3虚拟变量的引入
- 格式:ppt
- 大小:428.01 KB
- 文档页数:2
第七章虚拟变量第一节虚拟变量的引入一、什么是虚拟变量前面几章介绍的解释变量都是可以直接度量的,称为定量变量。
如收入、支出、价格、资金等等。
但在现实经济生活中,影响应变量变动的因素,除了这些可以直接获得实际观测数据的定量变量外,还包括一些无法定量的解释变量的影响,如性别、民族、国籍、职业、文化程度、政府经济政策变动等因素,他们只表示某种特征的存在与不存在,所以称为属性变量或定性变量。
属性变量:不能精确计量的说明某种属性或状态的定性变量。
在计量经济模型中,应当包含属性变量对应变量的影响作用。
那怎么才能把定性变量包括在模型中呢?属性变量通常是非数值变量,直接纳入回归方程中进行回归,显然是很困难的。
为此,人们采取了一种构造人工变量的方法,将这些定性变量进行量化,使其能与定量变量一样在回归模型中得以应用。
由于定性变量通常是表明某种特征或属性是否存在,如性别变量中以男性为分析基础的话,那就只有男性、非男性;政策变动变量中以政策不变为基准,则有政策不变,和政策变动;至于有两种以上的状态的话,比如学历分高中,本科,本科以上等等,我们又怎么办呢?把疑问留到后面去解决。
既然定性变量只有存在或不存在两种状态,所以量化的一般方法是取值为0或1。
称为虚拟变量。
虚拟变量:人工构造的取值为0或1的作为属性变量代表的变量。
一般常用D表示。
D=0,表示某种属性或状态不存在D=1,表示某种属性或状态存在比如前面说的性别变量,以男性为基准,则当样本为男性时,虚拟变量取0,当样本为女性时,则虚拟变量取1。
当虚拟变量作为解释变量引入计量经济模型时,对其回归系数的估计和统计检验方法都与定量解释变量相同。
二、虚拟变量的作用1、作为属性因素的代表,如,性别、种族等2、作为某些非精确计量的数量因素的代表,如:受教育程度、年龄段等;3、作为某些偶然因素或政策因素的代表,如战争、911等。
4、时间序列分析中作为季节(月份)的代表(比如对某些明显有淡季、旺季之分的产品)5、分段回归,研究斜率、截距的变动;6、比较两个回归模型;7、虚拟应变量概率模型,应变量本身是定性变量(比如你研究某产品的购买率,应变量本身就是买或不买)三、虚拟变量的设置规则1、虚拟变量D取值为0,还是取值为1,要根据研究的目的决定。
《计量经济学》上机指导手册三目录§3.1 实验介绍 (2)3.1.1 上机实验名称 (2)3.1.2 实验目的 (2)3.1.3 实验要求 (2)3.1.4 数据资料 (2)§3.2 用加法和乘法加入虚拟变量 (4)3.2.1 用加法方式引入虚拟变量 (4)3.2.2 用乘法方式引入虚拟变量 (6)§3.3 阿尔蒙多项式法估计有限分布滞后模型 (9)3.3.1 参数估计(方法一) (15)3.3.2 参数估计(方法二) (15)3.3.3 还原模型 (17)§3.4 Granger因果检验.............................................................................................. 错误!未定义书签。
3.4.1 序列平稳性检验及调整........................................................................ 错误!未定义书签。
3.4.2 Granger因果检验 ................................................................................... 错误!未定义书签。
§3.1 实验介绍3.1.1 上机实验名称用加法和乘法引入虚拟变量阿尔蒙多项式估计有限分布滞后模型Granger因果检验3.1.2 实验目的通过对用加法和乘法引入虚拟变量、阿尔蒙多项式估计有限分布滞后模型、Granger因果检验的练习,掌握经典单方程模型中一些专门问题的理解及软件操作。
3.1.3 实验要求根据实验数据,完成实验报告。
对于已经完成的工作,请自我测评。
将完成要求的标题标成蓝色,未完成的标成红色。
例如:3.1.4 数据资料(1)《14-15-1 EViews上机数据3.xls》中《Dummy Variable》(2)《14-15-1 EViews上机数据3.xls》中《Almon》(3)《14-15-1 EViews上机数据3.xls》中《Granger Test》§3.2 用加法和乘法加入虚拟变量根据1965年-1970年美国制造业的利润和销售额季度数据(见《14-15-1 EViews上机数据3.xls》中《Dummy Variable》),判断利润是否除了与销售额有关,还与季度因素有关。
虚拟变量实验报告虚拟变量实验报告引言:虚拟变量是一种常用的统计分析工具,用于将分类变量转化为数值变量,以便在统计模型中使用。
在本实验中,我们将探讨虚拟变量的应用,并通过一个实例来说明其作用和效果。
实验目的:1.了解虚拟变量的定义和原理;2.掌握虚拟变量在实际数据分析中的应用;3.验证虚拟变量在统计模型中的有效性。
实验步骤:1.数据收集:我们从一家电商平台收集了一份关于用户购买行为的数据,包括用户的性别、年龄、购买金额等信息。
2.数据预处理:首先,我们对数据进行了清洗和整理,去除了缺失值和异常值。
然后,我们将性别变量转化为虚拟变量,将男性设为1,女性设为0。
同样地,我们将年龄变量分为若干个区间,并将其转化为虚拟变量。
3.建立模型:在建立模型之前,我们首先对数据进行了描述性统计分析,得到了一些基本的统计指标和图表。
然后,我们使用多元线性回归模型来研究用户购买金额与性别、年龄等变量之间的关系。
在模型中,我们将性别和年龄作为虚拟变量进行处理。
4.模型评估:我们使用了一些常用的统计指标来评估模型的拟合效果,包括R方值、调整R 方值、F统计量等。
此外,我们还进行了残差分析,以检验模型的合理性和假设的成立。
实验结果:通过实验,我们得到了以下结论:1.虚拟变量在统计模型中的应用可以有效地处理分类变量,使其能够在回归模型中发挥作用;2.在我们的实验中,性别和年龄对用户购买金额有显著影响;3.男性用户的购买金额显著高于女性用户;4.年龄在不同区间的用户购买金额存在差异,年龄越大,购买金额越高。
讨论与结论:虚拟变量是一种常用的统计分析工具,在实际数据分析中有着广泛的应用。
通过将分类变量转化为虚拟变量,我们可以更好地理解和解释数据,提高模型的拟合效果。
在本实验中,我们以用户购买金额为例,验证了虚拟变量在统计模型中的有效性。
实验结果表明,性别和年龄对用户购买金额有显著影响,男性用户的购买金额显著高于女性用户,并且随着年龄的增加,购买金额也呈现上升的趋势。
计量经济学简答题及答案1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同。
答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小n2min。
只有在满足了线性回归模型的古典假设时候,采用OLS才能保证eii1参数估计结果的可靠性。
在不满足根本假设时,如出现异方差,就不能采用OLS。
加权最小二乘法是对原模型加权,对较小残差平方和 2 e赋予较大的权重,对较大i2e赋予较小的权i重,消除异方差,然后在采用OLS估计其参数。
在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘法。
最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义最小二乘法的特列。
6、虚拟变量有哪几种根本的引入方式?它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
7、联立方程计量经济学模型中构造式方程的构造参数为什么不能直接应用OLS估计?答:主要的原因有三:第一,构造方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。
2、计量经济模型有哪些应用。
答:①构造分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。