压杆的临界应力
- 格式:pptx
- 大小:335.80 KB
- 文档页数:46
4PB应力计算公式
临界应力的计算公式就是欧拉公式:r+ v- e= 2。
具体情况介绍:
1、压杆处于临界平衡状态时(fp=fpcr ),其横截面上的正应力称为临界应力。
材料在力的作用下将发生变形。
通常把满足虎克定律规定的区域称弹性变形区。
把不满足虎克定律和过程不可逆的区域称塑性变形区。
由弹性变形区进入塑性变形区称之为屈服。
其转折点称为屈服点。
该点处的应力称为屈服应力或临界应力。
2、确定压杆的临界力是计算稳定问题的关键,临界力既不是外力,也不是内力。
它是压杆在一定条件下所具有的反映它承载能力的一个标志。
不同的压杆具有不同的临界力,它的大小与压杆的长度、截的形状和尺寸、两端的支承情况以及材料的性质有关。
细长杆(λ≥λ1)的临界力计算式——欧拉公式
长度系数μ:两端固定μ=0.5
一端固定,另一端铰支:μ=0.7
两铰支:μ=1
一端固定,另一端自由:μ=2
3、临界力计算的一般步骤:
①确定长度系数μ。
若压杆两端的支承情况在四周相同,则μ值相同。
若压杆的支承在两个形心主惯性平面内的约束条件不同,则应分别选用相应的长度系数μ(μx或μy)的值。
②计算柔度l。
根据压杆的实际尺寸,及两端的约束情况,分别计算出在两个形心主惯性平面内的柔度,从而得到lmax。
③确定临界力的计算式。
根据最大的柔度λmax,确定压杆的类型及临界力的计算公式。
细长压杆的临界⼒公式—欧拉公式.10.2 细长压杆的临界⼒公式—欧拉公式⼀、两端铰⽀压杆的临界⼒图9—4为两端受压杆件,⼈们经过对不同长度(l ),不同截⾯(I ),不同材料(E )的压杆在内⼒不超过材料的⽐例极限时发⽣失稳的临界⼒P cr 研究得知: 22lPcr EI=π(9—1)式中:π—圆周率;E —材料的弹性摸量;l —杆件长度;I —杆件截⾯对⾏⼼主轴的惯性矩。
图9-4当杆端在各⽅向的约束情况相同时,压杆总是在抗弯刚度最⼩的纵向平⾯内失稳,所以(9-1)式中的惯性矩应取截⾯最⼩的形⼼惯性矩I min 。
瑞⼠科学家欧拉(L.Eular )早在18世纪,就对理想细长压杆在弹性范围的稳定性进⾏了研究。
从理论上证明了上述(9-1)式是正确的,因此(9-1)式⼜称为计算临界⼒的欧拉公式。
⼆、杆端⽀承对临界⼒的影响图9-5(a)(b)(c)(d)⼯程上常见的杆端⽀承形式主要有四种,如图9-5所⽰,欧拉进⼀步研究得出各种⽀承情况下的临界⼒。
如⼀端固定,⼀端⾃由的杆件,这种⽀承形式下压杆的临界⼒,只要在(9-1)式中以2l 代替l 即可。
()222l P cr EI=π(a )同理,可得两端固定⽀承的临界⼒为()225.0l P cr EI=π(b )⼀端固定,⼀端铰⽀压杆的临界⼒为 ()227.0l P cr EIπ(c )式(a ),(b),(c)和(9-1)可归纳为统⼀的表达式()22l P cr µπEI = (9-2)式中l µ称为压杆计算长度,µ称为长度系数,⼏种不同杆端⽀承的各µ值列于表9—1中,µ反映了杆端⽀承情况对临界⼒的影响。
表9-1 各种杆端⽀承压杆的长度系数图例9.1 图⽰轴⼼受压杆,截⾯⾯积为10mm ?20mm 。
已知其为细长杆,弹性模量E=200GPa ,试计算其临界⼒。
2m20图9-6单位:mm解:由杆件的约束形式可知:7.0=µ4333min1067.112102012mm hb I I y ?=?===临界⼒:223320010 1.67101076.2 1.076()(0.7 2.510)cr EI P N kN l ππµ====?? 三、临界应⼒和柔度在临界⼒的作⽤下,细长压杆横截⾯上的平均应⼒叫做压杆的临界应⼒,⽤cr σ表⽰。
压杆临界力的计算公式1.欧拉公式:欧拉公式是压杆稳定性分析中最常用的一种方法。
根据欧拉公式,压杆的临界力可以通过以下公式计算:Pcr = ((π^2)EI) / ((KL)^2)其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度。
欧拉公式适用于较细长的压杆,在其它条件相同的情况下,杆的截面越大,临界力就越大;杆的长度越长,临界力就越小。
同时,欧拉公式适用于直线变形的杆,不能用于弯曲变形。
2.莱昂哈德公式:莱昂哈德公式是考虑了杆的端部支座的影响,在欧拉公式的基础上进行修正的公式。
该公式计算压杆的临界力如下:Pcr = ((KLEI) / (r + ((2L)/π)) ^ 2)其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度,r表示杆的端部支座的半径。
3. Adomian分解法:Adomian分解法是一种近似求解非线性微分方程的方法,在压杆临界力的计算中也有应用。
该方法通过将非线性方程分解为无穷级数的形式,然后将其逐级近似求解。
Adomian分解法的具体步骤如下:-(1)将压杆的平衡方程进行分解:Mx''(x)+f(x)=0,其中,M表示压杆的弯矩,f(x)表示外力。
-(2)将平衡方程表示为无穷级数的形式:x''(x)=∑An(x)。
-(3)通过逐级近似求解无穷级数,得到压杆临界力。
Adomian分解法的优点是可以处理非线性问题,但是在具体应用中需要取不同级数的项进行求解,并选择适当的近似方法。
4.极限平衡法:极限平衡法是一种通过平衡条件来确定压杆临界力的方法,它适用于复杂的压杆分析问题。
该方法的基本思想是,在压杆失稳之前,杆的初始形状必须满足平衡条件。
具体步骤如下:-(1)假设杆的初始形状(如弯曲、扭转等)。
-(2)根据平衡条件计算外力和内力。
怎样推导压杆的临界力和临界应力公式压杆(也称为压杆杆件或柱件)是一种承受压力的结构元素,常见于建筑、机械以及其他工程领域。
为了确定压杆在受力时的安全性,需要推导出压杆的临界力和临界应力公式。
首先,需要理解压杆在受力时的基本概念。
假设有一根长度为L、截面积为A的无限细长压杆,其两端受到等大反向的压力P。
压杆在受到压力时会发生弯曲,压杆的形状会发生改变。
当压力达到一定临界值时,压杆将完全失去稳定,从而发生屈曲(即压杆产生弯曲形变)。
临界力和临界应力是指当压力达到一定临界值时,压杆发生屈曲的压力和应力。
推导过程如下:1. 经典欧拉公式(Euler公式)欧拉公式是分析以柱轴为边界的理想无限长压杆屈曲的基本公式。
该公式基于以下假设:-压杆是均质、各向同性的杆件;-杆件的材料性质可用弹性线性理论描述;-压杆长度远大于其最小截面尺寸,即L>>d(d为压杆的最小截面尺寸)。
欧拉公式表达式如下:Pcr = (π²EI) / L²其中,Pcr为压杆的临界力,E为杨氏模量,I为压杆截面的惯性矩,L为压杆长度。
2. 完整欧拉公式(Timoshenko-Bazant公式)欧拉公式只适用于边界条件为完全铰接(即不受弯曲力矩)的压杆。
然而,在实际情况中,压杆的边界条件一般为受到端部弯曲力矩的约束。
在这种情况下,完整欧拉公式(Timoshenko-Bazant公式)需要被使用。
完整欧拉公式修正了边界条件的影响,并考虑到了剪切变形和截面的非对称性。
完整欧拉公式的表达式如下:Pcr = (π²EI) / [L²(1 + αL / r)^²]其中,α为修正系数,考虑了压杆的边界条件,r为截面回转半径。
3.临界应力临界应力的定义是在压杆屈曲时,杆件中最大的应力值。
根据杆件截面受到均匀分布的压力P,应力σ可以表示为:σ=P/A将欧拉公式(或完整欧拉公式)中的临界力Pcr代入上述表达式可得到临界应力的表达式。
两根材料和柔度都相同的压杆临界应力和临界压力
标题:两根材料和柔度都相同的压杆临界应力和临界压力
正文:
压杆是指一根两端固定且被施加压力的杆件,通常用于支撑重物或进行结构工程等应用。
压杆的临界应力和临界压力是研究压杆稳定性的重要问题。
如果两根材料和柔度都相同的压杆受到相同的力,那么它们是否会发生破裂或弯曲,取决于它们的形状和尺寸。
在这种情况下,我们可以使用以下公式来计算压杆的临界应力和临界压力:
临界应力= (1.385 * F_p / L^2) * A^3 / (4 * π * L^4)
其中,F_p是压杆的施加压力,L是压杆的长度,A是压杆的截面面积。
临界压力= 2 * F_p / (3 * π * L^2)
其中,F_p是压杆的施加压力,L是压杆的长度。
需要注意的是,上述公式仅适用于形状和尺寸相同的压杆。
如果两根压杆的形状和尺寸不同,那么它们的临界应力和临界压力也会不同。
此外,压杆的临界应力和临界压力也取决于压杆的材料和强度。
对于不同的材料,它们的临界应力和临界压力也会有所不同。
例如,对于钢,它们的临界应力和临界压力通常在200MPa以上;而对于铜,它们的临界应力和临界压力通常在50MPa左右。
压杆的临界应力和临界压力是研究压杆稳定性的重要问题,可以帮助我们更好地设计和控制结构的稳定性。