固体物理学 第三章 第五节
- 格式:ppt
- 大小:855.00 KB
- 文档页数:30
第三章晶体的结合、弹性模量•3.1 晶体中的结合力和结合能;•3.2 元素和化合物晶体结合的规律性;•3.3 弹性应变和晶体中的弹性波;3.1 晶体的结合力和结合能一. 晶体结合的一般概念:自然界的矿物中绝大多数物质都以晶态存在,说明晶体的能量比构成晶体的粒子处在自由状态时的能量总和要低的多,因此可以给出U0是晶体在0K 时的总能量,E N是N个自由粒子能量之和,因此Eb 是0K时把晶体分解为相距无限远、静止的中性自由原子所需要的能量,称作内聚能(Cohesive energy)或结合能(binding energy)。
取EN=0,做能量基点,则有:近似把原子对间相互作用能量之和当作晶体的总相互作用能。
物质以晶态存在是由于构成固体的原子之间存在着相当大的相互作用力,尽管不同晶体这种结合力的类型和大小不同,但两个粒子之间相互作用力(势)与它们间距离的关系在定性上是相同的。
晶体中粒子的相互作用可以分为2大类:斥力和引力。
晶态是粒子间斥力、引力处于平衡时的状态。
其中a 、b 、m 、n 均为大于零的常数,由实验确定若两粒子要稳定结合在一起,则必须满足n > m一对粒子之间的相互作用势一般可以表示为引力势和斥力势之和:处于稳定态的条件是:给出平衡位置:平衡时的能量:★从上式可以看出晶体有平衡态的条件是:n > m★更符合实际斥力势变化规律的表达式为指数形式:N个原子组成晶体后的总相互作用能,忽略边界的差异,可以近似表示为:二. 晶体的弹性性质:以晶体相互作用能来解释晶体弹性性质是对理论表达式正确与否的最好验证。
1. 压缩系数η与体弹性模量K :由热力学知道:考虑到:两式相比较,有:展开式中的第一项在平衡点为零。
注解:体积弹性模量:按胡克定律,在弹性限度内,物体形变产生的内应力与相对形变成正比,比例系数称弹性模量。
由热力学第一定律dU=TdS–pdV,若不考虑热效应,即TdS= 0 (实际上只有当T=0K时才严格成立),有2. 抗张强度:晶体所能负荷的最大张力叫抗张强度,负荷超过抗张强度时,晶体就会断裂。
1 第三章 晶体的结合主要内容:● 大量原子聚合在一起形成晶体的原因● 晶体结合的类型内聚能和原子间的相互作用力内聚能是指在绝对零度下将晶体分解为相距无限远、静止的自由原子所需要的能量 原子间相互作用力:● 吸引力:不同的结合方式有不同的机理● 排斥力:库仑排斥+量子效应● 原子核之间的库仑排斥力● 电子壳层交叠时,由泡利不相容原理而产生的排斥力内聚能的计算设晶体中任意两个粒子的相互作用能可表示为:其中a 、b 、m 、n 均为大于零的常数,由实验确定,r 为两粒子之间的距离。
晶体内聚能视为粒子对间的互作用,设晶体中有N 个粒子,则晶体内聚能:这里,相互作用能视为粒子对间的互作用。
先计算两个粒子之间的互作用势,然后再把考虑晶体结构的因素,总和起来可以得到晶体的总结合能。
只有离子晶体和分子晶体可以这样处理。
此思想称为双粒子模型。
晶体结合的类型⏹ 根据化学键的性质,晶体可以分为离子晶体、原子晶体(共价晶体)、金属晶体、分子晶体。
⏹ 对于大多数晶体,结合力的性质是属于综合性的。
固体结合的性质取决于组成固体的原子结构。
离子晶体和离子键● 离子晶体:由正离子和负离子组成。
● 离子键:正、负离子间的静电相互作用产生● 晶体结构:氯化钠结构、氯化铯结构● 离子-离子相互作用能有两项:① 库仑相互作用能,正比于: ② 相临离子间排斥能,正比于: 离子晶体的内聚能 由N 对离子组成的离子晶体的内聚能:相邻离子间的最短距离 马德隆常数 最邻近离子数 n m r b r a r u +-=)((2)(2)(11∑∑--+-==N j n j m j N j j r b r a N r u N r U r1-nr 1)(N )4()4()(02'102'1n n jj n j j r B r A r Nz r a q N r r q N r U j +-=+±=+±=∑∑λπελπεr )1('∑±=j j a μz r a r j j =1λπεμz B q A ==0242分子晶体:● 基元:分子● 结合力:范德瓦尔斯力● 晶体结构:密积结构,惰性气体:面心立方● 结合能:相距为R 的一对分子间的总的相互作用势能为(称为Lennard-Jones 势)共价晶体和共价键:● 原子靠共价键结合。