重积分部分练习题
- 格式:docx
- 大小:179.46 KB
- 文档页数:19
重积分习题三1、试求函数f(x,y)=xy2在区域D:0≤x≤1,0≤y≤1上的平均值。
2、计算二次积分3、计算二次积分4、计算二次积分5、计算二次积分6、计算二次积分7、计算二次积分8、计算二次积分9、计算二次积分10、计算二次积分11、计算二次积分12、计算二重积分其中D:|x|≤2,|y|≤1.13、计算二重积分其中D:0≤x≤1,0≤y≤2.14、计算二重积分其中D:0≤x≤a0≤y≤b.15、计算二重积分其中D:0≤x≤1,0≤y≤2.16、计算二重积分其中D:0≤x≤1,0≤y≤1.17、计算二重积分其中D:0≤x≤1,0≤y≤1.18、计算二重积分其中D:-1≤x≤1,0≤y≤2.19、计算二重积分其中D:0≤x≤2,-1≤y≤1.20、计算二重积分其中D:0≤x≤π,0≤y≤.21、计算二重积分其中D:-1≤x≤3,0≤y≤2.22、计算二重积分其中D:0≤x≤1,0≤y≤4.23、计算二重积分其中24、计算二重积分其中D:|x|≤π,|y|≤1.25、计算二重积分其中D:|x|≤3,|y|≤1.26、计算二重积分其中D:|x|≤1,0≤y≤1.27、计算二重积分其中D是以O(0,0)A(1,1)和B(0,1)为顶点的三角形区域。
28、计算二重积分其中D:0≤x≤1,-1≤y≤0.29、计算二重积分其中D:0≤y≤sin x,0≤x≤π.30、计算二重积分其中D是由曲线y=x2,直线y=0,x=2所围成区域。
31、计算二重积分其中D为由y=x,y=2x,x=4所围成的区域。
32、计算二重积分其中D:x≤y≤x,1≤x≤2.33、计算二重积分其中D是由直线x=0,y=π和y=x围成的区域。
34、计算二重积分其中D是由直线y=x,y=x+1,y=1及y=3所围成的区域。
35、计算二重积分其中36、计算二重积分其中D:-1≤x≤1,1≤y≤1.37、计算二重积分其中D:|x|≤π,0≤y≤1.38、计算二重积分其中D为由y=x,x=0,y=1所围成的区域。
第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ,(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。
(3) 在极坐标系中,面积元素为 。
2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。
(2) ()⎰⎰+D d y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。
3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。
4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。
5.交换积分()⎰⎰-2120,ydx y x f dy 的积分次序。
6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。
7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。
8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。
9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。
10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。
11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。
重积分练习一. 填空1.⎰⎰12),(xx dy y x f dx 交换积分次序后为_________________.2.用柱面坐标系化三重积分为三次积分________________),,(=⎰⎰⎰Ωdv z y x f其中2,1,1:22===+Ωz z y x 围成. 3. (化为柱面坐标中的三次积分)__________________),,(22222211111111==⎰⎰⎰--+-------dz z y x f dydxI y x y x x x (化为柱面坐标中的三次积分) 二.选择题1. =+⎰⎰-dy y x dxx x243221( ).A. ⎰⎰302πθrdr d . B.⎰⎰232ππθrdr d C.⎰⎰3022πθdr r d . D.⎰⎰2322ππθdr r d2.若区域D 由1)1(22=+-y x 所围,则⎰⎰Ddxdy y x f ),(化成累次积分为 ( )A.⎰⎰πθθθθ0cos 20)sin ,cos (rdr r r f d . B. ⎰⎰-ππθθθθcos 20)sin ,cos (rdr r r f dC.⎰⎰20cos 20)sin ,cos (2πθθθθrdr r r f d D. ⎰⎰-22cos 20)sin ,cos (ππθθθθrdr r r f d三.计算1.. 计算⎰⎰-+=+-⋅+22)(4122222x a a xady y x a y x dx2. 计算⎰⎰-Ddxdy y x ||,其中D 是由2,0,1,0====y y x x 所围成的区域.3. 求由x e z y 222-=+与平面1,0==x x 所围立体体积.4.D 由直线x y y x ===,2,4所围成,求⎰⎰--Dxdxdy x e 22.5.计算⎰⎰-=Dd y x I σ||,其中0,0,1:22≥≥≤+y x y x D .6.计算⎰⎰⎰Ω+dV z x )(,其中22221,:y x z y x z --=+=Ω所围的空间区域.四.应用题。
重积分总复习题一 判 断1.若(,)f x y 在D 上的二重积分存在,则必定有(,)(,)DDf x y d f x y d σσ≤⎰⎰⎰⎰( )2.111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰. ( )二 填空题1.改换二次积分的积分次序⎰⎰yy dx y x f dy 2202),(= .2.化2220)adx x y dy +⎰为极坐标形式下的二次积分为 .3.将极坐标系下的二重积分化为直角坐标系下的二重积分21(cos ,sin )d f r r rdr πθθθ⋅=⎰⎰ ___________________4.二次积分2xdx f dy ⎰的极坐标形式的二次积分为 .5.交换二次积分201111(,)(,)xxdx f x y dy dx f x y dy --+⎰⎰⎰⎰的积分次序为 .三 选择题1.设区域D :221x y +≤,f 是域D 上的连续函数,则22()Df xy dxdy +=⎰⎰( )A.12()rf r dr π⎰B .104()rf r dr π⎰ C.122()rf r dr π⎰ D.04()rrf r dr π⎰2.设4(,)xI dx f x y dy =⎰⎰,交换积分次序,得( )A.24104(,)y y dy f x y dx ⎰⎰ B.21440(,)y ydy f x y dx -⎰⎰C.44104(,)dy f x y dx ⎰⎰ D.20144(,)y y dy f x y dx ⎰⎰3.设积分区域D 由x 轴,y 轴及直线1x y +=围成,则二重积分(,)Df x y d σ⎰⎰化为累次积分后为( ).A.10dx ⎰1(,)0x f x y dy -⎰. B.10x dy -⎰1(,)0f x y dx ⎰. C.10dx ⎰1(,)0f x y dy ⎰.D.10dy ⎰1(,)0f x y dx ⎰.4.),(z y x f =在有界闭区域D 上连续是二重积分σd ),(D⎰⎰y x f 存在的( )条件。
第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ,(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。
(3) 在极坐标系中,面积元素为 。
2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。
(2) ()⎰⎰+D d y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。
3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。
4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。
5.交换积分()⎰⎰-2120,ydx y x f dy 的积分次序。
6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。
7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。
8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。
9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。
10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。
11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。