玻璃及结构
- 格式:ppt
- 大小:1.22 MB
- 文档页数:88
第一章玻璃的结构与组成1-1\名词解释1、硼-氧反常:在一定范围内,碱金属氧化物提供的氧,不像在熔融石英玻璃中的作为非桥氧出现于结构中,二十是硼氧三角体【BO3】转变成为完全由桥氧组成的硼氧四面体【BO4】,导致B2O3玻璃从原来两维空间的层状结构部分转变为三维空间的架状结构,从而加强了网络,使玻璃的各种物理性质与相同条件下的硅酸盐玻璃相比,相应的向着相反的方向变化。
这就是所谓的“硼氧性反常”。
2、硼反常:硼酸盐玻璃与相同条件下的硅酸盐玻璃相比,其性质随R2O或RO加入量的变化规律相反,这种现象称硼反常现象。
“硼反常现象”是由于玻璃中硼氧三角体【BO3】与硼氧四面体【BO4】之间的量变而引起性质突变的结果。
3、硼-铝反常:“硼-铝反常”体现在一系列性质变化中,如折射率、密度、硬度、弹性模量。
在介质常数与膨胀系数变化曲线中显得很模糊。
色散、电导与介质损耗等则不出现“硼-铝反常”。
4、积聚作用:由分化过程产生的低聚合物,相互作用,形成级次较高的聚合物,同时释放出部分Na2O,这个过程称为缩聚,也即聚合。
5、解聚作用:在熔融SiO2中,O/Si比为2:1,[SiO4]连接成架状。
若加入Na2O则使O/Si比例升高,随加入量增加,O/Si比可由原来的2:1逐步升高到4:1,[SiO4]连接方式可从架状变为层状、带状、链状、环状直至最后断裂而形成[SiO4]岛状,这种架状[SiO4]断裂称为熔融石英的分化过程,也即解聚。
6、混合碱效应:在二元碱硅玻璃中,当玻璃中碱金属氧化物的总含量不变,用一种碱金属氧化物逐步取代另一种时,玻璃的性质不是呈直线变化,而是出现明显的极值。
这一效应称为混合碱效应,过去称为“中和效应”。
7、压制效应:在含碱硅酸盐中随RO增加,是R+在扩散中系数下降。
8、逆性玻璃:如果玻璃中同时存在两种以上金属离子,而且它们的大小和所带的电荷也不相同时,情况就大为不同。
即使Y<2也能制成玻璃,而且某些性能随金属离子数的增大而变好。
第三章玻璃、断裂力学及玻璃结构第一节玻璃玻璃是一种均质的材料,一种固化的液体,分子完全任意排列。
由于它是各种化学键的组合,因此没有化学公式。
玻璃没有熔点,当它被加热时,会逐渐从固体状态转变为具有塑性的黏质状态,最后成为一种液体状态。
与其他那些因测量方向不同而表现出不同特性的晶体相比,玻璃表现了各向同性,即它的性能不是由方向决定的。
当前用于建筑的玻璃是钠钙硅酸盐玻璃。
生产过程中,原材料要被加热到很高的温度,使其在冷却前变成黏性状态,再冷却成形。
3.1.1玻璃的力学性能常温下玻璃有许多优异的力学性能:高的抗压强度、好的弹性、高的硬度,莫氏硬度在5~6之间,用一般的金属刻化玻璃很难留下痕迹,切割玻璃要用硬度极高的金刚石。
抗压强度比抗拉强度高数倍。
常用玻璃与常用建筑材料的强度比较如下:3.1.2玻璃没有屈服强度。
玻璃的应力应变拉伸曲线与钢和塑料是不同的,钢和塑料的拉伸应力在没有超过比例极限以前,应力与应变呈线性直线关系,超过弹性极限并小于强度极限,应变增加很快,而应力几乎没有增加,超过屈服极限以后,应力随应变非线性增加,直至钢材断裂。
玻璃是典型的脆性材料,其应力应变关系呈线性关系直至破坏,没有屈服极限,与其它建筑材料不同的是:玻璃在它的应力峰值区,不能产生屈服而重新分布,一旦强度超过则立即发生破坏。
应力与变形曲线见下图。
图3-1 应力与变形拉伸曲线3.1.3玻璃的理论断裂强度远大于实际强度。
玻璃的理论断裂强度就是玻璃材料断裂强度在理论上可能达到的最高值,计算玻璃理论断裂强度应该从原子间结合力入手,因为只有克服了原子间的结合力,玻璃才有可能发生断裂。
Kelly在1973年的研究表明理想的玻璃理论断裂强度一般处于材料弹性模量的1/10~1/20之间,大约为0.7×104 MPa,远大于实际强度,在实际材料中,只有少量的经过精心制作极细的玻璃纤维的断裂强度,能够达到或者接近这一理论的计算结果。
断裂强度的理论值和建筑玻璃的实际值之间存在的悬殊的差异,是因为玻璃在制造过程中不可避免的在表面产生很多肉眼看不见的裂纹,深度约5μm,宽度只有0.01到0.02μm,每mm2面积有几百条,又称格里菲思裂纹,见图3-2、图3-3。
玻璃的结构与性质玻璃是一种无机非晶固态材料,是由一定比例的硅酸盐和其他氧化物经高温熔融后迅速冷却而成。
玻璃具有诸多优点,如硬度高、耐腐蚀、透明度好、化学稳定性好等,因此广泛应用于建筑、日用品、电子通信、纺织等领域。
玻璃的结构是其性质的基础。
在玻璃中,硅酸盐的主要成分是SiO2,而其他氧化物则可作为玻璃的添加剂,以调节玻璃的颜色、热膨胀系数等性质。
在玻璃中,氧原子形成正四面体结构,而硅原子则填充在四面体中心,形成一种类似于冰晶石的三维网络结构。
由于氧和硅的电子云作用力强,因此Si-O键是玻璃中的主要结构基团。
不同类型的玻璃中,结构单元之间的连接方式也不尽相同,因此其性质亦有所差异。
玻璃的特殊性质源于其非晶结构。
晶体是具有周期性排列结构的物质,而玻璃则是一种无定形的、未能在固态中形成晶体结构的物质。
由于玻璃中的原子没有固定的空间位置,因此难以计算玻璃的机械、光学等性质。
同时,由于其非晶结构的存在,玻璃具有如下几个特点:1.灵活性。
晶体的原子排列方式常常受到限制,而玻璃的原子排列则显得灵活多变。
这种灵活性使得玻璃能够被加工成各种形状,获得各种性质。
2.易变性。
晶体由于其明确的原子排列方式,为其赋予了明确的物理性质,在不同的条件下其物理性质变化也比较小。
而玻璃由于其非晶结构,使得其物理性质变化比较明显,在不同的温度、压强条件下,玻璃的机械性能、热力学性质都有所不同。
3.断裂韧性低。
由于玻璃没有明确的原子排列方式,因此它的原子间结合力并不十分均匀,特别是玻璃中存在一些空隙、缺陷等结构的存在,使得其断裂韧性很低,容易因外力的作用而破裂。
4.密实性高。
晶体有明确的原子排列方式,因此原子之间的空隙要比玻璃少得多。
从数学角度来讲,晶体的最紧堆积密度为0.74,而玻璃的密度则可以达到0.95左右。
玻璃的高密度是其化学稳定性好、透明度高等性质的重要基础。
同时,玻璃的高密度也为其在各个领域的应用提供了巨大的优势。
总之,玻璃的结构和性质密不可分,了解玻璃的结构将有助于我们更好地理解其性质、应用及加工过程。
玻璃材料的结构和特性分析玻璃,作为一种无定形材料,在人类生活中扮演着重要角色。
无论是建筑、家具、电子设备还是珠宝、艺术品,玻璃的应用都不可忽视。
本篇文章将会探讨玻璃的结构和特性,以期更好地理解玻璃材料的本质。
一、玻璃的结构玻璃的结构可分为两种:原子结构和微观结构。
原子结构是指玻璃固态时原子的排列方式,而微观结构则是指玻璃的结晶性质和短程有序性。
原子结构是影响玻璃材料性质的关键,它与晶体的结构有所区别。
晶体的原子排列是规则、有序的,而玻璃则没有这种规则的结构。
玻璃原子之间的键结构是一些非常短的键,这些键使得玻璃原子之间的距离相近。
因此,玻璃材料呈现出非晶胶态的状态。
微观结构则是关于玻璃的短程有序性。
短程有序性是指在约为10^-10米的空间尺度下,微观结构有规律可循。
这种规律存在于玻璃中,这是与众不同的,因为其他非晶体材料中缺乏这种规律性。
这种有序性能强化玻璃的物理性质,例如硬度和强度。
二、玻璃的特性由于玻璃本身的特殊结构,它的物理、化学和光学特性也与众不同。
物理特性硬度和强度是玻璃的两个主要特性。
晶体材料的硬度和强度可以通过晶格结构的有序性来确定,而这些属性与玻璃材料相信更多依赖于玻璃的短程有序性和原子结构。
因此,玻璃通常比晶体材料更易碎,但是高硬度的合成玻璃比传统玻璃具有更高的抗磨损和抗裂纹特性。
热膨胀性是玻璃材料的另一个重要属性。
玻璃材料的膨胀性将直接影响其在高温环境下的使用情况。
正常情况下,玻璃的膨胀系数为10^-5/K,这意味着在每开尔文的温度变化下,材料的长度将会变化1/100000。
化学特性玻璃是一种半透明或不透明的材料,但通过化学作用,它可以显得透明或者半透明。
玻璃的成分、制造过程和添加剂会影响其透明度和颜色。
例如,添加少量氧化金属可以赋予玻璃不同的颜色。
玻璃对于化学物质的反应较为敏感。
一些化学物质,如氢氟酸和氢氧化钠等,都会对玻璃产生不利的影响。
在这些物质作用下,玻璃可能会溶解、变形或者失去透明度。
第1章玻璃的结构和组成汇总玻璃是一种常见的无定形固体,具有广泛的应用领域。
它的结构和组成是决定其性质和用途的重要因素。
本文将对玻璃的结构和组成进行综述。
在微观层面上,玻璃的结构是一种无序的固态结构,没有长程的周期性。
这是与晶体不同的地方。
晶体具有有序排列的原子或分子,可以形成晶格结构。
然而,玻璃的结构是由成千上万个原子或分子组成的无序网络。
这种无序性导致了玻璃的特殊性质,如透明度和断裂特性。
玻璃的主要成分是硅氧四面体。
硅氧四面体由一个中心的硅原子和四个周围的氧原子组成。
硅氧四面体通过共价键相互连接,形成三维的网络结构。
这种结构是玻璃形成的基础。
除了硅氧四面体,其他元素的添加也可以改变玻璃的性质和组成。
玻璃的组成可以根据成分的不同而有所变化。
硅酸盐玻璃是最常见的一种,其主要成分是硅氧四面体。
具体来说,硅酸盐玻璃是由四氧化硅(SiO2)和其他金属氧化物(如氧化钠、氧化钙、氧化铝等)形成的。
不同金属的加入会改变玻璃的化学和物理性质。
另一种常见的玻璃是硼硅酸盐玻璃。
硼硅酸盐玻璃中,硅氧四面体和硼氧四面体交替排列。
硼氧四面体由一个中心的硼原子和三个周围的氧原子组成。
硼硅酸盐玻璃具有低的熔点和低的热膨胀系数,常用于热力学应用。
另外,还有氧化物玻璃和非氧化物玻璃。
氧化物玻璃是以金属氧化物为主要组成部分,如硅酸盐玻璃。
而非氧化物玻璃是由非金属元素(如氟、碳、氮、硫等)形成的,常见的非氧化物玻璃有氟硅酸盐玻璃和硫化物玻璃。
非氧化物玻璃具有特殊的光学、电学和热学性质,广泛应用于光纤通信和光学器件等领域。
此外,玻璃的制备过程也会影响其结构和组成。
常见的玻璃制备方法包括熔融法、溶胶-凝胶法和化学气相沉积法。
熔融法是最传统的制备方法,即将玻璃原料加热到高温熔化后冷却。
溶胶-凝胶法则是将溶胶经过凝胶化处理形成固态玻璃。
化学气相沉积法是通过气态前体沉积到基底上形成玻璃薄膜。
总之,玻璃的结构和组成是多样化的,具有广泛的应用领域。
第三章玻璃、断裂力学及玻璃结构第一节玻璃玻璃是一种均质的材料,一种固化的液体,分子完全任意排列。
由于它是各种化学键的组合,因此没有化学公式。
玻璃没有熔点,当它被加热时,会逐渐从固体状态转变为具有塑性的黏质状态,最后成为一种液体状态。
与其他那些因测量方向不同而表现出不同特性的晶体相比,玻璃表现了各向同性,即它的性能不是由方向决定的。
当前用于建筑的玻璃是钠钙硅酸盐玻璃。
生产过程中,原材料要被加热到很高的温度,使其在冷却前变成黏性状态,再冷却成形。
3.1.1玻璃的力学性能常温下玻璃有许多优异的力学性能:高的抗压强度、好的弹性、高的硬度,莫氏硬度在5〜6之间,用一般的金属刻化玻璃很难留下痕迹,切割玻璃要用硬度极高的金刚石。
抗压强度比抗拉强度高数倍。
常用玻璃与常用建筑材料的强度比较如下:3.1.2玻璃没有屈服强度玻璃的应力应变拉伸曲线与钢和塑料是不同的,钢和塑料的拉伸应力在没有超过比例极限以前,应力与应变呈线性直线关系,超过弹性极限并小于强度极限,应变增加很快,而应力几乎没有增加,超过屈服极限以后,应力随应变非线性增加,直至钢材断裂。
玻璃是典型的脆性材料,其应力应变关系呈线性关系直至破坏,没有屈服极限,与其它建筑材料不同的是:玻璃在它的应力峰值区,不能产生屈服而重新分布,一旦强度超过则立即发生破坏。
应力与变形曲线见下图。
3.1.3玻璃的理论断裂强度远大于实际强度。
玻璃的理论断裂强度就是玻璃材料断裂强度在理论上可能达到的最高值,计算玻璃理论断裂强度应该从原子间结合力入手,因为只有克服了原子间的结合力,玻璃才有可能发生断裂。
Kelly在1973年的研究表明理想的玻璃理论断裂强度一般处于材料弹性模量的1/10〜1/20之间,大约为0.7 x 104 MPa,远大于实际强度,在实际材料中,只有少量的经过精心制作极细的玻璃纤维的断裂强度,能够达到或者接近这一理论的计算结果。
断裂强度的理论值和建筑玻璃的实际值之间存在的悬殊的差异,是因为玻璃在制造过程中不可避免的在表面产生很多肉眼看不见的裂纹,深度约5卩m宽度只有0.01到0.02卩m,每mm面积有几百条,又称格里菲思裂纹,见图3-2、图3-3。