正多面体与平面展开图
- 格式:doc
- 大小:520.00 KB
- 文档页数:12
正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。
②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。
③长方体、正方体中各面的关系:相对、相邻。
每个面都有1个相对的面,4个相邻的面。
注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。
④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。
⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。
长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。
(即2个相对的面是正方形,其余四个面变为完全相同的长方形。
)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。
(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……互逆。
精品文档
.
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)。
并不是由柏拉图所发明,但是却是由柏拉图及其追随者对它们所作的研究而得名,由于它们具有高度的对称性及次序感,因而通常被称为正多面体,但是,在这里,我们仍以柏拉图多面体称之,以免与其它有规则的多面体产生混淆。
柏拉图多面体所有的面都是不自交、以直线段为边长的正凸多边形平面,每一种多面体都只有一种正多边形的表面,而且在每一个顶点处都有相同数目的面交会。
不仅在每一个顶点处都有相同数目的面交会,而且在每一个顶点处所有交会的面的内角之总和会相等。
简介熟悉柏拉图多面体的最佳方法莫过于经由构造模型并透过模型研究它们。
下图表示一种称之为”展开图”的个别柏拉图多面体平面排列图示。
为了构造柏拉图多面体的模型,一组类似的展开图必须被描绘在适当的材料上。
同学可以将本资料所附之多面体的展开图直接剪下或经放大、缩小影印在合适的漂亮纸张上。
如果材料不方便影印,您也可以依样绘制或把影印展开图并贴在所用材料上。
Albrecht Durei早在1525年,于他所著的《Unterweisung der Messung Mit dem Zirkel und Richtsheit》一书中,给出了几个多面体的展开图。
编辑本段为什么只有五个柏拉图多面体很容易看出柏拉图多面体每一个都是凸的,并且在每一个顶点处交会着相同数目、相似、正的凸多边形。
要理解为什么只有五个柏拉图多面体是相当简单的,这是因为在每一个顶点处交会着至少三个面才能构造出一个立体图形,而且围绕每一个顶点的面的角度和不能等于或超过360°,否则所得的面将是平的或是凹的。
具有最少边数的正多边形是正三角形,三个如此的多边形可以使它们交会在一个顶点上,接下来,加入第四个面,如此,每三个面就会交会在图形的四个顶点处之一。
由于这个图形有四个全等的面,故称之为正四面体(TETRAHEDRON)。
四个正三角形可以使它们交会在一个顶点上,而且加入四个面之后,在图形的六个顶点处都会有四个面交会在这里。
并不是由柏拉图所发明,但是却是由柏拉图及其追随者对它们所作的研究而得名,由于它们具有高度的对称性及次序感,因而通常被称为正多面体,但是,在这里,我们仍以柏拉图多面体称之,以免与其它有规则的多面体产生混淆。
柏拉图多面体所有的面都是不自交、以直线段为边长的正凸多边形平面,每一种多面体都只有一种正多边形的表面,而且在每一个顶点处都有相同数目的面交会。
不仅在每一个顶点处都有相同数目的面交会,而且在每一个顶点处所有交会的面的内角之总和会相等。
简介熟悉柏拉图多面体的最佳方法莫过于经由构造模型并透过模型研究它们。
下图表示一种称之为”展开图”的个别柏拉图多面体平面排列图示。
为了构造柏拉图多面体的模型,一组类似的展开图必须被描绘在适当的材料上。
同学可以将本资料所附之多面体的展开图直接剪下或经放大、缩小影印在合适的漂亮纸张上。
如果材料不方便影印,您也可以依样绘制或把影印展开图并贴在所用材料上。
Albrecht Durei早在1525年,于他所著的《Unterweisung der Messung Mit dem Zirkel und Richtsheit》一书中,给出了几个多面体的展开图。
编辑本段为什么只有五个柏拉图多面体很容易看出柏拉图多面体每一个都是凸的,并且在每一个顶点处交会着相同数目、相似、正的凸多边形。
要理解为什么只有五个柏拉图多面体是相当简单的,这是因为在每一个顶点处交会着至少三个面才能构造出一个立体图形,而且围绕每一个顶点的面的角度和不能等于或超过360°,否则所得的面将是平的或是凹的。
具有最少边数的正多边形是正三角形,三个如此的多边形可以使它们交会在一个顶点上,接下来,加入第四个面,如此,每三个面就会交会在图形的四个顶点处之一。
由于这个图形有四个全等的面,故称之为正四面体(TETRAHEDRON)。
四个正三角形可以使它们交会在一个顶点上,而且加入四个面之后,在图形的六个顶点处都会有四个面交会在这里。
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)。
正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。
②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。
③长方体、正方体中各面的关系:相对、相邻。
每个面都有1个相对的面,4个相邻的面。
注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。
④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。
⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。
长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。
(即2个相对的面是正方形,其余四个面变为完全相同的长方形。
)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。
(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。
正多面体
与平面展开
图
By Laurinda..201604开始总结,网络搜集
正四面体正六面体正八面体正十二面体正二十面体正四面体正六面体
正八面体正十二面体
正二十面体
正方体展开图
相对的两个面涂上相同颜色,正方体平面展开图共有以下11种。
邻校比我们学校早了几天举行段考,拿他们的数学卷子提供给学生充做模拟考,其中有一题作图题,不好做,它要求将右图,一个由正方形和等腰直角三角形组成的五边形,以两条线切割,重组成一个等面积的等腰直角三角形。
这题让学生和我「奋战」了几节课,却总是画不成。
理论上它是可以成立的,因为等腰直角三角形可以和一个正方形等面积,而且由商高定理可以知道,存在一个正方形A,它的面积等于任意两个正方形B、C的面积和。
只要A的边长是这两个正方形B、C的边长平方和的正平方根即可。
而正方形当然可以等积于一个等腰直角三角
形。
但是如何以两条直线完成这道题呢?
今天(5/19),我利用周休继续思考这道题,终于完成了,做法如左。
多面体之Euler's 公式(V - E + F = 2)
V =顶点数( number of vertices) ; E = 边数(number of edges) ; F = 面数(number of faces)
正四面体(Tetrahedron)
V=4,E=6,F=4, 4 - 6 + 4 = 2
正六面体(Cube)
V=8,E=12,F=6, 8 - 12 + 6 = 2
正八面体(Octahedron)
V=6,E=12,F=8, 6 - 12 + 8 = 2
正十二面体(Dodecahedron)
V=20,E=30,F=12, 20 - 30 + 12 = 2
正二十面体(Icosahedron)
V=12,E=30,F=20,12 - 30 + 20 = 2
Buckyball
V=60,E=90,F = 32 (12 pentagons + 20 hexagons),60 - 90 + 32 = 2
补充说明:
1.用Euler示性数可以证明正多面体恰好有五种;或者假设每一顶点聚集有m条线,每一条线是正n边形的一边,则因为每一正n边形的一个内角为180(n-2)/2 度,围绕此顶点的m个角的和小于360度,否则此顶点附近便变成一个平面,所以
m[180(n-2)/n]<360,同样可以导出(m-2)(n-2)< 4.
2.很多病毒是正20面体(icosahedron),例如:疱疹(herpes)病毒,水痘(chickenpox)病毒,人体疣(human wart)病毒,犬类传染性肝炎病毒,腺病毒(adenovirus)等.
3.巴克球就是足球的样子,叫作"准正多面体".
标尺作图正多边形
正三、六边形正四、八边形正五边形
直尺、圆规和量角器可以画出任意正多边形。
但是在古希腊时,作图只使用没有刻度的直尺(unmarked ruler)和圆规(compass)。
用标尺作正偶边形如
2n,3×2n,5×2n等正多边形并非难事。
但对正奇边形如3,5,7,9,11,13,15等的作图,在当时是件困难的事,而且并非全都可以作图成功。
1798年,德国数学家高斯只有19岁,他成功的以圆规直尺做出一个正十七边形,并证明了正奇边形的边数只有是费马质数或不同的费马质数乘积才可以标尺作图出来(费马质数是质数
且型如, k是非负正整数)。
当高斯去世后,人们为了纪念这位伟大的数学家,在他的故乡(Brunschweig)的纪念碑上刻了这个正17边形。
k012345
3517257655374294967297
当k=0,1,2,3,4,5时都是质数,但一般猜测k>5时,都不是质数。
由于我们目前知道只有五个费马质数存在,所以用圆规可以做出的正奇边形是3,5 ,17,257,65537,以及这五个数的两两相乘积。
如3×5,3×17,17×257等共31个。
而最大的正奇边形的边数是是4294967297。
边数小于100,可以标尺作图的正多边形如下:
3456810121516172024
303234404851606468808596
正三边形和正六边形
取适当长为半径画圆,以同半径在圆周上取弧,再连续可取二个等弧,连接端点,可以连得正三边形。
(下图,红色部分)。
如果取三个等弧的中点,可以连成正六边形(下图,绿色部分)。
↑
正四边形和正八边形
取适当长为半径画圆,画二条互相垂直的直径,连接端点,可以连得正四边形(下图,紫色部分)。
如果取四个等弧的中点,可以连成正八边形(下图,红色部分)。
↑
正五边形
1.画一圆C。
2.作直径AB。
3.取BC中点D。
4.过C点作AB的垂直线交圆C于P点。
5.以D点为圆心,DP为半径画弧交AB于E点。
6.以P点为圆心,PE为半径画弧交圆于一点。
再连续可取四个等弧,
连接端点,就可以做出正五边形。
说明:
如果圆半径是 r,圆内接正五边形的边长是 a。
则
a2=r2+r2-2×r×r×cos72°=2r2(1-)=r2,
因此a=r。
证明:CP= r,CD=,因此PD=r。
而CE=r,所以PE=
× r = r 。
雪花
圣诞节又来临了,昌爸老师建议同学在窗户装饰一些雪花来应景。
先画出以适当长度为一边长的正三角形,在每边中间的三分之一的区段再贴上一块新的正三角形,边长是原来正三角形边长的三分之一,如此重复下去,将可做出如上图的卡区雪花。
每一区段是著名的卡区曲线(Koch curve),这条既非笔直又非圆形的连结曲线,是瑞典数学家范卡区(Helge vou Koch)在1904年首创。
卡区雪花是一种饶富趣味的雪花,在制作成长的过程中,周长越长越长,面积越来越大,但不会自我交叉。
每变形一次,其周长变成原来的三分之四倍,如果一直重复下去,周长将变得无限大。
面积虽然也变大了,但不会超过原正三角形外接圆的面积。
卡区曲线(Koch curve)是一条在有限区间内却能容纳无限长度且不会
自我交叉的曲线,它和直线一样有无限长的长度,不够它却占了空间,但又不像平面一般,因此其维度比1大,但应该比2小,直线是1度而平面是2度。
等积变形
你相信一个广口瓶(如右图),可以在经过切割后,
重新组合成等积的正方形吗?你试着将它切割成左
下图,并将A、B、C、D四区域,移动到右下图正
方形内的对应区域内。
下面两个图形由于都以圆形部分为周界,若要计算其面积,我们起初总会觉得必然涉及 的数值。
但若细心观察下列的切割互补程序,轻易可以看出两个图形的面积相等并且等于一个简单的长方形面积。
正多边形的滚动
二个全等的正三角形,其中一个沿着另一个三角形周边滚动一圈后,会转动多少度呢?结果是720度。
换作是其它正多边形,是否也一样是720度呢?
圖解cos(x+y)
∠BEO = 90∘,∠BAO = 90∘,
∠ACB = 90∘,
∠ADE = 90∘。
右圖,如果∠AOD = x∘,∠BOA =
y∘,
則∠ABC = x∘。
圖解sin(x+y)
∠BEO = 90∘,∠BAO = 90∘,∠ACB = 90
∘,
∠ADE = 90∘。
右圖,如果∠AOD = x∘,∠BOA = y∘,
則∠ABC = x∘,sin(x+y) =
=
=
= cos(x)sin(y)+sin(x)cos(y)=
sin(x)cos(y)+cos(x)sin(y)。