SAS).∴MD=ED,∠MDB=∠EDC.又∵∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC-(∠BDN+∠EDC)=∠BDC-(∠BDN+∠MDB)=∠BDC-∠MDN=120°-60°=60°.∴∠MDN=∠EDN.在△MND与△END中,∴△MND≌△END(SAS).∴MN=NE.∴CN=NE+CE=MN+BM.【点睛】本题考查了等边及等腰三角形的性质及全等三角形的判定和性质,并采用了截长补短法,灵活利用已知条件证明三角形全等是解题的关键.15.(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E、F分别在正方形ABCD的边BC、CD上,,连接EF,则,试说明理由.证明:延长CD到G,使,在与中,∴理由:(SAS)进而证出:___________,理由:(__________)进而得.【变式探究】如图,四边形ABCD中,,点E、F分别在边BC、CD上,.若、都不是直角,则当与满足等量关系________________时,仍有.请证明你的猜想.【拓展延伸】如图,若,,,但,,连接EF,请直接写出EF、BE、DF之间的数量关系.【答案】(1),理由:SAS;(2),证明见解析;(3)BE+DF=EF.【分析】(1)在前面已证的基础上,得出结论,进而证明,从而得出结论;(2)利用“解决问题”中的思路,同样去构造即可;(3)利用前面两步的思路,证明全等得出结论即可.【详解】(1),,则,,,在与中,,理由:();(2)满足即可,证明如下:如图,延长至,使,,,,在与中,,,则,,,在与中,,理由:();(3)BE+DF=EF.证明如下:如图,延长至,使,在与中,,,则,,,在与中,,理由:();.【点睛】本题考查了截长补短的方法构造全等三角形,能够理解前面介绍的方法并继续探究是解决问题的关键.16.(2022秋·江苏·八年级专题练习)在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P 为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.【答案】(1)见解析(2)一定成立(3)MN=NC﹣BM【分析】(1)根据等腰三角形的性质、三角形内角和定理得到∠PBC=∠=30°,进而得到∠PBM=∠PCN=90°,证明Rt△PBM≌Rt△PCN,得到∠BPM=∠CPN=30°,根据含30°角的直角三角形的性质证明结论;(2)延长AC至H,使CH=BM,连接PH,证明△PBM≌△PCH,得到PM=PH,∠BPM=∠CPH,再证明△MPN≌△HPN,得到MN=HN,等量代换得到答案;(3)在AC上截取CK=BM,连接PK,仿照(2)的方法得出结论.【详解】(1)证明:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵∠BPC=120°,BP=CP,∴∠PBC=∠PCB=×(180°﹣120°)=30°,∴∠PBM=∠PCN=90°,在Rt△PBM和Rt△PCN中,,∴Rt△PBM≌Rt△PCN(HL),∴∠BPM=∠CPN=30°,∵∠MPN=60°,PM=PN,∴△PMN为等边三角形,∴PM=PN=MN,在Rt△PBM中,∠BPM=30°,∴BM=PM,同理可得,CN=PN,∴BM+CN=MN.理由如下:延长AC至H,使CH=BM,连接PH,如图所示,由(1)可知:∠PBM=∠PCN=90°,∴∠PCH=90°,∴∠PBM=∠PCH,在△PBM和△PCH中,,∴△PBM≌△PCH(SAS),∴PM=PH,∠BPM=∠CPH,∵∠BPM+∠CPN=60°,∴∠CPN+∠CPH=60°,∴∠MPN=∠HPN,在△MPN和△HPN中,,∴△MPN≌△HPN(SAS),∴MN=HN=BM+CN,(3)解:在AC上截取CK=BM,连接PK,如图所示,在△PBM和△PCK中,,∴△PBM≌△PCK(SAS),∴PM=PK,∠BPM=∠CPK,∵∠BPM+∠BPN=60°,∴∠CPK+∠BPN=60°,∴∠KPN=60°,∴∠MPN=∠KPN,在△MPN和△KPN中,,∴△MPN≌△KPN(SAS),∴MN=KN,∵KN=NC﹣CK=NC﹣BM,∴MN=NC﹣BM.【点睛】本题考查的是全等三角形的判定和性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.17.(2022秋·浙江·八年级专题练习)如图,四边形中,,,,M、N分别为AB、AD上的动点,且.求证:.【答案】见解析【分析】延长至点,使得,连接,根据同角的补角相等得,根据证明,则,进而证明,根据证明,得到,则.【详解】证明:延长至点,使得,连接,四边形中,,,,在和中,,,,,,,,,在和中,,,.【点睛】本题主要考查了全等三角形的判定与性质,作辅助线构造全等三角形是解决问题的关键.18.(2022秋·江苏·八年级专题练习)(1)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明ABE≌ADG,再证明AEF≌AGF,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF∠BAD,上述结论是否仍然成立,并说明理由;(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【答案】(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;(2)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;(3)连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】解:(1)EF=BE+DF,证明如下:在ABE和ADG中,,∴ABE≌ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在AEF和GAF中,,∴AEF≌AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,如图2,在ABE和ADG中,,∴ABE≌ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在AEF和GAF中,,∴AEF≌AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.19.如图,是等边三角形,,,,则________.【答案】6【分析】在线段BD上取一点E,使得BE=CD,连接AE,由四点共圆得∠,再证明,△是等边三角形,得,再由线段的和差关系可得结论.【详解】解:在线段BD上取一点E,使得BE=CD,连接AE,∵∴四点共圆,∴∠∴∠∵△是等边三角形,∴,,∴△,∠,∴,∴∠,即,∴△是等边三角形,∴,∵,,∴,∴.【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠是解答此题的关键.20.(2023·全国·九年级专题练习)例:截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:将△ABD绕点A逆时针旋转60°得到△ACE,可得AE=AD,CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.【答案】(1)DA=DB+DC;(2) DA=DB+DC,证明见解析.【分析】(1)由旋转60°可得AE=AD,CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.(2) 延长DC到点E,使CE=BD,连接AE,由已知可得,根据,可得=,可证,进而可得AD=AE, ,可得,由勾股定理可得:,进行等量代换可得结论.【详解】(1)结论:DA=DB+DC.理由:∵△ABD绕点A逆时针旋转60°得到△ACE,∴AE=AD,CE=BD,∠ABD=∠ACE,∠DAE=60°,∵∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACE+∠ACD=180°,∴D,C,E三点共线,∵AE=AD,∠DAE=60°,∴△ADE是等边三角形,∴AD=DE,∴AD=DC+CE=DB+DC;(2)结论:DA=DB+DC,证明如下:如图所示,延长DC到点E,使CE=BD,连接AE,∵,,∴,∵,∴=,∵AB=AC,CE=BD,∴(SAS),∴AD=AE, ,∴,∴,∴,∴DA=DB+DC.【点睛】本题主要考查了截长补短的方法,通过全等三角形得到线段间的等量关系,正确作出辅助线找到全等三角形是解题的关键.21.(2022·全国·九年级专题练习)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【分析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,证明,得到,,根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案为.(2).证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴为等腰直角三角形,.∵,∴.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD 的面积最大.此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,∴.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.22.(2022秋·江苏·八年级专题练习)在中,,点D、E分别在、上,连接、和;并且有,.(1)求的度数;(2)求证:.【答案】(1);(2)见解析【分析】(1)由,,可得为等边三角形,由,,,可证(2)延长至F,使,连接,由,,且,可证由,可证为等边三角形,可得,可推出结论,【详解】解:(1)∵,,∴为等边三角形,∴,∵,,∵,∴(2)如图,延长至F,使,连接,由(1)得为等边三角形,∴,∵,又∵,且,∴,在与中,∴∴,∴,∴又∵,∴为等边三角形∴,又∵,且,∴,【点睛】本题考查等边三角形的判定与性质,三角形全等判定与性质,线段和差,三角形外角性质,关键是引辅助线构造三角形全等证明等边三角形.23.(2022秋·江苏·八年级专题练习)如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB =DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)求∠ADB的度数;(2)线段DE,AD,DC之间有什么数量关系?请说明理由.【答案】(1)120°;(2)DE=AD+CD,理由见解析【分析】(1)根据三角形内角和定理得到∠ABC=∠ACB=75°,根据全等三角形的性质得到∠BAD=∠CAD =15°,根据三角形的外角性质计算,得到答案;(2)在线段DE上截取DM=AD,连接AM,得到△ADM是等边三角形,根据△ABD≌△AEM,得到BD=ME,结合图形证明结论【详解】解:(1)∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵DB=DC,∠DCB=30°,∴∠DBC=∠DCB=30°,∴∠ABD=∠ABC﹣∠DBC=45°,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=∠BAC=15°,∴∠ADE=∠ABD+∠BAD=60°,∴∠ADB=180°﹣∠ADE=180°﹣60°=120°;(2)DE=AD+CD,理由如下:在线段DE上截取DM=AD,连接AM,∵∠ADE=60°,DM=AD,∴△ADM是等边三角形,∴∠ADB=∠AME=120°.∵AE=AB,∴∠ABD=∠E,在△ABD和△AEM中,,∴△ABD≌△AEM(AAS),∴BD=ME,∵BD=CD,∴CD=ME.∵DE=DM+ME,∴DE=AD+CD.【点睛】本题考查的是全等三角形的判定和性质、等边三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.24.如图,在△ABC中,AB=BC,∠ABC=60°,线段AC与AD关于直线AP对称,E是线段BD与直线AP 的交点.(1)若∠DAE=15°,求证:△ABD是等腰直角三角形;(2)连CE,求证:BE=AE+CE.【答案】(1)见解析;(2)见解析【分析】(1)首先根据题意确定出△ABC是等边三角形,然后根据等边三角形的性质推出∠BAC=60°,再根据线段AC与AD关于直线AP对称,以及∠DAE=15°,推出∠BAD=90°,即可得出结论;(2)利用“截长补短”的方法在BE上取点F,使BF=CE,连接AF,根据题目条件推出△ABF≌△ACE,得出AF=AE,再进一步推出∠AEF=60°,可得到△AFE是等边三角形,则得到AF=FE,从而推出结论即可.【详解】证明:(1)∵在△ABC中,AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC,∠BAC=∠ABC=∠ACB=60°,∵线段AC与AD关于直线AP对称,∴∠CAE=∠DAE=15°,AD=AC,∴∠BAE=∠BAC+∠CAE=75°,∴∠BAD=90°,∵AB=AC=AD,∴△ABD是等腰直角三角形;(2)在BE上取点F,使BF=CE,连接AF,∵线段AC与AD关于直线AP对称,∴∠ACE=∠ADE,AD=AC,∵AD=AC=AB,∴∠ADB=∠ABD=∠ACE,在△ABF与△ACE中,∴△ABF≌△ACE(SAS),∴AF=AE,∵AD=AB,∴∠D=∠ABD,又∠CAE=∠DAE,∴,∴在△AFE中,AF=AE,∠AEF=60°,∴△AFE是等边三角形,∴AF=FE,∴BE=BF+FE=CE+AE.【点睛】本题考查全等三角形的判定与性质,以及等边三角形的判定与性质等,掌握等边三角形的判定与性质,以及全等三角形的常见辅助线的构造方法是解题关键.25.(2022秋·全国·八年级专题练习)在中,AE,CD为的角平分线,AE,CD交于点F.(1)如图1,若.①直接写出的大小;②求证:.(2)若图2,若,求证:.【答案】(1)①120°;②见解析;(2)见解析【分析】(1)①综合三角形的内角和定理以及角平分线的定义求解即可;②利用“截长补短”思想,在AC上取点H,使得AD=AH,从而通过全等证得∠AFD=∠AFH,再结合①的结论进一步证明∠CFH=∠CFE,从而通过全等证得CE=CH,即可得出结论;(2)同样利用“截长补短”思想,在AC上取S、T两点,使得AD=AS,CE=CT,连接SF,SE,TF,TE,可通过全等直接先对△ADF和△CEF的面积进行转换,然后结合(1)中的结论,证明SF∥ET,即可对△DEF 的面积进行转换,从而得出结论.【详解】(1)①解:∵∠B=60°,∴∠BAC+∠BCA=180°-∠B=120°,∵AE平分∠BAC,CD平分∠BCA,∴∠FAC=∠BAC,∠FCA=∠BCA,∴∠FAC+∠FCA=(∠BAC+∠BCA)= ×120°=60°,∴∠AFC=180°-(∠FAC+∠FCA)=120°;②证:如图所示,在AC上取点H,使得AD=AH,在△ADF和△AHF中,∴△ADF≌△AHF(SAS),∴∠AFD=∠AFH,∵∠AFD=∠CFE,∴∠AFH=∠CFE,由①可知,∠AFC=120°,∴∠CFE=180°-120°=60°,∴AFH=∠CFE=60°,∴∠CFH=60°,即:∠CFH=∠CFE,在△CFH和△CFE中,∴△CFH≌△CFE(ASA),∴CE=CH,∵AC=AH+CH,∴AC=AD+CE;(2)证:如图所示,在AC上取S、T两点,使得AD=AS,CE=CT,连接SF,SE,TF,TE,∵AE平分∠BAC,∴∠DAF=∠SAF,在△ADF和△ASF中,∴△ADF≌△ASF(SAS),同理可证△AED≌△AES,△CEF≌△CTF,∴DF=SF,DE=SE,FT=FE,∴△DEF≌△SEF,∴,,,且∠AFD=∠AFS,∠CFE=∠CFT,∵∠AFD=∠CFE,∴∠AFD=∠AFS=∠CFE=∠CFT,由(1)可得:∠AFC=90°+∠B=135°,∴∠CFE=180°-135°=45°,∴∠AFD=∠AFS=∠CFE=∠CFT=45°,∴∠CFS=135°-∠AFS =90°,∴CF⊥SF,又∵FT=FE,CT=CE,∴CF垂直平分EF,即:CF⊥ET,∴SF∥ET,∴,∴∵,∴.【点睛】本题考查全等三角形的判定与性质,以及三角形角平分线相关的证明问题,掌握基本的辅助线添加思想,熟练运用全等三角形的判定与性质是解题关键.26.(2022秋·浙江·八年级专题练习)如图中,分别平分相交于点.(1)求的度数;(2)求证:【答案】(1)∠CPD=60°;(2)详见解析【分析】(1)根据三角形的内角和定理及角平分线的定义,三角形的外角性质即可求出;(2)在AC上截取AF=AE,先证明△APE≌△APF(SAS),再证明△CFP≌△CDP(ASA),根据全等三角形的性质证明即可.【详解】解:(1)∵∠ABC=60°,∴∠BAC+∠ACB=180°-60°=120°,又∵AD、CE分别平分,∴,∴,又∵∠CPD是△ACP的外角,∴∠CPD=∠CAD+∠ACE=60°,∴∠CPD=60°.(2)如图,在AC上截取AF=AE,连接PF,∵∠CPD=60°,∴∠APC=120°,∠APE=60°∵AD平分∠BAC,CE平分∠ACB,∴∠BAD=∠CAD,∠ACE=∠BCE在△APE与△APF中,∴△APE≌△APF(SAS)∴∠APF=∠APE=60°,∴∠CPF=∠AOC-∠APF=60°,在△CFP与△CDP中,∴△CFP≌△CDP(ASA)∴CD=CF∴AC=AF+CF=AE+CD,即.【点睛】本题考查了全等三角形的判定及性质、三角形内角和定理与角平分线的角度计算问题,解题的关键是通过在AC上截取AF=AE构造全等三角形.27.(2022秋·全国·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.【答案】(1)证明见解析;(2);理由见解析;(3).【分析】(1)方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题;(2)延长到点,使,连接,证明,可得,即(3)连接,过点作于,证明,,进而根据即可得出结论.。
中考数学全全等三角形截长补短复习题附解析一、全等三角形截长补短1.已知ABC 是等边三角形,6AB =.(1)如图1,点M 是BC 延长线上一点,60AMN ∠=︒,MN 交ABC 的外角平分线于点N ,求CN CM -的值;(2)如图2,过点A 作AD BC ⊥于点D ,点P 是直线AD 上一点,以CP 为边,在CP 的下方作等边CPQ ,连接DQ ,求DQ 的最小值.2.如图1,在ABC 中,AB AC =,AC 平分BCD ∠,连接BD ,2ABD CBD ∠=∠,BDC ABD ACD ∠=∠+∠.(1)求A ∠的度数:(2)如图2,连接AD ,AE AD ⊥交BC 于E ,连接DE ,求证:DEC BAE ∠=∠; (3)如图3,在(2)的条件下,点G 为CE 的中点,连接AG 交BD 于点F ,若32ABC S =△,求线段AF 的长.3.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点,且∠EAF =60°,请探究图中线段BE ,EF ,FD 之间的数量关系是什么?小明探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG .先证明△ABE ≌△ADG ,得AE =AG ;再由条件可得∠EAF =∠GAF ,证明△AEF ≌△AGF ,进而可得线段BE ,EF ,FD 之间的数量关系是 .(2)拓展应用:如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD .问(1)中的线段BE ,EF ,FD 之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.4.如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.5.通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.(解决问题)如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF ,则EF BE DF =+,试说明理由.证明:延长CD 到G ,使DG BE =,在ABE △与ADG 中,90AB AD B ADG BE DG =⎧⎪∠=∠=︒⎨⎪=⎩∴ABE ADG ≌理由:(SAS )进而证出:AFE △≌___________,理由:(__________)进而得EF BE DF =+.(变式探究)如图,四边形ABCD 中,AB AD =,90BAD ∠=︒点E 、F 分别在边BC 、CD 上,45EAF ∠=︒.若B 、D ∠都不是直角,则当B 与D ∠满足等量关系________________时,仍有EF BE DF =+.请证明你的猜想.(拓展延伸)如图,若AB AD =,90≠︒∠BAD ,45EAF ∠≠︒,但12EAF BAD ∠=∠,90B D ∠=∠=︒,连接EF ,请直接写出EF 、BE 、DF 之间的数量关系.6.如图,ABC ∆中,BE ,CD 分别平分ABC ∠和ACB ∠,BE ,CD 相交于点F ,60A ∠=︒.(1)求BFD ∠的度数;(2)判断BC ,BD ,CE 之间的等量关系,并证明你的结论.7.在菱形ABCD 中,射线BM 从对角线BD 所在的位置开始绕着点B 逆时针旋转,旋转角为()0180αα︒<<︒,点E 在射线BM 上,DEB DAB ∠=∠.(1)当60DAB ∠=︒时,BM 旋转到图①的位置,线段BE ,DE ,AE 之间的数量关系是______;(2)在(1)的基础上,当BM 旋转到图②的位置时,探究线段BE ,DE ,AE 之间的数量关系,并证明;(3)将图②中的60DAB ∠=︒改为90DAB ∠=︒,如图③,其他条件不变,请直接写出线段BE ,DE ,AE 之间的数量关系.8.如图,//AD BC ,点E 在线段AB 上,DE 、CE 分别是ADC ∠、BCD ∠的角平分线,若3AD =,2BC =,求CD 的长.9.如图,在正方形ABCD中,点F是CD的中点,点E是BC边上的一点,且AF平分DAE∠,求证:AE EC CD=+.10.如图所示,平行四边形ABCD和平行四边形CDEF有公共边CD,边AB和EF在同一条直线上,AC⊥CD且AC=AF,过点A作AH⊥BC交CF于点G,交BC于点H,连接EG.(1)若AE=2,CD=5,则△BCF的面积为;△BCF的周长为;(2)求证:BC=AG+EG.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)6;(2)3 2【分析】(1)在CN上截取点H,使CH=CM,先证出△CMH为等边三角形,然后利用ASA证出△AMC≌△NMH,从而得出AC=NH,从而求出结论;(2)连接BQ,利用SAS证出△QCB≌△PCA,从而得出∠CBQ=∠CAP,然后根据三线合一和等量代换即可求出∠CBQ=30°、∠ABQ =90°,从而判断出点Q 的运动轨迹,然后根据垂线段最短即可得出当DQ ⊥BQ 时,DQ 最短,然后利用30°所对的直角边是斜边的一半即可得出结论.【详解】解:(1)在CN 上截取点H ,使CH=CM ,连接MH∵△ABC 为等边三角形∴∠ACB=60°,AC=AB=6∴∠ACM=180°-∠ACB=120°∵CN 平分∠ACM∴∠MCN=12∠ACM=60° ∴△CMH 为等边三角形 ∴CM=HM ,∠CMH=∠CHM=60°∴∠NHM=180°-∠CHM=120°,∠AMC +∠AMH=60°∴∠ACM=∠NHM∵60AMN ∠=︒∴∠NMH +∠AMH=60°∴∠AMC=∠NMH在△AMC 和△NMH 中AMC NMH CM HMACM NHM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AMC ≌△NMH∴AC=NH∴CN CM -=CN -CH=NH=AC=6(2)连接BQ∵△ABC 和△CPQ 都是等边三角形∴BC=AC ,QC=PC ,∠PCQ =∠ACB=∠ABC=∠BAC =60°∴∠PCQ -∠PCB=∠ACB -∠PCB∴∠QCB=∠PCA在△QCB 和△PCA 中BC AC QCB PCA QC PC =⎧⎪∠=∠⎨⎪=⎩∴△QCB ≌△PCA∴∠CBQ=∠CAP∵AD BC ⊥∴∠CAP=12∠BAC=30°,BD=12BC=3 ∴∠CBQ=30°∴∠ABQ=∠ABC +∠CBQ=90°∴点Q 在过点B 作AB 的垂线上运动 根据垂线段最短可得:当DQ ⊥BQ 时,DQ 最短此时在Rt △BDQ 中,∠QBD=30°∴DQ=12BD=32即DQ 的最小值为32. 【点睛】此题考查的是全等三角形的判定及性质、等边三角形的判定及性质、直角三角形的性质和垂线段最短的应用,掌握构造全等三角形的方法、全等三角形的判定及性质、等边三角形的判定及性质、30°所对的直角边是斜边的一半和垂线段最短是解决此题的关键. 2.(1)90A ∠=︒;(2)见解析;(3)4【分析】(1)设.DBC x ∠=推出2ABC x ∠=,3ABC ACB ACD x ∠=∠=∠=,5D x ∠=,利用三角形内角和定理构建方程求出x 即可;(2)先依据ASA 证明BEA CDA △≌△,再依据全等三角形的性质得到AE AD =,结合AE AD ⊥,依据三角形内角和求出45AED ∠=︒,再依据三角形外角的性质及等式的基本性质即可求证;(3)根据直角三角形的面积公式求出AB ,延长AG 至K ,使GK AG =,连接CK ,先依据SAS 证明AEG KCG △≌△,结合等量代换得到AE KC AD ==,ACK BAD ∠=∠,再依据SAS 证明AKC BDA △≌△,依据全等的性质求得CAG ABD ∠=∠215=⨯︒30=︒,从而得到60BAF ∠=︒,继而得到90AFB ∠=︒,最后依据直角三角形30度角的性质解决问题.【详解】()1解:如图1中,设DBC x ∠=.2ABD DBC ∠=∠,AB AC =,2ABD x ∴∠=,3ABD ACB x ∠=∠=, AC 平分BCD ∠,3ACD ACB x ∴∠=∠=,26DCB ACB x ∠=∠=,5D ABD ACD x ∠=+∠=,又∵在BCD ∆中,180D DBC DCB ∠+∠+∠=︒,56180x x x ∴++=︒,15x ∴=︒,45ABC ACB ∴∠=∠=︒,30ABD ∠=︒,180454590A ∴∠=︒-︒-︒=︒;(2)AE AD ⊥,90EAD ∴∠=︒,90BAC EAD ∠=∠=︒,BAC EAC EAD EAC ∴∠-∠=∠-∠,BAE CAD ∴∠=∠,=345ABE x ACD ∠=︒=∠,AB AC =()BEA CDA ASA ∴△≌△AE AD ∴=,又∵90EAD ∠=︒,∴45AED ADE ∠=∠=︒又AEC ABE BAE AED DEC ∠=∠+∠=∠+∠,DEC BAE ∴∠=∠;(3)延长AG 至K ,使GK AG =,连接CK点G 为CE 的中点,EG CG ∴=,AGE KGC ∠=∠,()AEG KCG SAS ∴△≌△,AE KC ∴=,AEG KCG ∠=∠,AE KC AD ∴==,45ACK ACB KCG AEC ∠=∠+∠=︒+∠4590ABE BAE BAE BAD =︒+∠+∠=︒+∠=∠AB AC =()AKC BDA SAS ∴△≌△21530CAG ABD ∠=∠=⨯︒=︒60BAF ∴∠=︒90AFB ∴∠=︒32ABC S =211=3222AB AC AB ∴⨯= 8AB ∴=142AF AB ∴==. 【点睛】本题属于三角形综合题,考查了三角形内角和定理,三角形外角的性质,三角形全等的判定和性质,含30度的直角三角形的性质,第(1)问的关键在于设未知数,列方程;第(2)问的关键得到了等腰直角三角形和利用三角形的外角性质建立起了两个待证量之间的等式;第(3)问的关键在于作辅助线证明了30CAG ∠=︒.3.(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析.【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题.【详解】(1)EF =BE +DF ,理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为:EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.4.(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D 作DM ⊥AB 于M ,由 CA =CB ,90ACB =︒,得ABC 是等腰直角三角形,根据角平分线的性质得到CD =MD ,∠ABC =45°,根据全等三角形的性质得到AC =AM ,于是得到结论;(2)如图2,设∠ACB =α,则∠CAB =∠CBA =90°−12α,在AB 上截取AK =AC ,连结DK ,根据角平分线的定义得到∠CAD =∠KAD ,根据全等三角形的性质得到∠ACD =∠AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB 上截取AH =AD ,连接DH ,根据等腰三角形的性质得到∠CAB =∠CBA =40°,根据角平分线的定义得到∠HAD =∠CAD =20°,求得∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,根据全等三角形的性质得到∠ACB =∠AKD =100°,CD =DK ,根据等腰三角形的性质得到DH =BH ,于是得到结论.【详解】(1)如图1,过D 作DM ⊥AB 于M ,∴在ABC 中,AC BC =,∴∠ABC =45°,∵∠ACB =90°,AD 是角平分线,∴CD =MD ,∴∠BDM =∠ABC =45°,∴BM =DM ,∴BM =CD ,在RT △ADC 和RT △ADM 中,CD MD AD AD⎧⎨⎩==, ∴RT △ADC ≌RT △ADM (HL ),∴AC =AM ,∴AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设∠ACB =α,则∠CAB =∠CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,∵AB =AC +BD ,AB=AK+BK∴BK =BD ,∵AD 是角平分线,∴∠CAD =∠KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩=== ∴△CAD ≌△KAD (SAS ),∴∠ACD =∠AKD =α,∴∠BKD =180°−α,∵BK =BD ,∴∠BDK =180°−α,∴在△BDK 中,180°−α+180°−α+90°−12α=180°, ∴α=108°,∴∠ACB =108°;(3)如图3,在AB 上截取AH =AD ,连接DH ,∵∠ACB =100°,AC =BC ,∴∠CAB =∠CBA =40°,∵AD 是角平分线,∴∠HAD =∠CAD =20°,∴∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,由(1)得,△CAD ≌△KAD ,∴∠ACB =∠AKD =100°,CD =DK ,∴∠DKH =80°=∠DHK ,∴DK =DH =CD ,∵∠CBA =40°,∴∠BDH =∠DHK -∠CBA =40°,∴DH =BH ,∴BH =CD ,∵AB =AH +BH ,∴AB =AD +CD .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.5.(1)AFE AFG △≌△,理由:SAS ;(2)180B D ∠+∠=︒,证明见解析;(3)BE+DF=EF .【分析】(1)在前面已证的基础上,得出结论AE AG =,进而证明AFE AFG △≌△,从而得出结论;(2)利用“解决问题”中的思路,同样去构造AFE AFG △≌△即可;(3)利用前面两步的思路,证明全等得出结论即可.【详解】(1)ABE ADG ≌,,,AE AG BAE DAG BE DG ∴=∠=∠=,则BAE FAD FAD ADG FAG ∠+∠=∠+∠=∠,45EAF ∠=︒,45FAG ∴∠=︒,在AFG 与AFE △中,AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠ AFE AFG ∴△≌△,理由:(SAS )EF FG FD DG FD BE ∴==+=+;(2)满足180B D ∠+∠=︒即可,证明如下:如图,延长FD 至G ,使BE DG =,180B ADF ∠+∠=︒,180ADF ADG ∠+∠=︒,B ADG ∴∠=∠,在ABE △与ADG 中,AB AD B ADG BE DG =⎧⎪∠=∠⎨⎪=⎩()ABE ADG SAS ∴≌,,,AE AG BAE DAG BE DG ∴=∠=∠=,则BAE FAD FAD ADG FAG ∠+∠=∠+∠=∠,45EAF ∠=︒,45FAG ∴∠=︒,在AFG 与AFE △中,AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠ AFE AFG ∴△≌△,理由:(SAS )EF FG FD DG FD BE ∴==+=+;(3)BE+DF=EF .证明如下:如图,延长FD 至G ,使BE DG =,在ABE △与ADG 中,90AB AD B ADG BE DG =⎧⎪∠=∠=︒⎨⎪=⎩()ABE ADG SAS ∴≌,,AE AG BAE DAG ∴=∠=∠,则BAE FAD FAD ADG FAG ∠+∠=∠+∠=∠,12EAF BAD ∠=∠,12FAG EAD FAE ∴∠=∠=∠, 在AFG 与AFE △中,AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠ AFE AFG ∴△≌△,理由:(SAS )EF FG FD DG FD BE ∴==+=+;.【点睛】本题考查了截长补短的方法构造全等三角形,能够理解前面介绍的方法并继续探究是解决问题的关键.6.(1)∠BFD =60°;(2)BC =BD +CE ;证明见解析【分析】(1)根据角平分线和外角性质求解即可;(2)在BC 上截取BG =BD ,连接FG ,证明△BDF ≌△BGF ,△CGF ≌△CEF ,即可得到结果;【详解】(1)∵BE ,CD 分别平分ABC ∠和ACB ∠,BE ,∴ABE CBE ∠=∠,ACD BCD ∠=∠,∵60A ∠=︒,∴120ABC ACB ∠+∠=︒,∴60FBC FCB ∠+∠=︒,∴60DFB ∠=︒.(2)BC =BD +CE ;证明方法:在BC 上截取BG =BD ,连接FG ,在△BDF 和△BGF 中,BD BG DBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△BDF BGFSAS ≅, ∴60DFB BFG ∠=∠=︒,又∵GCF ECF ∠=∠,∴△CGF ≌△CEF (ASA ),∴CE =CG ,∴BC =BD +CE .【点睛】本题主要考查了三角形内角和定理、外角定理、三角形全等应用,准确分析是解题的关键.7.(1)BE DE AE =+;(2)BE DE AE =-,证明见解析;(3)2BE DE =【分析】(1)在射线BM 上截取BF DE =,连接AF ,首先利用菱形的性质证明ADE ABF ≌,然后利用全等三角形的性质及等边三角形的性质得出EF AE =,从而可得出结论BE DE AE =+;(2)在DE 上截取DG BE =,连接AG ,首先利用菱形的性质证明ADG ABE ≌,然后利用全等三角形的性质及等边三角形的性质得出EG AE =,从而可得出结论BE DE AE =-;(3)在DE 上截取DH BE =,连接AH ,首先利用正方形的性质证明ADH ABE △≌,然后利用全等三角形的性质及等腰直角三角形的性质得出2EH =,从而可得出结论2BE DE AE =.【详解】(1)解:BE DE AE =+;如图①,在射线BM 上截取BF DE =,连接AF ,60DEB DAB ∠=∠=︒,EDA ABE ∴∠=∠.四边形ABCD 是菱形,AB AD ∴=.()ADE ABF SAS ∴△≌△,AE AF ∴=,EAD BAF ∠=∠.60DAB DAF BAF DAF EAD EAF ∴∠=∠+∠=∠+∠=∠=︒.AEF ∴是等边三角形,EF AE ∴=.BE BF EF =+,BE DE AE ∴=+.图①(2)BE DE AE =-.证明:如图②,在DE 上截取DG BE =,连接AG ,60DEB DAB ∠=∠=︒,EDA ABE ∴∠=∠.四边形ABCD 是菱形,AB AD ∴=.()ADG SAS ∴△≌△ABE .AE AG ∴=,DAG BAE ∠∠=.60DAB DAG BAG BAE BAG EAG ∴∠=∠+∠=∠+∠=∠=︒. ∴AEG 是等边三角形.EG AE ∴=.DG DE EG =-,BE DE AE ∴=-;图②(3)2BE DE AE =.如图③,在DE 上截取DH BE =,连接AH ,90DEB DAB ∠=∠=︒,EDA ABE ∴∠=∠.四边形ABCD 是正方形,AB AD ∴=.()ADH ABE SAS ∴△≌△.AE AH ∴=,HAD BAE ∠=∠.90DAB DAH BAH BAE BAH EAH ∴∠=∠+∠=∠+∠=∠=︒.AEH ∴是等腰直角三角形.2EH AE ∴=.DH DE EH =-,2BE DE AE ∴=-.图③【点睛】本题主要考查全等三角形的判定及性质,等腰直角三角形和等边三角形的性质,正方形和菱形的性质,合理的作出辅助线是解题的关键.8.5【分析】如图,在DC 上截取DF DA =,连接EF ,先证明ADE FDE △≌△,得到AE EF =,5A ∠=∠,然后证明CEF CEB △≌△,得到CF BC =,即可求出答案.【详解】解:如图,在DC 上截取DF DA =,连接EF ,DE 是ADC ∠的角平分线,12∠∠∴=,在△ADE 和△FDE 中,,12,,AD DF DE DE =⎧⎪∠=∠⎨⎪=⎩()ADE FDE SAS ∴△≌△,AE EF ∴=,5A ∠=∠,//AD BC ,180A B ∴∠+∠=︒,56180∠+∠=︒,6B ∴∠=∠,CE 是BCD ∠的角平分线,34∴∠=∠,在CEF △和CEB △中,6,34,,B CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()CEF CEB AAS ∴△≌△,CF BC ∴=,325CD DF CF AD BC ∴=+=+=+=.【点睛】本题考查了角平分线的性质,平行线的性质,全等三角形的判定和性质,证明ADE FDE △≌△是解题关键.9.见解析【分析】过F 作FH ⊥AE 于H ,得出FH=FD ,然后证明△FHE ≌△FCE ,再通过等价转换可证得AE=EC+CD .【详解】证明:过F 作FH ⊥AE 于H ,如图,∵AF 平分∠DAE ,∠D=90°,FH ⊥AE ,∴∠DAF=∠EAF ,FH=FD ,又∵DF=FC=FH ,FE 为公共边,∴△FHE ≌△FCE (HL ).∴HE=CE .∵AE=AH+HE ,AH=AD=CD ,HE=CE ,∴AE=EC+CD .【点睛】本题考查角平分线的性质,角平分线上的点到角的两边距离相等,也考查了等量代换的思想,属于比较典型的题目.10.(1)3,23234+2)见解析【分析】(1)根据平行和垂直的特点求出BF ,AF ,再根据勾股定理求出CD ,根据FP 与BA 的比值求出面积,再根据勾股定理求CF ,BC 即可得到周长.(2)在AD 上截取AM=AG ,连接CM ,证△FAG ≌△CAM ;证△EFG ≌△DCM .【详解】解:(1)面积为3;周长为23234++ ∵四边形ABCD 和四边形CDEF 都是平行四边形,∴EF=CD ,AB=CD ,AB ∥CD∴EF=AB=CD=5∴AE=EF-AE=5-2=3∴BF=5-3=2过F 作FP ⊥BC则FP :AH=BF :AB=2:5,∴::2:5BCF BCA S S FP AH == ,∵AC ⊥CD ,AB ∥CD,∴AB ⊥AC ,即∠BAC=90°,∵AC=AF=3,∴CF=223332+= ,BC=223534+= ,∴2213552BCF BCA S S CD AC ==⨯⨯= ∴△BCF 的面积为3,△BCF 周长为23234++(2)在AD 上截取AM=AG ,连接CM ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC∵AH ⊥BC∴AD ⊥AH∴∠DAH=90°∵∠BAC=90°∴∠DAH=∠BAC∴∠DAH-∠CAH =∠BAC-∠CAH∴∠BAH=∠CAD∵AF=AC∴△FAG≌△CAM∴FG=CM,∠ACM=∠AFG∵四边形CDEF是平行四边形,∴EF∥CD,EF=CD,∴∠DCF+∠AFC=180°,∵AF=AC,∠BAC=90°,∴∠AFC=∠ACF=45°,∴∠DCF=180°-∠AFC=135°,∴∠ACM=∠AFG=45°,∴∠DCM=∠FCD-∠ACF-∠ACM=45°,∴∠AFG=∠DCM,∴△EFG≌△DCM,∴EG=DM,∵AD=AM+DM,∴AD=AG+EG,∵AD=BC,∴BC=AG+EG.【点睛】此题考查平行四边形的性质,平行线分线段成比例和勾股定理的应用.。
专题06 全等三角形中的截长补短模型【模型展示】如图,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围。
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值【证明】延长AD至E,使DE=AD,连接BE,如图所示,△AD是BC边上的中线,△BD=CD在△BDE和△CDA中,BD=CD△BDE=△ADCDE=AE△△BDE△△CDA(SAS)△BE=AC=8在△ABE中,由三角形的三边关系得:AB-BE<AE<AB+BE△12-8<AE<12+8△2<AD<10【模型证明】如图,在△ABC中,D是BC边上的中点,DE△DF于点D,DE交AB于点E,DF 交AC于点F,连接EF,求证:BE+CF>EF.【证明】延长FD至点M,使DM=DF,连接BM,EM,如图所示,同上例得△BMD△△CFD(SAS)△BM=CF△DE△DF,DM=DF△EM=EF在△BME中,由三角形的三边关系得:BE+BM>EM如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【证明】延长AB至点N,使BN=DF,连接CN,如图所示∠∠ABC+∠D=180°,∠NBC+∠ABC=180°∠∠NBC=∠D在∠NBC和∠FDC中BN=DF∠NBC=∠DBC=DC∠∠NBC∠∠FDC(SAS)∠CN=CF,∠NCB=∠FCD∠∠BCD=140°,∠ECF=70°一、解答题1.阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC 中,AD 平分BAC ∠,2B C ∠=∠.求证:AB BD AC +=.李老师给出了如下简要分析:“要证AB BD AC +=就是要证线段的和差问题,所以有两个方法,方法一:‘截长法’如图2,在AC 上截取AE AB =,连接DE ,只要证BD =__________即可,这就将证明线段和差问题为证明线段相等问题,只要证出__________≌△__________,得出B AED ∠=∠及BD =_________,再证出∠__________=∠___________,进而得出ED EC =,则结论成立.此种证法的基础是‘已知AD 平分BAC ∠,将ABD △沿直线AD 对折,使点B 落在AC 边上的点E 处’成为可能.方法二:“补短法”如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可.此时先证∠__________C =∠,再证出_________≌△_________,则结论成立.”“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【答案】方法一:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:F ;AFD ;ACD【分析】方法一:在AC 上截取AE AB =,由SAS 可证ABD AED ∆≅∆可得B AED ∠=∠,BD=DE ,根据等角对等边得到CE=DE ,即可求证;方法二:延长AB 至点F ,使BF BD =,由AAS 可证AFD ACD ∆≅∆,可得AC=AF ,即可证明.【详解】方法一:在AC 上截取AE AB =,连接DE ,如图2∠AD 平分BAC ∠,∠BAD DAC ∠=∠,在ABD ∆和AED ∆中AE AB BAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩,∠ABD AED ∆≅∆,∠B AED ∠=∠,BD=DE ,∠2B C ∠=∠,∠2AED C ∠=∠而2AED C EDC C ∠=∠+∠=∠,∠EDC C ∠=∠,∠DE=CE ,∠AB+BD=AE+CE=AC ,故答案为:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:如图3,延长AB 至点F ,使BF BD =,∠F BDF ∠=∠∠2ABD F BDF F ∠=∠+∠=∠∠2ABD C ∠=∠∠F C ∠=∠在AFD ∆和ACD ∆中FAD CAD F CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠AFD ACD ∆≅∆,∠AC=AF ,∠AC=AB+BF=AB+BD ,故答案为:F ;AFD ;ACD .【点睛】本题考查了全等三角形的判定和性质,属于截长补短类辅助线,核心思想为数学中的转化思想,此类题的关键是要找到最长边和最短边,然后确定截取辅助线的方式.2.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,ABC 是等边三角形,点D 是边BC 下方一点,120BDC ∠=︒,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE BD =,连接AE ,根据180BAC BDC ∠+∠=︒,可证ABD ACE ∠=∠,易证得ABD ∠ACE ,得出ADE 是等边三角形,所以AD DE =,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请写出DA 、DB 、DC 之间的数量关系是______,并写出证明过程;【拓展延伸】(2)如图2,在Rt ABC 中,90BAC ∠=︒,AB AC =,若点D 是边BC 下方一点,90BDC ∠=︒,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为2cm 的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ 的平方为多少?【答案】(1)DA =DC +BD ,见解析;(2)()222AD DC BD =+;见解析;(3)2【分析】(1)由等边三角形知AB =AC ,∠BAC =60°,结合∠BDC =120°知∠ABD +∠ACD =180°,由∠ACE +∠ACD =180°知∠ABD =∠ACE ,证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,再证∠ADE 是等边三角形得DA =DE =DC +CE =DC +DB .(2)延长DC 到点E ,使CE =BD ,连接AE ,先证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,据此可得∠DAE =∠BAC =90°,由勾股定理知DA 2+AE 2=DE 2,继而可得2AD 2=(DC +BD )2;(3)由直角三角形的性质知QN =12MN =1,MQ 2)中的结论知()222PQ QN MQ =+,据此可得答案.【详解】解:(1)DA =DC +BD ,理由如下:∠∠ABC 是等边三角形,∠AB =AC ,∠BAC =60°,∠∠BDC =120°,∠∠ABD +∠ACD =360°-∠BAC -∠BDC =180°,又∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠ABC =60°,即∠BAD +∠DAC =60°,∠∠DAC +∠CAE =60°,即∠DAE =60°,∠∠ADE 是等边三角形,∠DA =DE =DC +CE =DC +DB ,即DA =DC +DB ,故答案为:DA =DC +BD ;(2)()222AD DC BD =+,如图2,延长DC 到点E ,使CE =BD ,连接AE ,∠∠BAC =90°,∠BDC =90°,∠∠ABD +∠ACD =360°-∠BAC -∠BDC =180°,∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,∠AB =AC ,CE =BD ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠DAE =∠BAC =90°,∠DA 2+AE 2=DE 2,∠()222AD DC BD =+;(3)如图3,连接PQ ,∠MN =2,∠QMN =30°,∠MQN =90°,∠QN =12MN =1,∠MQ =由(2)知()222PQ QN MQ =+.∠()(2221=222QN MQ PQ ++==【点睛】此题考查了全等三角形的判定和性质、勾股定理、等边三角形的性质,含30度角的直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.如图,在等边∠ABC 中,点P 是BC 边上一点,∠BAP =α(30°<α<60°),作点B 关于直线AP 的对称点D ,连接DC 并延长交直线AP 于点E ,连接BE .(1)依题意补全图形,并直接写出∠AEB 的度数;(2)用等式表示线段AE ,BE ,CE 之间的数量关系,并证明.分析:∠涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……∠通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.请根据上述分析过程,完成解答过程.【答案】(1)图见解析,∠AEB =60°;(2)AE =BE +CE ,证明见解析【分析】(1)依题意补全图形,如图所示:然后连接AD ,先求出60CAP α∠=︒-,然后根据轴对称的性质得到==PAD BAP α∠∠,AD =AB =AC ,∠AEC =∠AEB ,求出=260CAD α-︒∠,即可求出()1==180=1202ACD ADC CAD α︒-︒-∠∠∠,再由==120EAC AEC ACD α+︒-∠∠∠进行求解即可;(2)如图,在AE 上截取EG =BE ,连接BG .先证明∠BGE 是等边三角形,得到BG =BE =EG ,∠GBE =60°. 再证明∠ABG =∠CBE ,即可证明∠ABG ∠∠CBE 得到AG =CE ,则AE =EG +AG =BE +CE .【详解】解:(1)依题意补全图形,如图所示:连接AD ,∠∠ABC 是等边三角形,∠∠BAC =60°,AB =AC ,∠BAP α∠=,∠60CAP α∠=︒-,∠B 、D 关于AP 对称,∠==PAD BAP α∠∠,AD =AB =AC ,∠AEC =∠AEB ,∠()==60=260CAD PAD CAP ααα--︒--︒∠∠∠, ∠()1==180=1202ACD ADC CAD α︒-︒-∠∠∠, ∠==120EAC AEC ACD α+︒-∠∠∠,∠60AEC ∠=︒∠∠AEB =60°.(2)AE =BE +CE .证明:如图,在AE 上截取EG =BE ,连接BG .∠∠AEB =60°,∠∠BGE 是等边三角形,∠BG =BE =EG ,∠GBE =60°.∠∠ABC 是等边三角形,∠AB =BC ,∠ABC =60°,∠∠ABG +∠GBC =∠GBC +∠CBE =60°,∠∠ABG =∠CBE .在∠ABG 和∠CBE 中,AB CB ABG CBE BG BE ⎧⎪∠∠⎨⎪⎩=,=,=, ∠∠ABG ∠∠CBE (SAS ),∠AG =CE ,∠AE =EG +AG =BE +CE .【点睛】本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键4.阅读材料:“截长补短法”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系.截长,即在长线段上截取一条线段等于其中一条短线段,再证明剩下的部分等于另一条短线段;补短,即延长其中一条短线段,使延长部分等于另一条线段,再证明延长后的线段等于长线段.依据上述材料,解答下列问题:如图,在等边ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为边作等边DEF,连接CF.(1)如图,若点D在边BC上,试说明CE CF CD=,+=;(提示:在线段CD上截取CG CE连接EG.)(2)如图,若点D在边BC的延长线上,请探究线段CE,CF与CD之间的数量关系并说明理由.【答案】(1)证明见解析(2)FC=CD+CE【分析】(1)在CD上截取CG=CE,易证∠CEG是等边三角形,得出EG=EC=CG,证明∠DEG∠∠FEC(SAS),得出DG=CF,即可得出结论;(2)过D作DG AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出∠GCD为等边三角形,则DG=CD=CG,证明∠EGD∠∠FCD(SAS),得出EG=FC,即可得出FC=CD+CE.(1)证明:在CD上截取CG=CE,如图1所示:∠∠ABC 是等边三角形,∠∠ECG =60°,∠∠CEG 是等边三角形,∠EG =EC =CG ,∠CEG =60°,∠∠DEF 是等边三角形,∠DE =FE ,∠DEF =60°,∠∠DEG +∠GEF =∠FEC +∠GEF =60°,∠∠DEG =∠FEC ,在∠DEG 和∠FEC 中,DE FE DEG FEC EG EC =⎧⎪∠=∠⎨⎪=⎩, ∠∠DEG ∠∠FEC (SAS ),∠DG =CF ,∠CD =CG +DG =CE +CF ,∠CE +CF =CD ;(2)解:线段CE ,CF 与CD 之间的等量关系是FC =CD +CE ;理由如下:∠∠ABC 是等边三角形,∠∠A =∠B =60°,过D 作DG AB ,交AC 的延长线于点G ,如图2所示:∠GD AB ,∠∠GDC =∠B =60°,∠DGC =∠A =60°,∠∠GDC =∠DGC =60°,∠∠GCD 为等边三角形,∠DG =CD =CG ,∠GDC =60°,∠∠EDF 为等边三角形,∠ED =DF ,∠EDF =∠GDC =60°,∠∠EDG =∠FDC ,在∠EGD 和∠FCD 中,ED DF EDG FDC DG CD =⎧⎪∠=∠⎨⎪=⎩, ∠∠EGD ∠∠FCD (SAS ),∠EG =FC ,∠FC =EG =CG +CE =CD +CE .【点睛】此题考查了平行线的性质,三角形全等及其性质,三角形全等的判定,等边三角形的性质等知识,作辅助线构建等边三角形是解题的关键.5.在“教、学、练、评一体化”学习活动手册中,全等三角形专题复习课,学习过七种作辅助线的方法,其中有“截长补短”作辅助线的方法.截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.请用这两种方法分别解决下列问题:已知,如图,在∠ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC【答案】见解析【分析】截长法:在AB 上截取AN =AC ,连结PN ,可证得∠APN ∠∠APC ,可得到PC =PN ,∠BPN 中,利用三角形的三边关系,即可求证;补短法:延长AC 至M ,使AM =AB ,连结PM ,证明∠ABP ∠∠AMP ,可得PB =PM ,在∠PCM 中,利用三角形的三边关系,即可求证.【详解】解:截长法:在AB 上截取AN =AC ,连结PN ,在∠APN和∠APC中∠AN=AC,∠1=∠2,AP=AP,∠∠APN∠∠APC,∠PC=PN,∠∠BPN中有PB-PN<BN,即PB-PC<AB-AC;补短法:延长AC至M,使AM=AB,连结PM,在∠ABP和∠AMP中,∠AB=AM,∠1=∠2,AP=AP,∠∠ABP∠∠AMP,∠PB=PM,又∠在∠PCM中有CM>PM-PC,即AB-AC>PB-PC.【点睛】本题主要考查了全等三角形的判定和性质,三角形的三边关系,理解截长补短法是解题的关键.6.例:截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:将∠ABD绕点A逆时针旋转60°得到∠ACE,可得AE=AD,CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则∠ACE+∠ACD=180°,易知∠ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA 、DB 、DC 之间的等量关系是___________;(2)如图2,Rt ∠ABC 中,∠BAC =90°,AB =AC .点D 是边BC 下方一点,∠BDC =90°,探索三条线段DA 、DB 、DC 之间的等量关系,并证明你的结论.【答案】(1)DA=DB+DC;(2) 证明见解析.【分析】(1)由旋转60°可得AE =AD , CE =BD ,∠ABD =∠ACE ,∠DAE =60°,根据∠BAC +∠BDC =180°,可知∠ABD +∠ACD =180°,则 ∠ACE +∠ACD =180°,易知∠ADE 是等边三角形,所以AD =DE ,从而解决问题.(2) 延长DC 到点E,使CE=BD ,连接AE,由已知可得180ABD ACD ︒∠+∠=,根据180ACE ACD ︒∠+∠=,可得ABD ∠=ACE ∠,可证ABD ACE ≅,进而可得AD=AE,BAD CAE ∠=∠,可得90DAE BAC ︒∠=∠=,由勾股定理可得:222DA AE DE +=,进行等量代换可得结论.【详解】(1)结论:DA=DB+DC.理由:∠∠ABD 绕点A 逆时针旋转60°得到∠ACE ,∠AE=AD , CE=BD ,∠ABD=∠ACE ,∠DAE=60°,∠∠BAC+∠BDC=180°,∠∠ABD+∠ACD=180°,∠∠ACE+∠ACD=180°,∠D,C,E 三点共线,∠AE=AD ,∠DAE=60°,∠∠ADE 是等边三角形,∠AD=DE ,∠AD=DC+CE=DB+DC;(2)证明如下:如图所示,延长DC 到点E,使CE=BD ,连接AE,∠90BAC ︒∠=,90BDC ︒∠=,∠180ABD ACD ︒∠+∠=,∠180ACE ACD ︒∠+∠=,∠ABD ∠=ACE ∠,∠AB=AC,CE=BD,∠ABD ACE ≅(SAS),∠AD=AE, BAD CAE ∠=∠,∠90DAE BAC ︒∠=∠=,∠222DA AE DE +=,∠()222DA DB DC =+,【点睛】本题主要考查了截长补短的方法,通过全等三角形得到线段间的等量关系,正确作出辅助线找到全等三角形是解题的关键.7.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积. 解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明∠BAE∠∠DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S ∠ABC +S ∠ADC =S ∠ABC +S ∠ABE =S ∠AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积.【答案】(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH ≌,故可求解.【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S SS S S S =+=+==四边形, 故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴FGH FNK ≌, ∴FH=FK ,又FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm ,∴12=242FGH HFM MFN FMK FGHMN S S S S S MK FN =++=⨯⋅=五边形. 【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.8.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.(1)如图∠,∠ABC 是等边三角形,点D 是边BC 下方一点,连结DA DB DC 、、,且120BDC ∠=︒,探索线段DA DB DC 、、之间的数量关系.解题思路:延长DC 到点E ,使CE BD =,连接AE ,根据180BAC BDC ∠+=︒,则180ABD ACD ∠+∠=︒,因为180ACD ACE ∠+∠=︒可证ABD ACE ∠=∠,易证得∠ABD ∠∠ACE ,得出∠ADE 是等边三角形,所以AD DE =,从而探寻线段DA DB DC 、、之间的数量关系.根据上述解题思路,请直接写出DA DB DC 、、之间的数量关系是 ;【拓展延伸】(2)如图∠,在Rt∠ABC 中,90BAC ∠=︒,AB AC =.若点D 是边BC 下方一点,90BDC ∠=︒,探索线段DA DB DC 、、之间的数量关系,并说明理由;【知识应用】(3)如图∠,两块斜边长都为2cm 的三角板,把斜边重叠摆放在一起,已知30所对直角边等于斜边一半,则PQ 的长为_____________cm .(结果无需化简)【答案】(1)DA DB DC =+;(2DC DB =+ 证明见解析;(3. 【分析】(1)由等边三角形知AB =AC ,∠BAC =60°,结合∠BDC =120°知∠ABD +∠ACD =180°,由∠ACE +∠ACD =180°知∠ABD =∠ACE ,证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,再证∠ADE 是等边三角形得DA =DE =DC +CE =DC +DB .(2)延长DC 到点E ,使CE =BD ,连接AE ,先证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,据此可得∠DAE =∠BAC =90°,由勾股定理知DA 2+AE 2=DE 2,继而可得2DA 2=(DB +DC )2;(3)由直角三角形的性质知QN =12MN =1,MQ 2)中的结论知=QN +QM 【详解】解:(1)DA =DC +DB ,理由:∠∠ABC 是等边三角形,∠AB =AC ,∠BAC =60°,∠∠BDC =120°,∠∠ABD +∠ACD =180°,又∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠ABC =60°,即∠BAD +∠DAC =60°,∠∠DAC +∠CAE =60°,即∠DAE =60°,∠∠ADE 是等边三角形,∠DA =DE =DC +CE =DC +DB ,即DA =DC +DB ,故答案为:DA =DC +DB ;(2DA =DB +DC 如图2,延长DC 到点E ,使CE =BD ,连接AE ,∠∠BAC =90°,∠BDC =90°∠∠ABD +∠ACD =180°,∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,∠AB =AC ,CE =BD ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠DAE =∠BAC =90°,∠DA 2+AE 2=DE 2,∠2DA 2=(DB +DC )2,=DB +DC ;(3)如图3,连接PQ ,∠MN=2,∠QMN=30°,MN=1,∠QN=12∠MQ由(2=QN+QM∠PQ,.【点睛】此题考查了全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.9.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE易证得∠ABD∠∠ACE,得出∠ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是______;【拓展延伸】(2)如图2,在Rt∠ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为4cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长为______cm.【答案】(1)DA=DB+DCDA=DB+DC;理由见解析=(3)PQ cm【分析】(1)延长DC到点E,使CE=BD,连接AE,由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°,知∠ABD+∠ACD=180°,则∠ABD=∠ACE,证得∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,再证明∠ADE是等边三角形,等量代换可得结论;(2)同理可证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,由勾股定理得222+=,DA AE DE等量代换即得结论;(3)由直角三角形的性质可得QN的长,由勾股定理可得MQ的长,由(2)知=+,由此可求得PQ长.QN QM(1)(1)延长DC到点E,使CE=B D,连接AE,∠∠ABC是等边三角形,∠AB=AC,∠BAC=60°,∠∠BDC=120°,∠∠BAC+∠BDC=180°,∠∠ABD+∠ACD=180°,又∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE,∠∠ABD∠∠ACE(SAS),∠AD=AE,∠BAD=∠CAE,∠∠BAC=60°,∠∠BAD+∠DAC=60°,∠∠DAE=∠DAC+∠CAE=60°,∠∠ADE是等边三角形,∠DA=DE=DC+CE=DC+DB,(2)=DB+DC,理由如下:延长DC到点E,使CE=BD,连接AE,∠∠BAC =90°,∠BDC =90°,∠∠ABD +∠AC D=180°又∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,∠AB=AC ,CE=BD ,∠∠ABD ∠∠ACE (SAS ),∠AD=AE ,∠BAD=∠CAE ,∠∠DAE=∠BA C =90°,∠222DA AE DE +=,∠()222DA DB DC =+,DB DC =+,(3)如图所示:连接PQ ,∠4MN cm =,∠QMN =30°, ∠122QN MN cm ==,根据勾股定理得QM ,由(2QN QM =+,∠PQ cm ==,【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.10.现阅读下面的材料,然后解答问题:截长补短法,是初中数学几何题中一种常见辅助线的做法.在证明线段的和、差、倍、分等问题中有着广泛的应用.截长法:在较长的线段上截一条线段等于较短线段,而后再证明剩余的线段与另一段线段相等.补短法:就是延长较短线段与较长线段相等,而后证延长的部分等于另一条线段.请用截长法解决问题(1)(1)已知:如图1等腰直角三角形ABC 中,90B ∠=︒,AD 是角平分线,交BC 边于点D .求证:AC AB BD =+.请用补短法解决问题(2)(2)如图2,已知,如图2,在ABC ∆中,2B C ∠=∠,AD 是ABC ∆的角平分线.求证:AC AB BD =+.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据截长法,在AC 上截取AE AB =,连接DE ,通过题目条件可证()ADB ADE SAS ∆≅∆,进而证得DEC ∆是等腰直角三角形,等量代换即可得;(2)根据补短法,延长AB 到F ,使AF AC =,连接DF ,根据已知条件可证()FAD CAD SAS ∆≅∆,进而可证BD BF =,等量代换即可得证.【详解】(1)证明:如图1,在AC 上截取AE AB =,连接DE ,∠AD 是角平分线,∠BAD EAD ∠=∠在ADB ∆和ADE ∆中AB AE BAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∠()ADB ADE SAS ∆≅∆∠90AED B ∠=∠=,DE DB =又∠ABC ∆是等腰直角三角形,∠45C ∠=,∠DEC ∆是等腰直角三角形,∠DE EC =,∠AC AE EC AB BD =+=+.(2)如图2,延长AB 到F ,使AF AC =,连接DF ,∠AD 是ABC ∆的角平分线,∠FAD CAD ∠=∠在FAD ∆和CAD ∆中AF AC FAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∠()FAD CAD SAS ∆≅∆,∠C F ∠=∠∠2ABC C ∠=∠,ABC F BDF ∠=∠+∠,∠F BDF ∠=∠,∠BD BF =,∠AC AF AB BD ==+.【点睛】本题考查了截长法和补短法两种方法证明线段和的问题,三角形全等的判定和性质的应用,角平分线的性质应用,等量代换的应用,掌握三角形全等的判定和性质是解题的关键.11.数学课上,小白遇到这样一个问题:如图1,在等腰Rt ABC ∆中,90BAC ∠=︒,AB AC =,AD AE =,求证ABE ACD ∠=∠; 在此问题的基础上,老师补充:过点A 作AF BE ⊥于点G 交BC 于点F ,过F 作FP CD ⊥交BE 于点P ,交CD 于点H ,试探究线段BP ,FP ,AF 之间的数量关系,并说明理由.小白通过研究发现,AFB ∠与HFC ∠有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:(1)求证ABE ACD ∠=∠;(2)猜想AFB ∠与HFC ∠的数量关系,并证明;(3)探究线段BP ,FP ,AF 之间的数量关系,并证明. 【答案】(1)见解析;(2)HFC BFA ∠=∠,证明见解析;(3)BP AF PF =+,证明见解析【分析】(1)利用SAS 证明ABE ACD ≅可得结论;(2)设ABE ACD x ∠=∠=,推出=45BFA x ∠︒+,=45HFC x ∠︒+,即可证明HFC BFA ∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,证明∠ABE∠∠CAM ,得出BE AM =和M BEA ∠=∠,从而证明∠NFC∠∠MFC ,得到FM FN =和M FNC ∠=∠,可得PN=PE ,从而得出BP=AF+PF.【详解】解:(1)∠在∠ABE 和∠ACD 中,==AB AC A A AE AD ⎧⎪∠=∠⎨⎪⎩,ABE ACD ∴∆≅∆(SAS ),ABE ACD ∴∠=∠;(2)设ABE ACD x ∠=∠=, AF BE ⊥,90BAF x ∴∠=︒-,()=9045=45BFA x x ∴∠︒-︒-︒+,ACD x ∠=,45HCF x ∴∠=︒-,FP CD ⊥,()9045=45HFC x x ∴∠=︒-︒-︒+,HFC BFA ∴∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,90BAF FAC ∠+∠=︒,90BAF ABG ∠+∠=︒,FAC ABG ∴∠=∠,在∠ABE 和∠CAM 中,===BAE ACM AB AC ABE CAM ∠∠⎧⎪⎨⎪∠∠⎩, ABE CAM ∴∆≅∆(ASA ),BE AM ∴=,M BEA ∠=∠,BFA MFC NFC ∠=∠=∠,FC FC =,45ACB BCM ∠=∠=︒,NFC MFC ∴∆≅∆(ASA ),FM FN ∴=,M FNC ∠=∠,FNC BEA ∴∠=∠,PN PE ∴=,∠BP BE PE AM PE AF FM PE =-=-=+-AF FN PN AF PF =+-=+.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度.12.【初步探索】截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系;【灵活运用】(2)如图2,∠ABC为等边三角形,直线a∠AB,D为BC边上一点,∠ADE交直线a于点E,且∠ADE=60°.求证:CD+CE=CA;【延伸拓展】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.【答案】(1)DA=DC+DB,证明见详解;(2)见详解;(3)∠EAF=11802DAB︒-∠,证明见详解.【分析】(1)由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,再证∠ADE是等边三角形得DA=DE=DC+CE=DC+DB;(2)首先在AC上截取CM=CD,由∠ABC为等边三角形,易得∠CDM是等边三角形,继而可证得∠ADM∠∠EDC,即可得AM=EC,则可证得CD+CE=CA;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定∠ADG∠∠ABE,再判定∠AEF∠∠AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,进而推导得到2∠FAE+∠DAB=360°,即可得出结论.【详解】(1)如图1,延长DC到点E,使CE=BD,连接AE,∠∠ABC是等边三角形,∠AB=AC,∠BAC=60°,∠∠BDC=120°,∠∠ABD+∠ACD=180°,又∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE,∠∠ABD∠∠ACE(SAS),∠AD=AE,∠BAD=∠CAE,∠∠BAC=60°,即∠BAD+∠DAC=60°,∠∠DAC+∠CAE═60°,即∠DAE=60°,∠∠ADE是等边三角形,∠DA=DE=DC+CE=DC+DB,即DA=DC+DB;(2)证明:在AC上截取CM=CD,∠∠ABC是等边三角形,∠∠ACB=60°,∠∠CDM是等边三角形,∠MD=CD=CM,∠CMD=∠CDM=60°,∠∠AMD=120°,∠∠ADE=60°,∠∠ADE=∠MDC ,∠∠ADM=∠EDC ,∠直线a∠AB ,∠∠ACE=∠BAC=60°,∠∠DCE=120°=∠AMD ,在∠ADM 和∠EDC 中,ADM EDC MD CDAMD ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠ADM∠∠EDC(ASA),∠AM=EC ,∠CA=CM+AM=CD+CE ;即CD+CE=CA.(3)∠EAF=11802DAB ︒-∠; 证明:如图3,在DC 延长线上取一点G ,使得DG=BE ,连接AG ,∠∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∠∠ADC=∠ABE ,又∠AB=AD ,∠∠ADG∠∠ABE (SAS ),∠AG=AE ,∠DAG=∠BAE ,∠EF=BE+FD=DG+FD=GF ,AF=AF ,∠∠AEF∠∠AGF (SSS ),∠∠FAE=∠FAG ,∠∠FAE+∠FAG+∠GAE=360°,∠2∠FAE+(∠GAB+∠BAE )=360°,∠2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∠∠EAF=11802DAB︒-∠.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定和性质,以及等边三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.13.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证∠ABD∠∠ACE,得出∠ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt∠ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.【答案】(1)DA=DB+DC;(2=DB+DC(或写成2DA2=(DB+DC)2),证明详见解析.【分析】(1)由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,再证∠ADE是等边三角形得DA=DE=DC+CE=DC+DB.(2)延长DC到点E,使CE=BD,连接AE,先证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,据此可得∠DAE=∠BAC=90°,由勾股定理知DA2+AE2=DE2,继而可得2DA2=(DB+DC)2.【详解】解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∠∠ABC是等边三角形,∠AB=AC,∠BAC=60°,∠∠BDC=120°,∠∠ABD+∠ACD=180°,又∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE,∠∠ABD∠∠ACE(SAS),∠AD=AE,∠BAD=∠CAE,∠∠ABC=60°,即∠BAD+∠DAC=60°,∠∠DAC+∠CAE═60°,即∠DAE=60°,∠∠ADE是等边三角形,∠DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为DA=DC+DB;(2DA=DB+DC(或写成2DA2=(DB+DC)2).延长DC到点E,使CE=BD,连接AE.∠∠BAC=90°,∠BDC=90°,∠∠ABD+∠ACD=180°.∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE.又∠AB=AC,CE=BD,∠∠ABD∠∠ACE.∠AD =AE ,∠BAD=∠CAE .∠∠DAE=∠BAC=90°.∠DA 2+AE2=DE 2.∠2DA 2=(DB +DC )2.=DB +DC .【点睛】此题是三角形的综合题,主要考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.14.【阅读】在证明线段和差问题时,经常采用截长补短法,再利用全等图形求线段的数量关系.截长法:将较长的线段截取为两段,证明截取的两段分别与给出的两段相等.补短法:延长较短两条线段中的一条,使得与较长线段相等,证明延长的那一段与另一条较短线段相等.【应用】把两个全等的直角三角形的斜边重合,90CAD CBD ∠=∠=︒,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC BC 、于M 、N .(1)若30ACD ∠=︒,60MDN ∠=︒,证明:AM BN MN +=;经过思考,小红得到了这样的解题思路:利用补短法,延长CB 到点E ,使BE AM =,连接DE ,先证明DAM DBE ≌,再证明MDN EDN △≌△,即可求得结论.按照小红的思路,请写出完整的证明过程;(2)当90ACD MDN ∠+∠=︒时,AM MN BN 、、三条线段之间有何数量关系?(直接写出你的结论,不用证明)(3)如图∠,在(2)的条件下,若将M 、N 改在CA BC 、的延长线上,完成图∠,其余条件不变,则AM MN BN 、、之间有何数量关系?证明你的结论.【答案】(1)证明见解析(2)AM BN MN +=(3)BN AM MN -=,证明见解析【分析】(1)根据题意得AD =BD ,延长CB 到E ,使BE AM =,连接DE ,利用全等三角形的判定得出()SAS DAM DBE △≌△,()SAS MDN EDN △≌△,再根据全等三角形的性质结合图形即可证明;(2)证明方法与(1)一致,证明即可;(3)在CB 截取BE AM =,连接DE ,利用全等三角形的判定得出()SAS DAM DBE △≌△,()SAS MDN EDN △≌△再根据全等三角形的性质结合图形即可得出结果.(1)证明:根据题意得:AD =BD ,延长CB 到E ,使BE AM =,连接DE∠90A CBD ∠=∠=︒,∠90A EBD ∠=∠=︒,在DAM △和DBE 中AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,∠()SAS DAM DBE △≌△,∠∠=∠BDE MDA ,DM DE =,∠60MDN ADC ∠=∠=︒,∠ADM NDC ∠=∠,∠BDE NDC ∠=∠,∠60NDC NDB ∠+∠=︒∠60BDE NDB NDE ∠+∠=∠=︒∠MDN NDE ∠=∠,在MDN △和EDN △中DM DE MDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩∠()SAS MDN EDN △≌△,∠MN NE =,。
专题16 截长补短问题【规律总结】“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“a +b =c ”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。
①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。
即延长a ,得到b ,证:a +b =c 。
②延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。
即延长a ,得到c ,证:b =c-a 。
【典例分析】例1.(2020·广州大学附属中学八年级月考)如图,在ABC 中,AD 平分BAC ∠,2B ADB ∠=∠,5AB =,6CD =,则AC 的长为( )A .3B .9C .11D .15【答案】C【分析】 在AC 上截取AE=AB ,连接DE ,证明△ABD△△AED ,得到△B=△AED ,AB=AE ,再证明CD=CE ,进而代入数值解答即可.【详解】在AC 上截取AE=AB ,连接DE ,△AD 平分△BAC ,△△BAD=△DAC ,在△ABD 和△AED 中,BAD DA AE AB AD AD C =⎧=∠=∠⎪⎨⎪⎩,△△ABD△△AED (SAS ),△△B=△AED ,△ADB =△ADE , AB=AE ,又△B=2△ADB△△AED=2△ADB ,△BDE=2△ADB ,△△AED=△C+△EDC=2△ADB ,△BDE=△C+△DEC=2△ADB ,△△DEC =△EDC ,△CD=CE ,△5AB =,6CD =,△AC =AE+CE=AB+CD = 5+6=11.故选:C .【点睛】本题考查全等三角形的判定和性质;利用了全等三角形中常用辅助线-截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握. 例2.(2021·上海九年级专题练习)如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF△AB 于F ,△B =△1+△2,AB =CD ,BF =43,则AD 的长为________.【答案】8 3【分析】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.想办法证明AT=DK,DK=BD,推出BD=AT,推出BT=AD即可解决问题.【详解】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.△EB=ET,△△B=△ETB,△△ETB=△1+△AET,△B=△1+△2,△△AET=△2,△AE=CD,ET=CK,△△AET△△DCK(SAS),△DK=AT,△ATE=△DKC,△△ETB=△DKB,△△B=△DKB,△DB=DK,△BD=AT,△AD=BT,△BT=2BF=83,△AD=83,故答案为:83.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识点,解题关键在于学会添加常用辅助线,构造出全等三角形.例3.(2021·湖北武汉市·八年级期末)如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足△BDC=60°.(1)如图1,在l上位于C点左侧取一点E,使△AEC=60°,求证:△AEC△△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作△AFH =120°,且AF=HF,△HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.【答案】(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明△BCD=△EAC,然后利用AAS即可证明△AEC△△CDB;(2)在l上C点左侧取一点E,使△AEC=60°,连接AE,依次证明△AEC△△CDB和△HGF△△FEA 即可得出结论;(3)在l上位于C点右侧取一点E,使△AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE△△CBM和△HGF△△FEA即可得出结论.【详解】解:(1)证明:△△ABC是等边三角形,△AC=BC,△ACB=60°,△△BCD+△ACE=120°,△△AEC=60°,△△ACE+△EAC=120°,△△BCD=△EAC,在△AEC和△CDB中△60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,△△AEC△△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使△AEC=60°,连接AE,由(1)知:△AEC△△CDB,△BD=CE,△△AEC=60°,△△AEF =120°,△△AFH =120°,△△AFE+△FAE=△AFE+△GFH=60°,△△FAE=△GFH,△△HGF=△AEF=120°,AF=FH,△△HGF△△FEA(AAS),△GH=EF,△CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使△AED=60°,连接AE,在l上取一点M,使BM=BD,△△BDC=60°,△△BDM是等边三角形,△△BMD=60°,△△AED=60°,△△AEC=△CMB=120°,△△ACB=60°,△△ACE+△BCE=△ACE+△CAE=60°,△△CAE=△BCE,△AC=BC,△△ACE△△CBM(AAS),△CE=BM=BD,由(2)可证△HGF△△FEA(AAS),△GH=FE,△EF=CF+CE△HG=CF+BD.故答案为:HG=CF+BD.【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.【好题演练】一、单选题1.(2020·济南高新区第一实验学校八年级期中)如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .125【答案】D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF△在Rt△ABC 中,△ACB =90°,AC =3,BC =4△AB=5,△△CAD=△BAD,AE=AE,△△AEF△△AEG(SAS)△FE=GE,△要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CH△AB于H点,则CH的长即为CE+EG的最小值,此时,AC BC AB CH,△CH=·AC ABBC=125,即:CE+EF的最小值为125,故选:D.【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键.2.(2019·湖北黄冈市·八年级期中)如图,已知四边形ABCD中,AD△BC,若△DAB的平分线AE交CD于E,连接BE,且BE恰好平分△ABC,则AB的长与AD+BC的大小关系是()A .AB >AD+BCB .AB <AD+BC C .AB =AD+BCD .无法确定【答案】C【分析】 在AB 上截取AF =AD ,连接EF ,易得△AEB=90°和△ADE△△AFE ,再证明△BCE△△BFE ,利用全等三角形对应边相等即可得出三条线段之间的关系.【详解】解:如图所示,在AB 上截取AF =AD ,连接EF ,△AD△BC ,△△ABC+△DAB=180°,又△BE 平分△ABC ,AE 平分△DAB △△ABE+△EAB=()1ABC DAB 2∠+∠=90°, △△AEB=90°即△2+△4=90°,在△ADE 和△AFE 中,AD=AF DAE=FAE AE=AE ⎧⎪∠∠⎨⎪⎩△△ADE△△AFE (SAS ),所以△1=△2,又△2+△4=90°,△1+△3=90°,所以△3=△4,在△BCE 和△BFE 中,CBE=FBE BE=BE3=4∠∠⎧⎪⎨⎪∠∠⎩△△BCE△△BFE (ASA ),所以BC =BF ,所以AB =AF+BF =AD+BC ;故选:C .【点睛】本题考查全等三角形的判定和性质,截长补短是证明线段和差关系的常用方法.二、填空题3.(2020·山西九年级期中)如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.【答案】6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得△ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,△180BAD BCD ∠+∠=︒△,,,A B C D 四点共圆,△△ABD ACD =∠△△ABE ACD =∠△△ABC 是等边三角形,△AB AC BC ==,60DAE ∠=︒,△△ABE ACD ≅∆,△60BAE CAF +∠=︒,△,BAE CAD BAF CAD ∠=∠∠=∠,△△60CAD CAE +∠=︒,即60DAE ∠=︒,△△ADE 是等边三角形,△AD DE AE ==,△=8BD ,2CD =,△6DE BD BE BD CD =-=-=,△6AD DE ==.【点睛】=∠是此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明△ABE ACD解答此题的关键.4.(2020·无锡市羊尖中学八年级月考)如图,四边形ABCD中,△BAD=120°,△B=△D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则△AMN+△ANM的度数是________.【答案】120°【分析】延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N,要使得△AMN 的周长最小,则三角形的三边要共线,根据△BAD=120°和△AMN的内角和是180°即可列出方程求解.【详解】解:延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N如图所示,此时△AMN的周长最小△△ABM=90°△△EBM=90°在△AMB和△EMB中AB BE ABM EBM MB MB =⎧⎪∠=∠⎨⎪=⎩△△AMB△△EMB△△BEM=△BAM△△AMN=2△BAM同理可得:△AND△△FDN△△NAD=△NFD△△ANM=2△NAD设△BAM=x ,△MAN=z ,△NAD=y△△BAD=120°△12022180x y z x y z ++=︒⎧⎨++=︒⎩解得:60x y +=︒即△AMN+△ANM=2×60°=120°.故答案为:120°.【点睛】本题主要考查的是三角形周长最小的条件,涉及到的知识点为全等三角形的判定及性质、三角形内角和的应用,正确添加合适的辅助线是解题的关键.三、解答题5.(2021·安徽合肥市·八年级期末)如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.【答案】(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D 作DM△AB 于M ,由 CA =CB ,90ACB =︒,得ABC 是等腰直角三角形,根据角平分线的性质得到CD =MD ,△ABC =45°,根据全等三角形的性质得到AC =AM ,于是得到结论;(2)如图2,设△ACB =α,则△CAB =△CBA =90°−12α,在AB 上截取AK =AC ,连结DK ,根据角平分线的定义得到△CAD =△KAD ,根据全等三角形的性质得到△ACD =△AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB 上截取AH =AD ,连接DH ,根据等腰三角形的性质得到△CAB =△CBA =40°,根据角平分线的定义得到△HAD =△CAD =20°,求得△ADH =△AHD =80°,在AB 上截取AK =AC ,连接DK ,根据全等三角形的性质得到△ACB =△AKD =100°,CD =DK ,根据等腰三角形的性质得到DH =BH ,于是得到结论.【详解】(1)如图1,过D 作DM△AB 于M ,△在ABC 中,AC BC =,△△ABC =45°,△△ACB =90°,AD 是角平分线,△CD =MD ,△△BDM =△ABC =45°,△BM =DM ,△BM =CD ,在RT△ADC 和RT△ADM 中,CD MD AD AD ⎧⎨⎩==, △RT△ADC△RT△ADM (HL ),△AC =AM ,△AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设△ACB =α,则△CAB =△CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,△AB =AC +BD ,AB=AK+BK△BK =BD ,△AD 是角平分线,△△CAD =△KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩=== △△CAD△△KAD (SAS ),△△ACD =△AKD =α,△△BKD =180°−α,△BK =BD ,△△BDK =180°−α,△在△BDK 中,180°−α+180°−α+90°−12α=180°, △α=108°,△△ACB =108°;(3)如图3,在AB上截取AH=AD,连接DH,△△ACB=100°,AC=BC,△△CAB=△CBA=40°,△AD是角平分线,△△HAD=△CAD=20°,△△ADH=△AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD△△KAD,△△ACB=△AKD=100°,CD=DK,△△DKH=80°=△DHK,△DK=DH=CD,△△CBA=40°,△△BDH=△DHK -△CBA =40°,△DH=BH,△BH=CD,△AB=AH+BH,△AB=AD+CD.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.6.(2020·全国九年级课时练习)如图,A、P、B、C是△O上四点,△APC=△CPB=60°.(1)判断△ABC的形状并证明你的结论;(2)当点P位于什么位置时,四边形PBOA是菱形?并说明理由.(3)求证:PA+PB=PC.【答案】(1)△ABC是等边三角形,证明见解析;(2)当点P位于AB中点时,四边形PBOA 是菱形,理由见解析;(3)证明见解析.【分析】(1)利用圆周角定理可得△BAC=△CPB,△ABC=△APC,而△APC=△CPB=60°,则可得△BAC=△ABC=60°,从而可判断△ABC的形状;(2)当点P位于AB中点时,四边形PBOA是菱形,通过证明△OAP和△OBP均为等边三角形,得到OA=AP=OB=BP即可得证;(3)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB△△ADC,证明BP=CD即可得证结论.【详解】(1)△ABC是等边三角形.证明如下:在△O中,△△BAC与△CPB是BC所对的圆周角,△ABC与△APC是AC所对的圆周角,△△BAC=△CPB,△ABC=△APC,又△△APC=△CPB=60°,△△ABC=△BAC=60°,△△ABC为等边三角形;(2)当点P位于AB中点时,四边形PBOA是菱形,如图1,连接OP.△△AOB=2△ACB=120°,P是AB的中点,△△AOP=△BOP=60°又△OA=OP=OB,△△OAP和△OBP均为等边三角形,△OA=AP=OB=PB,△四边形PBOA是菱形;(3)如图2,在PC上截取PD=AP,又△△APC=60°,△△APD是等边三角形,△AD =AP =PD ,△ADP =60°,即△ADC =120°.又△△APB =△APC +△BPC =120°,△△ADC =△APB .在△APB 和△ADC 中,APB ADC ABP ACD AP AD ∠=∠⎧⎪∠=∠⎨⎪=⎩△△APB △△ADC (AAS ),△BP =CD ,又△PD =AP ,△CP =BP +AP .【点睛】本题考查圆内接多边形的性质,菱形的性质,掌握圆内接四边形的性质,全等三角形的判定定理和性质定理是解题关键.。
截长补短法截长补短法是几何证明题中十分重要的方法。
通常来证明几条线段的数量关系。
截长补短法有多种方法。
截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
……补短法(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……例:HPGFB AC DE在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证)HPGFB AC DE方法二(好证不好想)HMPGFB AC DE例题不详解。
(第2页题目答案见第3、4页)FEDCAB(1)正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o 。
求证:EF=DE+BF(1)变形aEFD CAB正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o 。
请问现在EF 、DE 、BF 又有什么数量关系?(1)变形bEFD C AB正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,∠EAF=45o 。
请问现在EF 、DE 、BF 又有什么数量关系?(1)变形cj FEABCD正三角形ABC 中,E 在AB 上,F 在AC 上∠EDF=45o 。
DB=DC ,∠BDC=120o 。
请问现在EF 、BE 、CF 又有什么数量关系?(1)变形 dFEDCAB正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAD=15o ,∠FAB=30o 。
AD=3求∆AEF 的面积(1)解:(简单思路)GFEDCA B延长CD 到点G ,使得DG=BF ,连接AG 。
由四边形ABCD 是正方形得∠ADG=∠ABF=90o AD=AB 又DG=BF所以∆ADG ≅∆ABF (SAS ) ∠GAD=∠FAB AG=AF由四边形ABCD 是正方形得∠DAB=90o=∠DAF+∠FAB =∠DAF+∠GAD=∠GAF所以∠GAE=∠GAF-∠EAF =90o -45o =45o∠GAE=∠FAE=45o 又AG=AF AE=AE所以∆EAG ≅∆EAF (SAS ) EF=GE=GD+DE=BF+DE变形a 解:(简单思路)GEFD CABEF= BF-DE在BC 上截取BG ,使得BG=DF ,连接AG 。
专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,∵ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD 到E ,使得DE AD =,连接CE ,易证ABD ECD ∆≅∆,得AB = ,在ACE ∆中,AC CE +> ,2AB AC AD +>.【问题解决】(1)如图(3),在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =.(2)如图(4),在ABC ∆中,90,A D ∠=︒是BC 边的中点,E F 、分别在边AB AC 、上,DE DF ⊥,若3,4BE CF ==,求EF 的长.(3)如图(5),AD 是ABC ∆的中线,,AB AE AC AF ==,且90BAE FAC ∠=∠=︒,请直接写出AD 与EF 的数量关系_ 及位置关系_ .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
全等三角形截长补短法的经典例题(最新版)目录1.截长补短法的概念2.截长补短法的两种方法:截长法和补短法3.截长补短法在全等三角形中的应用4.经典例题解析4.1 例题一4.2 例题二4.3 例题三5.截长补短法的优点和意义正文一、截长补短法的概念截长补短法是一种在几何问题中添加辅助线的方法,主要用于解决全等三角形的问题。
截长指的是在较长的线段上截取一段较短的线段,补短则是在较短线段上补一段线段,使其和较长的线段相等。
截长补短法的目的是将问题合理地转化为更容易解决的形式,从而简化结论。
二、截长补短法的两种方法截长补短法包括两种方法:截长法和补短法。
1.截长法:在较长的线段上截取与较短线段相等的线段。
2.补短法:在较短线段上补一段线段,使其和较长的线段相等。
三、截长补短法在全等三角形中的应用在全等三角形的证明中,截长补短法是非常常用的一种方法。
通过添加适当的辅助线,可以将问题转化为更容易证明的形式,从而得出结论。
下面通过几个经典例题来具体讲解截长补短法在全等三角形中的应用。
四、经典例题解析1.例题一已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。
解:通过截长补短法,我们可以在 BC 上截取 BE=CF,连接 AD 和 CE。
由于 AB=DE,BC=EF,且∠ABC=∠DEF,根据三角形全等的 SAS 条件,可得三角形 ABC≌三角形 DEF。
2.例题二已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。
解:这次我们可以在 AB 上截取 AD=DF,连接 CE 和 BD。
同样地,由于 AB=DE,BC=EF,且∠ABC=∠DEF,根据三角形全等的 SAS 条件,可得三角形 ABC≌三角形 DEF。
3.例题三已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。
中考数学数学全全等三角形截长补短试题附解析一、全等三角形截长补短1.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.2.已知ABC 是等边三角形,6AB =.(1)如图1,点M 是BC 延长线上一点,60AMN ∠=︒,MN 交ABC 的外角平分线于点N ,求CN CM -的值;(2)如图2,过点A 作AD BC ⊥于点D ,点P 是直线AD 上一点,以CP 为边,在CP 的下方作等边CPQ ,连接DQ ,求DQ 的最小值.3.如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.4.阅读题:如图1,OM 平分AOB ∠,以O 为圆心任意长为半径画弧,交射线OA ,OB 于C ,D 两点,在射线OM 上任取一点E (点O 除外),连接CE ,DE ,可证OCE ODE △△≌,请你参考这个作全等的方法,解答下列问题:(1)如图2,在ABC 中,2A B ∠=∠,CD 平分ACB ∠交AB 于点D ,试判断BC 与AC 、AD 之间的数量关系;(2)如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,20AB =,8AD =,求ABC 的面积.5.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF .(1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC 交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.6.如图①,ABC 和BDC 是等腰三角形,且AB AC =,BD CD =,80BAC ∠=︒,100∠=︒BDC ,以D 为顶点作一个50︒角,角的两边分别交边AB ,AC 于点E 、F ,连接EF .(1)探究BE 、EF 、FC 之间的关系,并说明理由;(2)若点E 、F 分别在AB 、CA 延长线上,其他条件不变,如图②所示,则BE 、EF 、FC 之间存在什么样的关系?并说明理由.7.在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,90ACE ∠=︒,则线段AE 、AB 、DE 的长度满足的数量关系为______;(直接写出答案)(2)如图(2),AC 平分BAE ∠,EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明.8.如图,ABC ∆中,BE ,CD 分别平分ABC ∠和ACB ∠,BE ,CD 相交于点F ,60A ∠=︒.(1)求BFD ∠的度数;(2)判断BC ,BD ,CE 之间的等量关系,并证明你的结论.9.如图,在正方形ABCD 中,点E 、F 均为中点,连接AF 、DE 交于点P ,连接PC ,证明:2PE PF PC +=.10.如图,在正方形ABCD 中,点F 是CD 的中点,点E 是BC 边上的一点,且AF 平分DAE ∠,求证:AE EC CD =+.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.【分析】(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC 的度数;(2)在EC 上截取EG =CF ,连接AG ,证明△AEG ≌△ACF ,然后再证明△AFG 为等边三角形,从而可得出EF =EG +GF =AF +FC ;(3)在AF 上截取AG =EF ,连接BG ,BF ,证明方法类似(2),先证明△ABG ≌△EBF ,再证明△BFG 为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC ,AD 为BC 边上的中线,∴可设∠BAD =∠CAD =α,又△ABE 为等边三角形,∴AE=AB=AC ,∠EAB=60°,∴可设∠AEC =∠ACE =β,在△ACE 中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.2.(1)6;(2)3 2【分析】(1)在CN上截取点H,使CH=CM,先证出△CMH为等边三角形,然后利用ASA证出△AMC≌△NMH,从而得出AC=NH,从而求出结论;(2)连接BQ,利用SAS证出△QCB≌△PCA,从而得出∠CBQ=∠CAP,然后根据三线合一和等量代换即可求出∠CBQ=30°、∠ABQ =90°,从而判断出点Q的运动轨迹,然后根据垂线段最短即可得出当DQ⊥BQ时,DQ最短,然后利用30°所对的直角边是斜边的一半即可得出结论.【详解】解:(1)在CN上截取点H,使CH=CM,连接MH∵△ABC为等边三角形∴∠ACB=60°,AC=AB=6∴∠ACM=180°-∠ACB=120°∵CN平分∠ACM∴∠MCN=12∠ACM=60°∴△CMH为等边三角形∴CM=HM,∠CMH=∠CHM=60°∴∠NHM=180°-∠CHM=120°,∠AMC+∠AMH=60°∴∠ACM=∠NHM∵60AMN ∠=︒∴∠NMH +∠AMH=60°∴∠AMC=∠NMH在△AMC 和△NMH 中AMC NMH CM HMACM NHM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AMC ≌△NMH∴AC=NH∴CN CM -=CN -CH=NH=AC=6(2)连接BQ∵△ABC 和△CPQ 都是等边三角形∴BC=AC ,QC=PC ,∠PCQ =∠ACB=∠ABC=∠BAC =60°∴∠PCQ -∠PCB=∠ACB -∠PCB∴∠QCB=∠PCA在△QCB 和△PCA 中BC AC QCB PCA QC PC =⎧⎪∠=∠⎨⎪=⎩∴△QCB ≌△PCA∴∠CBQ=∠CAP∵AD BC ⊥∴∠CAP=12∠BAC=30°,BD=12BC=3 ∴∠CBQ=30°∴∠ABQ=∠ABC +∠CBQ=90°∴点Q 在过点B 作AB 的垂线上运动 根据垂线段最短可得:当DQ ⊥BQ 时,DQ 最短此时在Rt △BDQ 中,∠QBD=30°∴DQ=12BD=32即DQ 的最小值为32. 【点睛】 此题考查的是全等三角形的判定及性质、等边三角形的判定及性质、直角三角形的性质和垂线段最短的应用,掌握构造全等三角形的方法、全等三角形的判定及性质、等边三角形的判定及性质、30°所对的直角边是斜边的一半和垂线段最短是解决此题的关键. 3.(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D 作DM ⊥AB 于M ,由 CA =CB ,90ACB =︒,得ABC 是等腰直角三角形,根据角平分线的性质得到CD =MD ,∠ABC =45°,根据全等三角形的性质得到AC =AM ,于是得到结论;(2)如图2,设∠ACB =α,则∠CAB =∠CBA =90°−12α,在AB 上截取AK =AC ,连结DK ,根据角平分线的定义得到∠CAD =∠KAD ,根据全等三角形的性质得到∠ACD =∠AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB 上截取AH =AD ,连接DH ,根据等腰三角形的性质得到∠CAB =∠CBA =40°,根据角平分线的定义得到∠HAD =∠CAD =20°,求得∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,根据全等三角形的性质得到∠ACB =∠AKD =100°,CD =DK ,根据等腰三角形的性质得到DH =BH ,于是得到结论.【详解】(1)如图1,过D 作DM ⊥AB 于M ,∴在ABC 中,AC BC =,∴∠ABC =45°,∵∠ACB =90°,AD 是角平分线,∴CD =MD ,∴∠BDM =∠ABC =45°,∴BM =DM ,∴BM =CD ,在RT △ADC 和RT △ADM 中,CD MD AD AD ⎧⎨⎩==, ∴RT △ADC ≌RT △ADM (HL ),∴AC =AM ,∴AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设∠ACB =α,则∠CAB =∠CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,∵AB =AC +BD ,AB=AK+BK∴BK =BD ,∵AD 是角平分线,∴∠CAD =∠KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩=== ∴△CAD ≌△KAD (SAS ),∴∠ACD =∠AKD =α,∴∠BKD =180°−α,∵BK =BD ,∴∠BDK =180°−α,∴在△BDK 中,180°−α+180°−α+90°−12α=180°, ∴α=108°,∴∠ACB =108°;(3)如图3,在AB 上截取AH =AD ,连接DH ,∵∠ACB =100°,AC =BC ,∴∠CAB =∠CBA =40°,∵AD 是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,∵∠CBA=40°,∴∠BDH=∠DHK -∠CBA =40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.4.(1)BC=AC+AD;(2)△ABC 的面积为80.【分析】(1)在CB上截取CE=CA,则由题意可得AD=DE,∠CED=∠A,再结合∠A=2∠B可得DE=BE,从而得到BC=AD+AC;(2)在AB上截取AE=AD,连结CE,过C作CF⊥AB于F点,由题意可得EC=BC,从而得到EF的长度,再由勾股定理根据EC、EF的长度求得CF的长度,最后根据面积公式可以得到解答.【详解】解:(1)如图,在CB上截取CE=CA,则由题意得:△CAD≌△CED,∴AD=DE,∠CED=∠A,∵∠A=2∠B,∴∠CED=2∠B,又∠CED=∠B+∠EDB,∴∠B+∠EDB=2∠B,∴∠EDB=∠B,∴DE=BE,∴BC=BE+CE=DE+CE=AD+AC;(2)如图,在AB上截取AE=AD,连结CE,过C作CF⊥AB于F点,∴由题意可得:△CDA ≌△CEA ,∴EC=CD=BC=10,AE=AD=8,∵CF ⊥AB ,∴EF=FB=208622AB AE --==, ∴22221068CF EC EF =--=, ∴112088022ABC S AB CF =⨯=⨯⨯=. 【点睛】本题考查三角形全等的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的判定和性质、勾股定理是解题关键.5.(1)见解析;(2)EFAE BF =+;(3)222MN EN FM =+,见解析 【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解;(3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=,又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =,又ED AD AE BF AE =+=+,∴EF AE BF =+.(3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD ≌ECF △()SAS ,∴D CFM ∠=∠,CAD ≌CBF ,∴D CFB ∠=∠,∴CFM CFB ∠=∠,//AC OQ ,∴MCF CFB ∠=∠,∴CFM MCF ∠=∠,∴MC MF =,同理可证:CN EN =,∴在Rt MCN △中,由勾股定理得:22222MN CN CM EN FM =+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键. 6.(1)EF=BE+FC ;(2)EF=FC-BE .【分析】(1)由等腰三角形的性质,解得50ABC ACB ∠=∠=︒,40DBC DCB ∠=∠=︒,延长AB 至G ,使得BG=CF ,连接DG ,进而证明GBD △()FCD SAS ≅,再根据全等三角形对应边相等的性质解得DG FD =,再结合等腰三角形的性质可证明DEF ()DGE SAS ≅,最后根据全等三角形的性质解题即可;(2)在CA 上截取CG=BE,连接DG ,由等腰三角形的性质,可得50ABC ACB ∠=∠=︒,40DBC DCB ∠=∠=︒,进而证明BED ≅()CGD SAS 得到DG DE =,据此方法再证明EDF ≅()GDF SAS ,最后根据全等三角形的性质解题即可.【详解】(1)ABC 和BDC 是等腰三角形,ABC ACB ∴∠=∠ DBC DCB ∴∠=∠80BAC AB AC ∠=︒=,50ABC ACB ∴∠=∠=︒100BDC BD CD ∠=︒=,40DBC DCB ∴∠=∠=︒90ABD ACD DCF ∴∠=∠=︒=∠延长AB 至G ,使得BG=CF ,连接DG18090GBD ABD ∠=︒-∠=︒在GBD △和FCD 中,BG=CF ,GBD DCF BD FD ∠=∠=,∴GBD △()FCD SAS ≅,DG FD ∴=BDG CDF ∴∠=∠50100EDF BDC ∴∠=︒∠=︒,50BDE CDF ∴∠+∠=︒50GDE BDG BDE CDF BDE ∠=∠+∠=∠+∠=︒在DEF 和DGE △中,DE=DE ,EDF GDE DF GD ∠=∠=,∴DEF ()DGE SAS ≅,EF EG BE GB BE CF ∴==+=+(2)在CA 上截取CG=BE,连接DGABC 是等腰三角形,80BAC ∠=︒50ABC ACB ∴∠=∠=︒100BDC BD CD ∠=︒=,40DBC DCB ∴∠=∠=︒90EBD GCD ∴∠=∠=︒CG BE BD CD ==,在BED 和CGD △中,CG=BE ,EBD GCD BD CD ∠=∠=,BED ∴≅()CGD SASDG DE ∴=在EDF 和GDF 中,FD=FD ,GDF EDF ED GD ∠=∠=,EDF ∴≅()GDF SASEF FG FC CG FC BE ∴==-=-【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.7.(1)AE =AB +DE ;(2)AE =AB +DE +12BD ,证明见解析. 【分析】 (1)在AE 上取一点F ,使AF =AB ,由三角形全等的判定可证得△ACB ≌△ACF ,根据全等三角形的性质可得BC =FC ,∠ACB =∠ACF ,根据三角形全等的判定证得△CEF ≌△CED ,得到EF =ED ,再由线段的和差可以得出结论;(2)在AE 上取点F ,使AF =AB ,连结CF ,在AE 上取点G ,使EG =ED ,连结CG ,根据全等三角形的判定证得△ACB ≌△ACF 和△ECD ≌△ECG ,由全等三角形的性质证得CF =CG ,进而证得△CFG 是等边三角形,就有FG =CG =12BD ,从而可证得结论. 【详解】解:(1)如图(1),在AE 上取一点F ,使AF =AB .∵AC 平分∠BAE ,∴∠BAC =∠FAC .在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩=== ∴△ACB ≌△ACF (SAS ).∴BC =FC ,∠ACB =∠ACF .∵C 是BD 边的中点,∴BC =CD .∴CF =CD .∵∠ACE =90°,∴∠ACB +∠DCE =90°,∠ACF +∠ECF =90°.∴∠ECF =∠ECD .在△CEF 和△CED 中,CF CD ECF ECD CE CE ⎧⎪∠∠⎨⎪⎩=== ∴△CEF ≌△CED (SAS ).∴EF =ED .∵AE =AF +EF ,∴AE =AB +DE .故答案为:AE =AB +DE ;(2)AE =AB +DE +12BD . 证明:如图(2),在AE 上取点F ,使AF =AB ,连结CF ,在AE 上取点G ,使EG =ED ,连结CG .∵C 是BD 边的中点,∴CB =CD =12BD . ∵AC 平分∠BAE ,∴∠BAC =∠FAC .在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩=== ∴△ACB ≌△ACF (SAS ).∴CF =CB ,∠BCA =∠FCA .同理可证:△ECD ≌△ECG∴CD =CG ,∠DCE =∠GCE .∵CB =CD ,∴CG =CF .∵∠ACE =120°,∴∠BCA +∠DCE =180°−120°=60°.∴∠FCA +∠GCE =60°.∴∠FCG =60°.∴△FGC 是等边三角形.∴FG =FC =12BD . ∵AE =AF +EG +FG ,∴AE =AB +DE +12BD . 【点睛】 本题主要考查了全等三角形的判定与性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.8.(1)∠BFD =60°;(2)BC =BD +CE ;证明见解析【分析】(1)根据角平分线和外角性质求解即可;(2)在BC 上截取BG =BD ,连接FG ,证明△BDF ≌△BGF ,△CGF ≌△CEF ,即可得到结果;【详解】(1)∵BE ,CD 分别平分ABC ∠和ACB ∠,BE ,∴ABE CBE ∠=∠,ACD BCD ∠=∠,∵60A ∠=︒,∴120ABC ACB ∠+∠=︒,∴60FBC FCB ∠+∠=︒,∴60DFB ∠=︒.(2)BC =BD +CE ;证明方法:在BC 上截取BG =BD ,连接FG ,在△BDF 和△BGF 中,BD BG DBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△BDF BGFSAS ≅, ∴60DFB BFG ∠=∠=︒,又∵GCF ECF ∠=∠,∴△CGF ≌△CEF (ASA ),∴CE =CG ,∴BC =BD +CE .【点睛】本题主要考查了三角形内角和定理、外角定理、三角形全等应用,准确分析是解题的关键.9.见解析【分析】延长DE 至N ,使得EN PF =,连接CN ,先证明()ADF DCE SAS △≌△,可得AFD DEC ∠=∠,即CFP CEN ∠=∠,再通过证明()CEN CFP SAS △≌△,可得CN CP =,ECN PCF ∠=∠,即可证明NCP是等腰直角三角形,即PN PE NE =+=,从而得证PE PF +=.【详解】证明:如图,延长DE 至N ,使得EN PF =,连接CN ,在正方形ABCD 中, E 、F 分别是BC 、CD 的中点,CE DF ∴=,在ADF 和DCE 中,,90,,AD CD ADF DCE DF CE =⎧⎪∠=∠=︒⎨⎪=⎩()ADF DCE SAS ∴△≌△,AFD DEC ∴∠=∠,CFP CEN ∴∠=∠,在CEN 和CFP 中,,,,CE CF CEN CFP EN PF =⎧⎪∠=∠⎨⎪=⎩()CEN CFP SAS ∴△≌△,CN CP ∴=,ECN PCF ∠=∠,90PCF BCP ∠+∠=︒,90ECN BCP NCP ∴∠+∠=∠=︒,NCP ∴△是等腰直角三角形,PN PE NE ∴=+=.即PE PF +=.【点睛】本题考查了正方形的性质和全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键.10.见解析【分析】过F作FH⊥AE于H,得出FH=FD,然后证明△FHE≌△FCE,再通过等价转换可证得AE=EC+CD.【详解】证明:过F作FH⊥AE于H,如图,∵AF平分∠DAE,∠D=90°,FH⊥AE,∴∠DAF=∠EAF,FH=FD,又∵DF=FC=FH,FE为公共边,∴△FHE≌△FCE(HL).∴HE=CE.∵AE=AH+HE,AH=AD=CD,HE=CE,∴AE=EC+CD.【点睛】本题考查角平分线的性质,角平分线上的点到角的两边距离相等,也考查了等量代换的思想,属于比较典型的题目.。
玩转“截长补短”——突破中考数学压轴题截长补短【方法说明】遇到求证线段和差及倍半关系时,可以尝试截长补短的方法.截长指在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短指将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.题目中常见的条件有等腰三角形(即两条边相等),或角平分线(即两个角相等),通过截长补短后,并连接一些点,构造全等得出最终结论.【方法归纳】1.如图,若要求证AB+BD=AC,可以在线段AC上截取线段AB′=AB,并连接DB,证明B′C=BD即可;或延长AB至点C′使得AC′=AC,并连接BC′,证明BC′=BD即可.2.如图,若要求证AB+CD=BC,可以在BC上截取线段BF=AB,再证明CD=CF即可;或延长BA至点F,使得BF=BC,再证明AF=CD即可.图(1)图(2)3.在一个对角互补的四边形中,有一组邻边(AB=AD)相等,可以使用补短的方法延长另外两边的一条,构建全等三角形.【典型例题】(2009广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.【思路点拨】(1)证明AF=AH,因此先连接AH、AF.证明线段相等可考虑三角形全等的方法,观察发现只要证明Rt△ADH≌Rt△ABF(或Rt△AGH≌Rt△AEF)即可;(2)证明AG+AE=FH这种线段和的问题,可以考虑截长补短,发现在FH上截取的方法不好证明,可以考虑补短的方法.本题可以考虑把AG+AE转化为DH+BF,延长延长CB至点M,使得BM=DH,然后证明MF=FH即可;(3)由于矩形EPHD的边长并不知道,可以采用设未知数的方式,本题可以设ED=x,DH=y,则S矩形EPHD=xy,根据Rt△GBF的周长为1,即可找到x与y的关系并求出面积.【解题过程】解:(1)连接AH、AF.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∵ADHG与ABFE都是矩形,∴DH=AG,AE=BF,又∵AG=AE,∴DH=BF.在Rt△ADH与Rt△ABF中,∵AD=AB,∠D=∠B=90°,DH=BF,∴Rt△ADH≌Rt△ABF,∴AF=AH.(2)【方法一】延长CB至点M,使得BM=DH,并连接AM,FH.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∴∠D=∠ABM=90°,∴△ABM≌△ADH,∴AM=AH,∠MAB=∠DAH.∵∠FAH=45°,∴∠MAF =∠BAF+∠MAB=∠BAF+∠DAH=90°-45°=45°=∠FAH又∵AF=AF,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.【方法二】将△ADH绕点A顺时针旋转90°到△ABM的位置.在△AMF与△AHF中,∵AM=AH,AF=AF,∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.(3)设ED=x,DH=y,则GB=AB-AG=1-y,BF=BC-BF =1-x,∴在Rt△GBF中,GF2=GB2+BF2=(1-y)2+(1-x)2,∵Rt△GBF的周长为1,∴GF=1-GB-BF=1-(1-x)-(1-y)=x+y-1,∴(x+y-1)2=(1-y)2+(1-x)2得xy=1/2,∴矩形EPHD的面积S=ED·DH= xy=1/2.。
初中数学全等专题截长补短法1.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,则∠EAF的度数为( )A.30°B.37.5°C.45°D.60°2.如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,时DE=AD,则∠ECA 的度数为()A.30°B.35°C.40°D.45°3.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,则下列说法正确的是()A.CD=AD+BEB.AE=CE+BEC.AE=AD+BED.AC=AD+BE4.如图所示,△ABC是边长为1的正三角形,△BDC是顶角为120°的等腰三角形,以D为顶点作一个60°的∠MDN,点M、N分别在AB、AC上,则△AMN的周长为()A.1B.2C.3D.45.如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.则下列式子正确的为()A.AE-BE=EFB.AE-BE=DFC.AE-BE=ECD.AE-BE=AB1.解题思路:延长EB至点G,使得BG=DF,连接AG,可证明:△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE∴△AEG≌△AEF(SSS)∴∠EAG=∠EAF,∵∠DAF+∠EAF+∠BAE=90°∴∠EAG+∠EAF=90°,∴∠EAF=45°。
答案:C2.解题思路:在BC上截取BF=AB,连DF,则有△ABD≌△FBD,∴DF=DA=DE,又∵∠ACB=∠ABC=40°,∠DFC=180°-∠A=80°,∴∠FDC=60°,∵∠EDC=∠ADB=180°-∠ABD-∠A=180°-20°-100°=60°,∴△DCE≌△DCF,故∠ECA=∠DCB=40°.故选C.3.解题思路:在AB上截取AF,使得AF=AD,连接CF,则可先证△ADC≌△AFC,再证明△CEF≌△CEB,就可以得到AE=AD+BE,所以C选项正确。
中考数学一轮复习全全等三角形截长补短(讲义及答案)及答案一、全等三角形截长补短1.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF .(1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC 交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.2.问题提出,如图1所示,等边△ABC 内接于⊙O ,点P 是AB 上的任意一点,连结PA ,PB ,PC .线段PA 、PB 、PC 满足怎样的数量关系?(尝试解决)为了解决这个问题,小明给出这样种解题思路:发现存在条件CA=CB ,∠ACB=60°,从而将CP 绕点逆时针旋转60°交PB 延长线于点M ,从而证明△PAC ≌△MBC ,请你完成余下思考,并直接写出答案:PA 、PB 、PC 的数量关系是 ; (自主探索)如图2所示,把原问题中的“等边△ABC”改成“正方形ABCD”,其余条件不变,①PC 与PA ,PB 有怎样的数量关系?请说明理由:②PC+PD 与PA ,PB 的数量关系是 .(直接写出结果)(灵活应用)把原问题中的“等边△ABC”改成“正五边形ABCDE”,其余条件不变,则PC+PD+PE 与PA+PB 的数量关系是 .(直接写出结果)∠=︒,BD=DC,3.已知等边三角形ABC,D为△ABC外一点,BDC120∠=︒,射线DM与直线AB相交于点M,射线DN与直线AC相交于点N.MDN60(1)当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系;(2)当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明;(3)当点M、N在边AB、CA的延长线上时,请画出图形,并求出BM、NC、MN之间的数量关系.⊥交AD于4.如图,四边形ABCD为矩形,F为对角线BD上一点,过点F作FE BD点H,交BA的延长线于点E,连接AF,当FD FE=时,求证:2+=.AH AB AF5.如图,在正方形ABCD中,点F是CD的中点,点E是BC边上的一点,且AF平分=+.DAE∠,求证:AE EC CD6.已知等腰△ABC 中,AB=AC ,点D 在直线AB 上, DE ∥BC ,交直线AC 与点E ,且BD=BC ,CH ⊥AB ,垂足为H .(1)当点D 在线段AB 上时,如图1,求证DH=BH+DE ;(2)当点D 在线段BA 延长线上时,如图2,当点D 在线段AB 延长线上时,如图3,直接写出DH ,BH ,DE 之间的数量关系,不需要证明.7.已知等腰ABC ∆中,AB AC =,点D 在直线AB 上,//DE BC ,交直线AC 于点E ,且BD BC =,CH AB ⊥,垂足为H .(1)当点D 在线段AB 上时,如图1,求证BH DE DH +=;(2)当点D 在线段BA 的延长线上时,如图2;当点D 在线段AB 延长线时,如图3,线段BH ,DE ,DH 又有怎样的数量关系?请直接写出你的猜想,不需要证明. 8.如图,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD .9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M,点G是线段CE上一点,且CO=CG.(1)若OF=4,求FG的长;(2)求证:BF=OG+CF.10.在数学活动课上,数学老师出示了如下题目:如图①,在四边形ABCD中,E是边CD的中点,AE是BAD∠的平分线,AD BC∥.求证:AB AD BC=+.小聪同学发现以下两种方法:方法1:如图②,延长AE、BC交于点F.方法2:如图③,在AB上取一点G,使AG AD=,连接EG、CG.(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形ABCD中,AE是BAD∠的平分线,E是边CD的中点,60 BAD∠=︒,11802D BCD∠+∠=︒,求证:CB CE=.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)见解析;(2)EFAE BF =+;(3)222MN EN FM =+,见解析 【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解;(3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=,又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =,又ED AD AE BF AE =+=+,∴EF AE BF =+.(3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD ≌ECF △()SAS ,∴D CFM ∠=∠,CAD ≌CBF ,∴D CFB ∠=∠,∴CFM CFB ∠=∠,//AC OQ ,∴MCF CFB ∠=∠,∴CFM MCF ∠=∠,∴MC MF =,同理可证:CN EN =,∴在Rt MCN △中,由勾股定理得:22222MN CN CM EN FM =+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键.2.【尝试解决】PA+PB=PC ;【自主探索】①PC PA =;理由见解析;②1)()PC PD PA PB +=+;【灵活应用】2)()PC PD PE PA PB ++=+.【分析】尝试解决:利用旋转性质证明△PAC ≌△MBC ,得到PA=BM ,得到PM 等于PB 与PA 的和,再证明△PCM 是等边三角形,得到PM 等于PC ,即可得到结果;自主探索:①在PC 上截取QC=PA ,证出△CBQ 全等于△ABP ,得到△PBQ 是等腰直角三角形,PQ 等于PB 倍,即可得到结果;②同①方法,即可得到PD 与PA 和PB 的关系,即可求出PC+PD 与PA 和PB 的关系; 灵活应用:类比(自主探索)中的方法证明PC 与PA 和PB 的关系,再用同样的方法证明PE 与PA 和PB 的关系,构造△CDM 全等于△CBP ,得到PD 与PC 的关系,进一步得到PD 与PA 和PB 的关系,最终求出PD+PE+PC 的和即可得到与PA 和PB 的关系.【详解】尝试解决:PA+PB=PC ;证明:因为∠ACP+∠PCB=60°,∠MCB+∠PCB=60°,∴∠ACP=∠MCB ,又∵CP=CM ,AC=MC ,∴△ACP ≌△BCM ,所以PA=BM ,∠CBM=∠CAP ,∵四边形APBC 内接于圆O ,∴∠CAP+∠CBP=180°,∴∠CBM+∠CBP=180° ,∴P 、B 、M 三点共线,∴△PCM 是等边三角形,∴PM=PC ,∴PC=PM=PB+BM=PB+PA ;自主探索:①PC 与PA 、PB 的数量关系为PC PA =+;理由:截取CQ=PA ,,如图,∵四边形ABCD 是正方形,∴BC=AB ,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵PA=CQ ,∠BCQ=BAP ,BC=AB∴△BCQ ≌△BAP ,∴∠CBQ=∠ABP ,BQ=BP ,∵∠CBQ+∠ABQ=90°,∴90ABP ABQ ∠+∠=︒,∴△PBQ 是等腰直角三角形,∴PQ=2PB , ∴2PC CQ PQ PA PB =+=+;②(21)()PC PD PA PB +=++证明:在PD 上截取DH=PB ,∵DH=PB ,∠ADH=∠ABP ,AD=AB∴△ADH ≌△ABP∴∠DAH=∠BAP ,AH=AP ,∵∠DAH+∠HAP=90°,∴∠BAP+∠HAP=90°,∴△HAP 是等腰直角三角形,∴PH=2PA ,∴PD=DH+PH=PB+2PA ,∴(21)()PC PD PA PB +=++.灵活应用:(52)()PC PD PE PA PB ++=++.证明:在PC 上截取FC=PA ,∵五边形ABCDE 是正五边形,∴BC=AB=CD=DE=AE ,∠ABC=∠EAB=108°,∵PA=CF ,AB=BC ,∠FCB=∠BAP ,∴△BAP ≌△BCF ,∴BF=PB ,∠CBF=∠ABP ,∵∠CBF+∠FBA=108°,∴∠ABP+∠FBA=108°,∴△FBP 是顶角为108°的等腰三角形,∴PB ,∴PC=PF+FC=12PB+PA ,同理可证PA+PB , 延长PD 至点M 使DM=PB ,∵∠MDC+∠CDP=180°,∠CDP+∠PBC=180°,∴∠CDM=∠CBP又∵CD=BC ,∴△CDM ≌△CBP∴CM=CP ,∠MCD=∠BCP ,又∵∠PCB+∠PCD=108°,∴∠MCD+∠PCD=108°,∴△MCP 是顶角108°的等腰三角形,∴PC ,∴PC-PB , ∴PC+PD+PE=PC+12+PC-PB+12+PA+PB=32+(12+PB+PA )+PA=((22PA PB +=(()2PA PB + 【点睛】本题考查旋转性质、圆的有关性质、圆内接四边形、正五边形有关性质、三角形全等的相关性质和判定,综合性强,难度较大是一道好题,属中考压轴题型.3.(1)BM+NC=MN ,证明见解析;(2)成立,证明见解析;(3)NC-BM=MN ,证明见解析.【分析】(1)由DM=DN ,∠MDN=60°,可证得△MDN 是等边三角形,又由△ABC 是等边三角形,CD=BD ,易证得Rt △BDM ≌Rt △CDN ,然后由直角三角形的性质,即可求得BM 、NC 、MN之间的数量关系 BM+NC=MN ;(2)在CN 的延长线上截取CM 1=BM ,连接DM 1.可证△DBM ≌△DCM 1,即可得DM=DM 1,易证得∠CDN=∠MDN=60°,则可证得△MDN ≌△M 1DN ,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN 上截取CM 1=BM ,连接DM 1,可证△DBM ≌△DCM 1,即可得DM=DM 1,然后证得∠CDN=∠MDN=60°,易证得△MDN ≌△M 1DN ,则可得NC-BM=MN .【详解】解(1)BM 、NC 、MN 之间的数量关系:BM+NC=MN .证明如下:∵BD=DC ,DM=DN ,MDN 60∠=︒∴∠BDC=∠DCB=180302BDC ,△MDN 为等边三角形, ∴MN=MD=DN ,∵△ABC 是等边三角形,∴∠ABC=∠ACB=60°,∴∠ABD=∠ACD=90°,∴Rt △BDM ≌Rt △CDN (HL ),∴∠BDM =∠CDN=302BDC MDN , ∴11,22BM DM NC DN , ∴BM+NC=MN . (2)猜想:结论仍然成立.证明:在CN 的反向延长线上截取CM 1=BM ,连接DM 1.∵∠MBD=∠M 1CD=90°,BD=CD ,∴△DBM ≌△DCM 1,∴DM=DM 1,∠MBD=∠M 1CD ,∵∠MDN=60°,∠BDC=120°,∴∠M 1DN=∠MDN=60°,∴△MDN ≌△M 1DN ,∴MN=M1N=M 1C+NC=BM+NC ,(3)证明:在CN 上截取CM 1=BM ,连接DM 1.与(2)同理可证△DBM ≌△DCM 1,∴DM=DM 1,与(2)同理可证∠CDN=∠MDN=60°,∴△MDN ≌△M 1DN ,∴MN=M 1N ,∴NC-BM=MN .【点睛】本题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.4.见解析【分析】过点F 作FN AF ⊥交AB 的延长线于点N ,先证明()EFN DFA ASA △≌△,可得N DAF ∠=∠,FN AF =,从而可以证明()AHF NBF ASA △≌△,可证得AH BN =,即可得证2AH AB +=.【详解】证明:如图,过点F 作FN AF ⊥交AB 的延长线于点N ,EF DF ⊥,EA AD ⊥,90E ABD ∴∠+∠=︒,90ADF ABD ∠+∠=︒,E ADF ∴∠=∠,90AFN EFD ∠=∠=︒,AFD EFN ∴∠=∠,在EFN 和DFA 中,,,,EFN DFA EF DF E ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EFN DFA ASA ∴△≌△,N DAF ∴∠=∠,FN AF =,又90AFN ∠=︒, 2AN AF ∴=,90AFN EFB ∠=∠=︒,AFH BFN ∴∠=∠,在AHF △和NBF 中,,,,AFH NFB AF NF HAF N ∠=∠⎧⎪=⎨⎪∠=∠⎩()AHF NBF ASA ∴△≌△,AH BN ∴=,2AH AB BN AB AN AF ∴+=+==.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键. 5.见解析【分析】过F 作FH ⊥AE 于H ,得出FH=FD ,然后证明△FHE ≌△FCE ,再通过等价转换可证得AE=EC+CD .【详解】证明:过F 作FH ⊥AE 于H ,如图,∵AF 平分∠DAE ,∠D=90°,FH ⊥AE ,∴∠DAF=∠EAF ,FH=FD ,又∵DF=FC=FH ,FE 为公共边,∴△FHE ≌△FCE (HL ).∴HE=CE .∵AE=AH+HE ,AH=AD=CD ,HE=CE ,∴AE=EC+CD .【点睛】本题考查角平分线的性质,角平分线上的点到角的两边距离相等,也考查了等量代换的思想,属于比较典型的题目.6.(1)见详解;(2)图2:=DH BH DE -,图3:+DE DH BH =【分析】(1)在线段AH 上截取HM BH =,连接CM ,CD ,证明DMC DEC △≌△,可得到DE DM =,即可求解.(2)当点D 在线段BA 延长线上时,在BA 的延长线上截取MH BH =,连接CM ,DC ,由题意可证BHC CHM △≌△,可得B CMB ∠=∠,由题意可得=B AED ∠∠,即可证DMC DEC △≌△,可得DE DM =,则可得DH BH DE =-;当点D 在线段AB 延长线上时,在线段AB 上截取BH HM =,连接CM ,CD ,由题意可证BHC CHM △≌△,可得B CMB ∠=∠,由题意可得B AED ∠=∠,即可证DMC DEC △≌△,可得DE DM =,则可得DE DH BH =+.【详解】解:(1)证明:在线段AH 上截取HM BH =,连接CM ,CD∵CH AB ⊥,HM BH =∴CM BC =∴B CMB ∠=∠∵AB AC =∴B ACB ∠=∠∵//DE BC∴ADE B AED ACB ∠=∠=∠=∠,CDE BCD ∠=∠∴AED BMC ∠=∠∴DEC DMC ∠=∠∵BD BC =∴BDC BCD EDC ∠=∠=∠∵CD CD =∴CDM CDE △≌△∴=DM DE∴+BH DE DM HM DH =+=(2)当点D 在线段BA 延长线上时,DH BH DE =-如图2:在BA 的延长线上截取MH BH =,连接CM ,DC∵AB AC =∴A ABC CB =∠∠∵BD BC =∴BDC DCB =∠∠∵//DE BC∴E ACB B EDB ===∠∠∠∠∵=CH CH ,BH MH =,BHC CHM =∠∠∴BHC CHM △≌△∴=B M ∠∠∴E M =∠∠∵+MDC B DCB =∠∠∠,EDC BDC EDB =+∠∠∠∴MDC EDC =∠∠又∵E M =∠∠,DC CD =∴DEC DMC △≌△∴DE DM =∵=DH MH DM -∴DH BH DE =-当点D 在线段AB 延长线上时,DE DH BH =+如图3:当点D 在线段AB 延长线上时,在线段AB 上截取BH HM =,连接CM ,CD∵BH HM =,CH CH =,90CHB MHC ==︒∠∠∴MHC BHC △≌△∴ABC BMC =∠∠∵AB AC =∴A ABC CB =∠∠∵BD BC =∴BDC BCD ∠=∠∵//BC DE∴BCD CDE ∠=∠,ACB AED ∠=∠∴BDC CDE ∠=∠,BMC AED =∠∠,且CD CD =∴CDM CDE △≌△∴DE DM =∵DM DH HM =+∴DE DH BH =+【点睛】本题主要考查了三角形综合题,等腰三角形的性质,全等三角形的性质和判定,合理添加辅助线证全等是解题的关键.7.(1)见解析;(2)图2:BH DE DH -=;图3:DE BH DH -=【分析】(1)在线段AH 上截取HM=BH ,连接CM ,CD ,证明△DMC ≌△DEC ,即可可得DE=DM 则结论可得;(2)当点D 在线段BA 延长线上时,在BA 的延长线上截取MH=BH ,连接CM ,DC ,由题意可证△BHC ≌△CHM ,可得∠B=∠CMB ,由题意可得∠B=∠AED ,即可证△DMC ≌△DEC ,可得DE=DM ,则可得DH=BH-DE ;当点D 在线段AB 延长线上时,在线段AB 上截取BH=HM ,连接CM ,CD ,由题意可证△BHC ≌△CHM ,可得∠B=∠CMB ,由题意可得∠B=∠AED ,即可证△DMC ≌△DEC ,可得DE=DM ,则可得DE=DH+BH ..【详解】解:(1)证明:在AH 上截取HM BH =,连接CM ,CD .∵CH AB ⊥,HM BH =∴CM BC =.∴B CMB ∠=∠.∵AB AC =∴B ACB ∠=∠.∵//DE BC ,∴ADE B AED ACB ∠=∠=∠=∠,CDE BCD ∠=∠.∴AED BMC ∠=∠.∴DEC DMC ∠=∠.∵BD BC =,∴BDC BCD EDC ∠=∠=∠.∵CD CD =,∴ΔΔCDM CDE ≅.∴DM DE =.∴DE BH DM HM DH +=+=.(2)当点D 在线段BA 延长线上时,DH=BH-DE如图:在BA 的延长线上截取MH=BH ,连接CM ,DC∵AB=AC∠ABC=∠ACB ,∵BD=BC ,∴∠BDC=∠DCB∵DE ∥BC∠E=∠ACB=∠B=∠EDB∵CH=CH ,BH=MH ,∠BHC=∠CHM∴△BHC ≌△CHM∴∠B=∠M∴∠E=∠M∵∠MDC=∠B+∠DCB ,∠EDC=∠BDC+∠EDB∴∠MDC=∠EDC又∵∠E=∠M ,DC=CD∴△DEC≌△DMC∴DE=DM∵DH=MH-DM∴DH=BH-DE当点D在线段AB延长线上时,DE=BH+DH如图在线段AB上截取BH=HM,连接CM,CDBH=HM,CH=CH,∠CHB=∠MHC=90°∴△MHC≌△BHC∴∠ABC=∠BMC∵AB=AC∴∠ABC=∠ACB,∵BD=BC∴∠BDC=∠BCD∵BC∥DE∴∠BCD=∠CDE,∠ACB=∠AED∴∠BDC=∠CDE,∠BMC=∠AED,且CD=CD∴△CDM≌△CDE∴DE=DM∵DM=DH+HM∴DE=DH+BH.【点睛】本题考查了三角形综合题,等腰三角形的性质,全等三角形的性质和判定.添加恰当的辅助线证全等是本题的关键.8.证明见解析.【分析】延长EB到G,使BG=DF,连接AG.先说明△ABG≌△ADF,然后利用全等三角形的性质和已知条件证得△AEG≌△AEF,最后再运用全等三角形的性质和线段的和差即可解答.【详解】延长EB到G,使BG=DF,连接AG.∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =12∠BAD . ∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD【点睛】本题考查了全等三角形的判定与性质,做出辅助线构造全等三角形是解答本题的关键. 9.(1)4;(2)见解析【分析】(1)根据条件证明△OCF ≌△GCF ,由全等的性质就可以得出OF=GF 而得出结论; (2)在BF 上截取BH=CF ,连接OH ,通过条件可以得出△OBH ≌△OCF ,可以得出OH=OF ,从而得出OG ∥FH ,OH ∥FG ,进而可以得出四边形OHFG 是平行四边形,就可以得出结论.【详解】解:(1)∵CF 平分∠OCE ,∴∠OCF=∠ECF .∵OC=CG ,CF=CF ,∵在△OCF 和△GCF 中, OC GC OCF ECF CF CF ⎧⎪∠∠⎨⎪⎩=== ∴△OCF ≌△GCF (SAS ),∴FG=OF=4即FG 的长为4.(2)证明:在BF 上截取BH=CF ,连接OH .∵四边形ABCD 为正方形,∴AC ⊥BD ,∠DBC=45°,∴∠BOC=90°,∴∠OCB=180°-∠BOC-∠DBC=45°.∴∠OCB=∠DBC .∴OB=OC .∵BF ⊥CF ,∴∠BFC=90°.∵∠OBH=180°-∠BOC-∠OMB=90°-∠OMB ,∠OCF=180°-∠BFC-∠FMC=90°-∠FMC ,且∠OMB=∠FMC ,∴∠OBH=∠OCF .∵在△OBH 和△OCF 中OB OC OBH OCF BH CF ⎧⎪∠∠⎨⎪⎩=== ∴△OBH ≌△OCF (SAS ).∴OH=OF ,∠BOH=∠COF .∵∠BOH+∠HOM=∠BOC=90°,∴∠COF+∠HOM=90°,即∠HOF=90°. ∴1180452OHF OFH HOF ∠=∠=︒-∠=︒() ∴∠OFC=∠OFH+∠BFC=135°.∵△OCF ≌△GCF ,∴∠GFC=∠OFC=135°,∴∠OFG=360°-∠GFC-∠OFC=90°. ∴1180452FGO FOG OFG ∠=∠=︒-∠=︒() , ∴∠GOF=∠OFH ,∠HOF=∠OFG .∴OG ∥FH ,OH ∥FG ,∴四边形OHFG 是平行四边形(两组对边分别平行的四边形是平行四边形). ∴OG=FH .∵BF=FH+BH ,∴BF=OG+CF【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,平行四边形的判定及性质的运用,解答时采用截取法作辅助线是关键.10.(1)方法1:证明见解析;方法2:证明见解析;(2)证明见解析.【分析】(1)方法1:先根据角平分线的定义、平行线的性质得出BAF DAE F ∠=∠=∠,再根据等腰三角形的性质可得AB BF =,根据三角形全等的判定定理与性质得出AD FC =,然后根据线段的和差即可得证;方法2:先根据角平分线的定义得出DAE GAE ∠=∠,再根据三角形全等的判定定理与性质可得,DE GE D AGE =∠=∠,然后根据线段中点的定义、等腰三角形的性质可得ECG EGC ∠=∠,最后根据平行线的性质、平角的定义可得BCG BGC ∠=∠,由等腰三角形的定义可得BG BC =,由此根据线段的和差即可得证;(2)如图(见解析),参照方法1构造辅助线,先根据等腰三角形的性质得出EF 平分AFG ∠,从而有12EFC AFG ∠=∠,再根据平行线的性质、角的和差得出60EFC BFC ∠=∠=︒,ECF BCF ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】(1)方法1:如图②,延长AE 、BC 交于点FAE ∵是BAD ∠的平分线BAF DAE ∴∠=∠//AD BCDAE F ∴∠=∠BAF F ∴∠=∠AB BF FC BC ∴==+E 是边CD 的中点DE CE ∴=在ADE 和FCE △中,DAE F AED FEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADE FCE AAS ∴≅AD FC ∴=AB FC BC AD BC ∴=+=+;方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CGAE ∵是BAD ∠的平分线DAE GAE ∴∠=∠在ADE 和AGE 中,AD AG DAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩()ADE AGE SAS ∴≅,DE GE D AGE ∴=∠=∠E 是边CD 的中点DE CE ∴=CE GE ∴=ECG EGC ∴∠=∠//AD BC180D BCD ︒∴∠+∠=,即180D ECG BCG ∠+∠+∠=︒180AGE EGC BCG ∴∠+∠+∠=︒,即180AGC BCG ∠+∠=︒又180AGC BGC ∠+∠=︒BCG BGC ∴∠=∠BG BC ∴=AB AG BG AD BC ∴=+=+;(2)如图,过点C 作//CG AD ,交AE 延长线于点G ,延长GC 交AB 于点F ,连接EF 由方法1可知:,AF GF AE GE ==AFG ∴是等腰三角形EF ∴平分AFG ∠ 12EFC AFG ∴∠=∠ //CG AD ,60BAD ∠=︒60,180120BFC BAD AFG BAD ∴∠=∠=︒∠=︒-∠=︒60EFC ∴∠=︒//CG AD180D ECF ∴∠+∠=︒11802D BCD ︒∠+∠=,即1()1802D ECF BCF ∠+∠+∠=︒ 1()2ECF ECF BCF ∴∠=∠+∠ ECF BCF ∴∠=∠在ECF △和BCF △中,60EFC BFC CF CF ECF BCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ECF BCF ASA ∴≅CB CE ∴=.【点睛】本题考查了角平分线的定义、平行线的性质、三角形全等的判定定理与性质等知识点,较难的是题(2),参照方法1,通过作辅助线,构造全等三角形是解题关键.。
初中数学全等专题截长补短法
1.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,则∠EAF的度数为( )
A.30°
B.37.5°
C.45°
D.60°
2.如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,时DE=AD,则∠ECA的度数为()
A.30°
B.35°
C.40°
D.45°
3.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,则下列
说法正确的是()
A.CD=AD+BE
B.AE=CE+BE
C.AE=AD+BE
D.AC=AD+BE
4.如图所示,△ABC是边长为1的正三角形,△BDC是顶角为120°的等腰三角形,以D为顶点作一个60°的∠MDN,点M、N分别在AB、AC上,则△AMN的周长为()
A.1
B.2
C.3
D.4
5.如图,已知正方形ABCD中,E为BC边上任意一点,AF 平分∠DAE.则下列式子正确的为()
A.AE-BE=EF
B.AE-BE=DF
C.AE-BE=EC
D.AE
-BE=AB
1.解题思路:延长EB至点G,使得BG=DF,连接AG,可证明:△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE∴△AEG≌△AEF(SSS)
∴∠EAG=∠EAF,
∵∠DAF+∠EAF+∠BAE=90°∴∠EAG+∠EAF=90°,
∴∠EAF=45°。
答案:C
2.解题思路:在BC上截取BF=AB,连DF,则有△ABD≌△FBD,
∴DF=DA=DE,又∵∠ACB=∠ABC=40°,
∠DFC=180°-∠A=80°,∴∠FDC=60°,
∵∠EDC=∠ADB=180°-∠ABD-∠A=180°-20°-100°=60°,∴△DCE≌△DCF,故∠ECA=∠DCB=40°.故选C. 3.解题思路:在AB上截取AF,使得AF=AD,连接CF,则可先证△ADC≌△AFC,再证明△CEF≌△CEB,就可以得到
AE=AD+BE,所以C选项正确。
4.B解题思路:如图,在AC延长线上截取CE,使得CE=BM,连接DE,
∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,
∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,
∴∠ABD=∠ACD=90°,
∴∠DCE=90°,
∵BD=CD,在△BDM和△CDE中,∴△BDM≌△CDE (SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=120°-∠MDB+∠EDC=120°,∴∠NDE=60°,∵MD=ED,∠MDN=∠NDE=60°,DN=DN,∴△MDN≌△EDN,∴MN=NE,故△AMN的周长=AM+MN+AN=AM+AN+NE=AM+AE=AB+AC=2.
答案:B
5.B解题思路:证明:延长CB到G,使GB=DF,连接AG,可首先证明△ADF≌△ABG,∴∠1=∠G,∠3=∠2=∠4,又∵AB∥CD∴∠1=∠4+∠5=∠3+∠5=∠GAE∴∠G=∠GAE∴AE =GE=GB+BE=DF+BE所以AE-BE=DF.。