玻璃工艺学
- 格式:ppt
- 大小:290.50 KB
- 文档页数:117
第1篇一、玻璃工艺学的起源玻璃工艺学的起源可以追溯到古代,早在公元前2500年左右,人类就开始了玻璃的制造。
古埃及人最早利用当地的石英砂、石灰石和木炭等原料,通过高温加热制成了一种被称为“古埃及玻璃”的器皿。
随后,玻璃工艺逐渐传播到希腊、罗马等地,形成了独特的玻璃文化。
二、玻璃的原料玻璃的主要原料包括石英砂、石灰石、长石、纯碱和硼砂等。
这些原料在玻璃制造过程中发挥着不同的作用:1. 石英砂:石英砂是玻璃的主要原料,其主要成分是二氧化硅,约占玻璃成分的70%。
石英砂具有良好的耐热性、化学稳定性和透明度。
2. 石灰石:石灰石在玻璃制造中起到稳定剂的作用,可以降低玻璃的熔点和粘度,提高玻璃的透明度和强度。
3. 长石:长石是玻璃的助熔剂,可以降低玻璃的熔点,提高玻璃的化学稳定性。
4. 纯碱:纯碱是玻璃的熔剂,可以降低玻璃的熔点,提高玻璃的透明度和化学稳定性。
5. 硼砂:硼砂在玻璃制造中起到提高玻璃耐热冲击性的作用。
三、玻璃的制造玻璃的制造过程主要包括以下几个步骤:1. 配方:根据玻璃的种类和性能要求,确定原料的配比。
2. 熔融:将配好的原料在高温下熔融,熔融温度一般为1400℃左右。
3. 成形:将熔融的玻璃液通过冷却、拉伸、吹制等方法,使其成为所需形状的玻璃制品。
4. 退火:将成形的玻璃制品在退火炉中加热至一定温度,保持一段时间,以消除内应力,提高玻璃的强度和稳定性。
5. 精加工:对玻璃制品进行切割、磨光、抛光等精加工,以满足不同的使用要求。
四、玻璃的加工玻璃的加工方法主要包括以下几种:1. 切割:使用切割机将玻璃制品切割成所需尺寸。
2. 磨光:使用磨光机对玻璃制品表面进行磨光处理,提高其透明度和光洁度。
3. 抛光:使用抛光机对玻璃制品表面进行抛光处理,使其达到镜面效果。
4. 热处理:通过热处理改变玻璃的物理和化学性能,如提高玻璃的强度、耐热冲击性等。
5. 化学处理:通过化学处理改变玻璃的表面性能,如增加防污、防雾等功能。
广义的玻璃包括单质玻璃、有机玻璃和无机玻璃,狭义的玻璃仅指无机玻璃。
玻璃具有良好的光学和电学性能,较好的化学稳定性,有一定的耐热性能,透明而质硬,可以用多种成型方法和加工方法制成形状多变、大小不一的玻璃制品,并且可以通过调整玻璃的化学组成改变其性能,以满足不同使用条件的需要。
制造玻璃的原料易于获得,价格低廉。
因此,玻璃制品被广泛应用于建筑、轻工、交通、医药、化工、电子、航天等各个领域。
一.平板玻璃概况平板玻璃是与国民经济和人民生活密切相关的极为重要的原材料和生活资料。
机制平板玻璃自 20 世纪问世以来,有诸多的生产方法,如:有槽法、无槽法、平拉法、对辊法和格拉威伯尔法,总称为传统工艺。
采用上述方法生产的平板玻璃统称为普通平板玻璃。
1957 年,英国人匹尔金顿 (Pilkington) 发明了浮法工艺 (PB 法 ) ,并获得了专利权。
匹尔金顿公司于 1959 年建厂,生产出质量可与磨光玻璃相媲美的浮法玻璃,拉制速度数倍乃至十数倍于传统工艺,生产成本却相差无几。
1963 年美国、日本等玻璃工业发达的国家,争先恐后地向英国购买 PB 法专利,纷纷建立了浮法玻璃生产线,在极短的时间内,浮法玻璃取代了昂贵的磨光玻璃,占领了市场,满足了汽车制造工业的要求,使连续磨光玻璃生产线淘汰殆尽。
随着浮法玻璃生产成本的降低,可生产品种的扩大 (O . 5 ~ 50ram 厚度 ) ,又逐步取代了平板玻璃的传统工艺,成为世界上生产平板玻璃最先进的工艺方法。
1975 年,美国匹兹堡公司 (PPG) 发明了新浮法 (LB 法 ) ,并获得了专利权。
浮法工艺的出现,使世界平板玻璃产量有了大幅度的提高,从 1960 年的 434 万 t 增长到 1990 年的2300 万 t ,折合 2mm 厚玻璃 46 亿 m 2 ,平均年增长率%,其中浮法玻璃约占 80 %, 1994 年世界平板玻璃的产量约为 2500 ~ 2600 万 t 。
1、名词解释:澄清剂、物理脱色、化学脱色、乳浊剂、玻璃主要原料、玻璃辅助原料2、石英砂颗粒度和颗粒组成对玻璃生产有何影响?3、何谓澄清剂?常用的澄清剂有哪些,澄清机理如何?4、引入SiO2 、Al2O3、CaO、MgO 、Na2O常用的原料都有哪些?1. 澄清剂:向玻璃配合料或玻璃熔体中加入一种高温时自身能汽化或分解放出气体,以促进排除玻璃中的气泡的物质,称为澄清剂。
. 乳浊剂:使玻璃产生不透明的乳白色的物质,称为乳浊剂. 玻璃的主要原料:是指向玻璃中引入各种组成氧化物的原料。
玻璃的辅助原料:是指使玻璃获得某些必要的性质和加速熔制。
2. 石英砂颗粒度与颗粒组成对玻璃产生有何影响?答:颗粒粒度适中,颗粒大石会使融化困难,并常常产生结石、条纹等缺陷。
实践证明:硅砂的融化时间与其粒径成正比。
粒径粗融化时间长,粒度细时间越短,但过细的硅砂容易飞扬、结块,使配合料不易混合均匀,同时过细的硅砂常含有较多的黏土,而且由于其比表面积大,附着的有害杂质也较多。
细砂在熔制时虽然玻璃的形成阶段可以较快,但在澄清阶段却多费很多时间。
细级别含量高,其面积能增大,表面吸附和凝聚效应增大,发生成团现象。
另外,细级别越多,在贮存、运输过程中振动和成锥作用的影响,与粗级别间产生强烈的离析。
这种离析的结果,使得进入熔窑的原料化学成分处于极不稳定状态。
3. 澄清剂:向玻璃配合料或玻璃熔体中加入一种高温时自身能汽化或分解放出气体,以促进排除玻璃中的气泡的物质,称为澄清剂。
答:化学澄清机理是化学澄清剂应在较高温度下形成高分解压(蒸发压)即在熔化的配合料排气过程基本结束而熔体的黏度足够低时,即可使气泡足够大是的速度上升。
物理澄清的机理要根据所采用的方法不同而机理也不同:①降低的方法,人们根据需要与可能总要设法将温度升高,既可以加大澄清气体的分压,使气泡长大;又可以降低熔体飞黏度以使气泡上升,使气泡能快速的从玻璃中逸出,总之是达到气泡快速离开玻璃的目的。
第一章玻璃的结构与性质第一节玻璃的定义与通性一、玻璃外观:即不同于液体,也不同于固体,透明或半透明,断裂时呈贝壳状。
结构:以硅酸盐为主要成分的无定形物质。
性质:冷却时不析晶,凝固时又硬又脆.狭义:熔融物在冷却过程中不发生结晶的无机物质。
广义:呈现玻璃转变现象的非晶态固体。
【玻璃的定义】玻璃是由熔体过冷所得,随着粘度逐渐增大而固化,具有较大脆性和硬度. 宏观性能类似于固体,微观结构上具有近程有序,远程无序的无定形物质。
结构特征:局部原子具有类似于晶体的有序排列,宏观上原子排列类似于液体无序.即“近程有序,远程无序”二、玻璃的通性1.各向同性2.介稳性3.无固定的熔点4.从熔融态向玻璃态转化时物化性质随温度变化的连续性与可逆性5.物理、化学性质随成分变化的连续性第二节玻璃结构:离子或原子在空间的几何配置以及它们在玻璃中形成的结构形成体一.玻璃结构学说(一)晶子学说1.理论依据:兰德尔1930年提出微晶学说,微晶和无定形两部分组成,有明显的界限。
列别捷夫玻璃在520℃退火时,玻璃折射率变化反常,在500℃之前呈线性分布,在520~ 590之间,突然变小,因为石英在573℃的晶型转变,故推断玻璃中存在高分散石英微晶(晶子)聚集体.2.观点硅酸盐玻璃的结构是由各种不同的硅酸盐和SiO的微晶体(晶子)所组成的。
2晶子是带有晶格极度变形的有序区域,不具有正常晶格构造。
晶子分散在无定形介质中,过渡是逐渐完成的,无明显界线。
3.意义:第一次提出玻璃中存在微不均匀性和近程有序性。
(二)无规则网络学说1.理论依据1932,查哈里阿森硅胶中存在1~10nm的不连续颗粒,图谱中有明显小角散射.玻璃中均匀分布,故结构是连续的、非周期性的.方石英具有清晰的、周期性的衍射峰,说明晶体排列有周期性的.衍射带中主峰位置一致,说明结构单元一致[SiO4],石英玻璃与方石英中的原子间距相等.计算得知玻璃中Si-O间距1.62A,而方石英中为1.60A.2.基本观点:成为玻璃态的物质与相应的晶体结构一样,也是由一个三度空间网络组成,这种网络由离子多面体(四面体或三角体)构筑而成,晶体结构网由多面体无数次有规则、重复构成,而玻璃体结构中多面体缺乏对称性和周期性的重复。
玻璃工艺学课件玻璃工艺学课件玻璃工艺学是一门涉及玻璃制造和加工技术的学科,它探讨了玻璃的成分、制造过程、加工方法以及应用领域等方面的知识。
在这门课程中,学生将学习如何通过控制材料的成分和制造工艺,创造出各种不同的玻璃产品。
一、玻璃的基本成分和制造过程玻璃是由硅酸盐类物质熔融后迅速冷却而成的无定形固体。
其基本成分包括二氧化硅、氧化钠、氧化钙等。
制造玻璃的过程主要包括原料准备、熔化、成型和退火等步骤。
1. 原料准备:根据所需玻璃的特性和用途,选择适当的原料,并进行粉碎、混合等处理。
2. 熔化:将混合好的原料放入玻璃熔炉中,加热至高温,使其熔化成液体。
3. 成型:熔融的玻璃通过吹制、浇铸、拉伸等方式进行成型,制成各种形状的玻璃制品。
4. 退火:为了消除内部应力,提高玻璃的强度和耐热性,制成的玻璃制品需要进行退火处理。
二、玻璃的加工方法除了制造过程外,玻璃工艺学还涉及到玻璃的加工方法。
通过不同的加工方法,可以改变玻璃的形状、表面特性以及性能。
1. 磨削:磨削是一种常见的玻璃加工方法,通过使用磨料和磨具对玻璃表面进行磨削,可以获得平滑的表面和精确的尺寸。
2. 切割:切割是将玻璃切割成所需形状的方法。
常用的切割工具包括切割刀、切割机等。
3. 雕刻:雕刻是将玻璃表面进行刻痕、纹理等处理的方法。
通过雕刻,可以为玻璃制品增添独特的艺术效果。
4. 热处理:热处理是通过加热和冷却等过程改变玻璃的性能。
常见的热处理方法包括钢化、淬火等。
三、玻璃的应用领域玻璃是一种常见的材料,广泛应用于建筑、家居、汽车、光学等领域。
在建筑领域,玻璃可以用于窗户、门、幕墙等部位,提供采光和景观效果。
在家居领域,玻璃可以用于制作家具、装饰品等。
在汽车领域,玻璃被用于汽车的前后挡风玻璃、车窗等。
在光学领域,玻璃可以制作光学镜片、光纤等。
四、玻璃工艺学的发展趋势随着科技的不断进步,玻璃工艺学也在不断发展。
一方面,新的材料和工艺不断涌现,使得玻璃的性能和应用领域得到了拓展。
第1篇一、课程概述玻璃工艺学是一门研究玻璃材料的生产、加工和应用技术的学科。
它涉及玻璃的物理、化学、力学以及加工工艺等多个方面。
本课件旨在介绍玻璃的基本原理、生产工艺、加工技术以及应用领域,为学生提供系统的玻璃工艺学知识。
二、课程内容第一部分:玻璃的基本原理1. 玻璃的定义与分类- 定义:玻璃是一种非晶态固体,由熔融的硅酸盐、氧化物或金属氧化物冷却固化而成。
- 分类:按成分分为硅酸盐玻璃、硼酸盐玻璃、磷酸盐玻璃等;按用途分为建筑玻璃、光学玻璃、器皿玻璃等。
2. 玻璃的物理性质- 热稳定性:玻璃具有较好的热稳定性,但温差过大时易破裂。
- 透明度:玻璃具有较高的透明度,但颜色、成分等因素会影响其透明度。
- 机械强度:玻璃的机械强度较低,但通过加工可提高其强度。
3. 玻璃的化学性质- 化学稳定性:玻璃具有良好的化学稳定性,不易与酸、碱反应。
- 玻璃的腐蚀:玻璃在特定条件下会被腐蚀,如硫酸、硝酸等。
第二部分:玻璃的生产工艺1. 玻璃的原料- 硅砂:提供硅元素,是玻璃生产的主要原料。
- 石灰石:提供钙元素,用于降低玻璃的熔点。
- 长石:提供铝、钠、钾等元素,调节玻璃的性质。
2. 玻璃的生产过程- 熔制:将原料在高温下熔融,形成玻璃液。
- 熔化:将玻璃液在高温下加热,使其达到熔融状态。
- 拉制:将熔融的玻璃液拉成细长的玻璃棒。
- 烧结:将玻璃棒在高温下烧结,形成玻璃板。
3. 玻璃的冷却- 快速冷却:通过水冷或风冷,使玻璃迅速固化,减少内应力。
- 缓慢冷却:通过自然冷却或缓慢加热,使玻璃均匀冷却,减少内应力。
第三部分:玻璃的加工技术1. 切割- 机械切割:使用切割机将玻璃切割成所需尺寸。
- 热切割:使用火焰或激光将玻璃切割成所需尺寸。
2. 磨光- 机械化磨光:使用磨光机将玻璃表面磨光。
- 手工磨光:使用砂轮、磨棒等工具手工磨光。
3. 抛光- 机械化抛光:使用抛光机将玻璃表面抛光。
- 手工抛光:使用抛光布、抛光膏等工具手工抛光。
硼氧反常:纯B2O3玻璃中加入Na2O ,各种物理性质出现极值的现象。
硼反常:在钠硅玻璃中加入氧化硼时,性质变化曲线出现极值的现象。
玻璃:玻璃是一种具有无规则结构的非晶固体,其原子不象晶体在空间作长程有序的排列,而近似于液体具有短程有序长程无序的排列。
积聚作用:和非桥氧发生结合中与多余电荷的作用解聚作用:提供多余的氧原子,使原有的桥氧变成非桥氧,使硅氧网络发生断裂网络外体氧化物:不能单独生成玻璃,不参加网络体,处于网络之外。
若是“游离氧”的提供者,起断网作用;若是断键的积聚者,起积聚作用。
网络生成体氧化物:能单独生成玻璃,在玻璃中能形成各自特有的网络体系。
起骨架作用。
网络中间体氧化物:不能单独生成玻璃,作用介于网络生成体氧化物与网络外体氧化物之间。
当配位数≥6时,处于网络之外,作用与网络外体氧化物相似;当配位数为4时,能参加网络,起补网作用。
玻璃的热历史:指玻璃从高温液态冷却,通过转变温区和退火温区的经历。
玻璃的通性:1.各向同性2.亚稳性3.无固定熔点4.性质变化的连续性5.性质变化的可逆性为什么有亚稳性?1.玻璃由熔体急剧冷却得到,由于冷却速度快,粘度急剧增大,质点来不及作有规则的排列。
系统内能不是处于最低值,而是处于亚稳态。
(热力学观点看,玻璃态不稳定)2.常温下,玻璃粘度远远大于析晶粘度,玻璃析晶必须克服很大的析晶势垒,玻璃结晶速度非常小,即析晶可能性很小,因此常温下玻璃能够稳定存在。
(动力学观点看,玻璃态稳定)为什么无固定熔点?1.物质由熔体向固态玻璃转变时,随着温度降低,熔体的粘度逐渐增大,最后形成固态玻璃,此凝固过程中,相应温度变化范围宽。
2.在此温度变化范围内,始终没有结晶,即没有新晶相形成而产生突变,形成熔点。
玻璃的结构:指玻璃中质点在空间的几何配置、有序程度及它们彼此间的结合状态。
主要的玻璃结构学说:晶子学说、无规则网络学说、凝胶学说、五角对称学说、高分子学说一.晶子学说:晶子学说论点是玻璃是由无数晶子所组成, 这些晶子不同于微晶, 是带有点阵变形的有序排列区域, 分散在无定形介质中, 且从晶子到无定型区的过的过度是逐步完成的, 两者间并无明显界限。
玻璃工艺学玻璃工艺学,顾名思义,是研究玻璃制作技艺和工艺的学科。
它主要探讨的是玻璃的特性、性质以及制作过程中的技术要点等。
玻璃工艺学不仅包括玻璃的物理和化学性质,还包括对玻璃的作用力学、热处理和表面性质的研究。
在玻璃工艺学中,研究的重点之一是玻璃的成分和结构。
从化学角度来看,玻璃是一种非晶体材料,由硅酸盐或硅酸盐替代物提供的硅氧键构成。
根据不同的配方和加工技术,可以制得各种不同用途的玻璃,如平板玻璃、光纤、玻璃器皿等。
在玻璃工艺学中,还研究玻璃的熔化和成型技术。
玻璃的熔化需要高温,一般在1200℃到1600℃之间。
熔化玻璃后,需要通过不同的方法进行成型。
常见的成型方法有吹制、拉伸和挤压等。
吹制是将熔化玻璃注入到铜质模具中,然后用气压将其吹成制定的形状。
拉伸是将玻璃棒加热至软化状态,然后通过外力拉伸成细丝或纤维。
挤压则是在熔融状态下将玻璃压入特定的模具中。
玻璃工艺学还研究玻璃的加工和装饰技术。
在加工方面,通过切割、磨削和打磨等方法,可以将玻璃加工成各种不同形状和尺寸的制品。
在装饰方面,常用的方法包括印刷、雕刻、烧绘和镀膜等。
这些技术使得玻璃制品可以具有各种不同的外观和特性,满足不同的需求和应用。
除了以上提到的内容,玻璃工艺学还涉及到玻璃的应用和性能评估等方面。
玻璃作为一种优质、耐用且易于加工的材料,广泛应用于建筑、汽车、光电子、生物医药等领域。
对于不同的应用领域,需要评估玻璃的特性,包括透明度、强度、抗冲击性、耐腐蚀性等。
这些评估可以通过一系列的物理和化学实验来完成。
总的来说,玻璃工艺学对于了解玻璃的性质和制作过程具有重要意义。
通过研究玻璃的成分、结构以及加工和装饰技术,可以更好地利用玻璃材料的优点,满足人们对于各种各样玻璃制品的需求。
玻璃工艺学是一门综合性学科,涉及到材料科学、化学、物理、机械工程等多个领域的知识。
它的研究范围广泛且具有深度,可以从宏观和微观的角度来探索玻璃的特性和制作工艺。
下面将继续介绍玻璃工艺学的其他方面。