高中数学空间几何体练习题难题带答案
- 格式:doc
- 大小:1.18 MB
- 文档页数:37
高二数学空间几何体试题答案及解析1.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20B.15C.12D.10【答案】D【解析】由图可知对于上底面的每一个顶点,在下底面有两个顶点与其连线可成为五棱柱的对角线,故五棱柱的对角线的条数共有条.【考点】正五棱柱的几何特征.2.顶点在同一球面上的正四棱柱体ABCD-A1B1C1D1中,,,则两点间的球面距离为()A.B.C.D.【答案】B【解析】已知正四棱柱ABCD-A1B1C1D1的底面ABCD边长为1,高,它的八个顶点都在同一球面上,那么,正四棱柱ABCD-A1B1C1D1的对角线长为球的直径,中点O为球心.正四棱柱对角线AC1=2,则球的半径为1.根据题中所给数据,可得∠AOC=,则A,C两点的球面距离为。
选B.【考点】正四棱柱及其外接球的几何特征,球面距离的概念。
点评:简单题,关键是认识到:正四棱柱ABCD-A1B1C1D1的八个顶点都在同一球面上,得到正四棱柱ABCD-A1B1C1D1的对角线长即为球的直径。
3.设长方体的三条棱长分别为、、,若长方体所有棱长度之和为,一条对角线长度为,体积为,则等于( ).A.B.C.D.【答案】A【解析】设长方体的长、宽、高分别为a,b,c,由题意可知,a+b+c=6…①,abc=2…②,a2+b2+c2=25…③,由①式平方-②可得ab+bc+ac=…④,④÷②得: =,故选A【考点】本题考查了长方体的有关知识点评:此类问题主要考查了点、线、面间的距离计算,考查空间想象能力、运算能力,是基础题.4.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于.【答案】【解析】设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是对角线O1O2=OE,而OE=,∴两圆心的距离O1O2=【考点】本题考查了球的有关概念,两平面垂直的性质.点评:求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.5.(本题12分)如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,⑵证:平面A1CB⊥平面BDE;⑵求A1B与平面BDE所成角的正弦值。
高中数学空间几何体练习题一.选择题(共25小题)1.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,若存在球与该“堑堵”表面所在的五个平面都相切,则图中边长a的所有可能取值组成的集合为()A.{2﹣2,2+2} B.{1,+1,﹣1}C.{2﹣2,2+2,2,4} D.{2,2+2,2﹣2} 2.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是()A.41πB.C.25πD.3.已知四边形ABCD是边长为5的菱形,对角线BD=8(如图1),现以AC为折痕将菱形折起,使点B达到点P的位置.棱AC,PD的中点分别为E,F,且四面体P ACD的外接球球心落在四面体内部(如图2),则线段EF长度的取值范围为()A.(,4)B.(1,)C.(,6)D.4.三棱锥P﹣ABC中.AB⊥BC,△P AC为等边三角形,二面角P﹣AC﹣B的余弦值为,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为()A.1B.2C.D.5.已知P,A,B,C是半径为3的球面上四点,其中P A过球心,,则三棱锥P﹣ABC的体积是()A.B.2C.D.6.在空间直角坐标系O﹣xyz中,四面体OABC各顶点坐标分别为:O(0,0,0),A(0,0,2),B(,0,0),C(0,,0).假设蚂蚁窝在O点,一只蚂蚁从O点出发,需要在AB,AC上分别任意选择一点留下信息,然后再返回O点.那么完成这个工作所需要走的最短路径长度是()A.2B.C.D.27.我国古代数学名著《九章算术•商功》中将底面是直角三角形的直三棱柱称之为“堑堵”,如图为一个堑堵ABC﹣DFE,AB⊥BC,AB=6,其体积为120,若将该“堑堵”放入一个球形容器中,则该球形容器表面积的最小值为()A.100πB.108πC.116πD.120π8.如图,在平面四边形ABCD中,满足AB=BC,CD=AD,且AB+AD=10,BD=8.沿着BD把ABD折起,使点A到达点P的位置,且使PC=2,则三棱锥P﹣BCD体积的最大值为()A.12B.12C.D.9.在棱长为2的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点,若满足|PB|+|PD1|=m的点P的个数大于6个,则m的取值范围是()A.B.C.D.10.已知长方体ABCD﹣A1B1C1D1中,AB=AA1=4,B1D与平面ABCD夹角的正弦值为,M为线段AA1的中点,点N在线段AD上,且AN=2,S∈平面A1B1C1D1.若V三棱锥S﹣BMN=V,记直线SC与CC1的夹角为θ.则tanθ的最小值为()A.B.C.D.11.已知三棱锥P﹣ABC的外接球O半径为2,球心O到△ABC所在平面的距离为1,则三棱锥P﹣ABC体积的最大值为()12.在三棱锥P﹣ABC中,△ABC是Rt△且AB⊥BC,∠CAB=30°,BC=2,点P在平面ABC的射影D点在△ABC 的外接圆上,四边形ABCD的对角线,AD>CD,若四棱锥P﹣ABCD的外接球半径为,则四棱锥P﹣ABCD的体积为()A.B.C.D.13.已知三棱锥P﹣ABC的底面是正三角形,,点A在侧面PBC内的射影H是△PBC的垂心,当三棱锥P﹣ABC体积最大值时,三棱锥P﹣ABC的外接球的体积为()A.B.C.6πD.14.在正四面体ABCD中,P,Q分别是棱AB,CD的中点,E,F分别是直线AB,CD上的动点,M是EF的中点,则能使点M的轨迹是圆的条件是()A.PE+QF=2B.PE•QF=2C.PE=2QF D.PE2+QF2=215.已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是()A.B.C.D.16.如图所示,正四面体ABCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为,则该正四面体的外接球表面积是()A.12πB.32πC.8πD.24π17.设P﹣ABCD是一个高为3,底面边长为2的正四棱锥,M为PC中点,过AM作平面AEMF与线段PB,PD分别交于点E,F(可以是线段端点),则四棱锥P﹣AEMF的体积的取值范围为()A.[,2]B.[,]C.[1,]D.[1,2]18.有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个对棱相等的三棱锥形的铁架,则此三棱锥体积的取值范围是()A.(0,]B.(0,]C.(0,]D.(0,]19.已知球O为三棱锥S﹣ABC的外接球,,则球O的表面积是()20.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经90°榫卯起来,如图,若正四棱柱的高为8,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为()(容器壁的厚度忽略不计)A.21πB.40πC.41πD.84π21.已知球O的半径为1,A,B是该球面上的两点,且线段AB=1,点P是该球面上的一个动点(不与A,B重合),则∠APB的最小值与最大值分别是()A.B.C.D.22.如图,A1B1C1D1是以ABCD为底面的长方体的一个斜截面,其中AB=4,BC=3,AA1=5,BB1=8,CC1=12,则该几何体的体积为()A.96B.102C.104D.14423.已知三棱锥P﹣ABC的四个顶点都在半径为3的球面上,AB⊥AC,则该三棱锥体积的最大值是()A.B.C.D.3224.已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=AC=,BC=,则球的表面积为()A.12πB.3πC.5πD.6π25.三棱柱ABC﹣A1B1C1的底面△ABC是正三角形,AA1⊥平面ABC,AB=2,AA1=,D为BC中点,则三棱锥A ﹣B1DC1的体积为()A.3B.C.1D.二.填空题(共5小题)26.若三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=3,SC=4,则此三棱锥的外接球的表面积是.27.若三棱锥P﹣ABC的所有定点均在球O的表面上,且AB=4,∠ACB=60°,三棱锥P﹣ABC的体积的最大值为16,则球O的表面积为.28.已知一个半圆柱的高为4,其俯视图如图所示,侧视图的面积为8,则该半圆柱的底面半圆的半径为.29.已知正三棱锥的体积为,则其表面积的最小值为.30.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为.三.解答题(共10小题)31.正三棱锥的高为1,底面边长为2,内有一个球与它的四个面都相切,求:(1)棱锥的表面积;(2)内切球的半径.32.如图,已知三棱台ABC﹣A1B1C1,AB=2A1B1,M是A1B1的中点,N在线段B1C1上,且B1N=2NC1,过点A,M,N的平面把这个棱台分为两部分,求体积较小部分与体积较大部分的体积比值.33.如图,在三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC 中点.(1)证明:A1O⊥平面ABC;(2)在BC1上是否存在一点E,使得OE∥平面A1AB?若存在,确定点E的位置;若不存在,说明理由.34.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=18,BC=24,AC=30,求球的表面积和体积.35.在△ABC中,AB=3.(1)若∠B=45°,∠C=60°,将△ABC绕直线BC旋转一周得到一个几何体,求这个几何体的体积.(2)设D是BC的中点,AD=2,cos∠BAC=,求△ABC的面积.36.在平面直角坐标系xoy中,已知四点A(2,0),B(﹣2,0),C(0,﹣2),D(﹣2,﹣2),把坐标系平面沿y 轴折为直二面角.(1)求证:BC⊥AD;(2)求三棱锥C﹣AOD的体积.37.四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.(Ⅰ)若θ=,且棱AB垂直于平面BCD,求四面体ABCD的体积;(Ⅱ)当θ=时,证明:四面体ABCD的体积为一定值;(Ⅲ)求四面体ABCD的体积.38.如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(1)求证:BC⊥平面VAC;(2)若直线AM与平面VAC所成角为,求三棱锥B﹣ACM的体积.39.如图所示,该几何体是一个由直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2(1)证明:平面P AD⊥平面ABFE;(2)若正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,求正四棱锥P﹣ABCD的高.40.如图,在△ABC中,∠C为直角,AC=BC=4.沿△ABC的中位线DE,将平面ADE折起,使得∠ADC=90°,得到四棱锥A﹣BCDE.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求三棱锥E﹣ABC的体积;(Ⅲ)M是棱CD的中点,过M作平面α与平面ABC平行,设平面α截四棱锥A﹣BCDE所得截面面积为S,试求S的值.参考答案与试题解析一.选择题(共25小题)1.【解答】解:由三视图可知直三棱柱的底面斜边的高为1,斜边长为2,直角三角形,棱柱的高为a,若存在球与该“堑堵”表面所在的五个平面都相切,则球半径R满足:①R==(此时球为棱柱的内切球),解得:a=2﹣2,②R=且R+1=R(此时球在棱柱外,正视图中球对称的圆在直角的夹角内),解得:a=2+2,③R=且R+tan22.5°R=(此时球在棱柱外,正视图中球对称的圆在45°角的夹角内),解得:a=2,故选:D.2.【解答】解:由三视图得到直观图,如图,该几何体为三棱锥D1﹣CC1E,正方体的棱长为4,E为BB1的中点,取出该几何体如图,三棱锥E﹣C1D1C,底面三角形C1D1C为等腰直角三角形,直角边长为4,侧面EC 1C⊥底面C1D1C,.则底面三角形的外心为CD1的中点G,设△EC1C的外心为H,分别过G与H作底面C1D1C与侧面EC1C的垂线相交于O,则O为三棱锥E﹣C1D1C的外接球的球心,在△EC1C中,求得CK=4,sin∠ECK=,则2EH=,即EH=,则HK=,,则.∴该几何体外接球的表面积是4.故选:A.3.【解答】解:如图,由题意可知△APC的外心O1在中线PE上,设过点O1的直线l1⊥平面APC,可知l1⊂平面PED,同理△ADC的外心O2在中线DE上,设过点O2的直线l2⊥平面ADC,则l2⊂平面PED,由对称性知直线l1,l2的交点O在直线EF上.根据外接球的性质,点O为四面体APCD的外接球的球心.由题意得EA=3,PE=4,而O1A2=O1E2+EA2,O1A+O1E=PE=4,∴O1E=.令∠PEF=θ,显然0<θ<,∴EF=PE cosθ=4cosθ<4.∵cosθ==,∴OE•EF=O1E•PE=,又OE<EF,∴EF2>,即EF>.综上所述,<EF<4.∴线段EF长度的取值范围为(,4).故选:A.4.【解答】解:如图所示,过点P作PE⊥面ABC,垂足为E,过点E作ED⊥AC交AC于点D,连接PD,则∠PDE为二面角P﹣AC﹣B的平面角的补角,即有cos∠PDE=,易知AC⊥面PDE,则AC⊥PD,而△P AC为等边三角形,∴D为AC中点,设AB=a,BC=b,AC==c,则PE=PD sin∠PDE=×c×=,故三棱锥P﹣ABC的体积为:V=×ab×=≤×=,当且仅当a=b=时,体积最大,此时B、D、E共线.设三棱锥P﹣ABC的外接球的球心为O,半径为R,由已知,4πR2=8π,得R=.过点O作OF⊥PE于F,则四边形ODEF为矩形,则OD=EF=,ED=OF=PD cos∠PDE=,PE=,在Rt△PFO中,()2=,解得c=2.∴三棱锥P﹣ABC的体积的最大值为:.故选:D.5.【解答】解:∵P,A,B,C是半径为3的球面上四点,其中P A过球心,,∴由余弦定理得cos B==﹣,∴B=120°,设△ABC外接圆的半径为r,则由正弦定理,得==2r,解得r=2.∴球心到平面ABC的距离d===.∴三棱锥P﹣ABC的体积:V===.故选:D.6.【解答】解:将四面体OABC沿着OA剪开,展开后如下图所示,最短路径就是△AOO'的边OO',∵O(0,0,0),A(0,0,2),B(,0,0),C(0,,0),∴AO=2,BO=,AB=AC=,BC=,由余弦定理知,在△OAB中,cos∠OAB===,∴∠OAB=30°=∠O'AC,在△ABC中,cos∠BAC===,∴sin∠BAC==,∴cos∠OAO'=cos(∠BAC+∠OAB+∠O'AC)=cos(∠BAC+60°)=cos∠BAC•cos60°﹣sin∠BAC•sin60°=×﹣×=.在△AOO'中,OO'2=AO2+AO'2﹣2AO•AO'cos∠OAO'=4+4﹣2×2×2×=5+,∴OO'=.故选:C.7.【解答】解:设BC=a,BF=b,则该“堑堵”的体积V=S△ABC•BF==120,整理,得ab=40,要使“堑堵”放入球形容器,则该球的半径不小于“堑堵”的外接球半径,设其外接球的半径为R,∵在堑堵ABC﹣DFE中,BA,BC,BF两两垂直,∴堑堵ABC﹣DFE外接球的一条直径是以BA,BC,BF为相邻三条棱的长方体的体对角线,即2R==,∵a2+b2≥2ab=80,(当且仅当a=b时,取等号),∴外接球的表面积S=4πR2≥116π,∴球形容器的表面积最小值为116π.故选:C.8.【解答】解:过点P作PE⊥BD于E,连结CE,由题意知△BPD≌△BCD,CE⊥BD,且PE=CE,∴BD⊥平面PCE,∴V P﹣BCD=V B﹣PCE+V D﹣PCE==,∴当S△PCE最大时,V P﹣BCD取得最大值,取PC的中点F,则EF⊥PC,∴S△PCE=•EF=,∵PB+PD=10,BD=8,∴点P到以BD为焦点的椭圆上,∴PE的最大值为对应短半轴长,∴PE最大值为=3,∴S△PCE最大值为2,∴三棱锥P﹣BCD体积的最大值为.故选:C.9.【解答】解:分类讨论:①∵正方体的棱长为2,∴BD1=2,∵点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=2,∴点P是以2c=2为焦距,以a=为长半轴,以为短半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在正方体的12条棱上各有一点满足条件.∴满足|PB|+|PD1|=2的点P的个数为12个.满足条件.②8个顶点中,除了B,D1两个以外的6个顶点满足|PB|+|PD1|=2+2,且是正方体棱上的所有点中的最大值,只有这6个顶点.因此除了以上6个顶点以外的点满足:|PB|+|PD1|<2+2,不难得出满足条件:2≤|PB|+|PD1|<2+2的点P都满足|PB|+|PD1|=m的点P的个数大于6个,由选择支可得只能选择D.故选:D.10.【解答】解:如图所示,设BC=x,则=,解得x=6.V三棱锥S﹣BMN=V,设点S到平面BMN的距离为d.则h•=×4×(4×6﹣﹣﹣),解得h=.记直线SC与CC1的夹角为θ.则tanθ=.可得最小值为设S(x,y,4).B(6,4,0).M(6,0,2).N(4,0,0).=(2,0,2).=(2,4,0).设平面BMN的法向量为=(a,b,c),则•=•=0.可得2a+2c=0,2a+4b=0,取=(2,﹣1,﹣2).=(x﹣4,y,4).∴=,化为:2x﹣y=0,或:2x﹣y=32(舍去),由2x﹣y=0,G(2,4,0),可得点S的轨迹为线段D1G.过点C1作C1S⊥D1G,此时SC1的最小值===,tanθ=.故选:A.11.【解答】解:∵三棱锥P﹣ABC的外接球O半径为R=2,球心O到△ABC所在平面的距离为d=1,∴△ABC的外接圆的半径r==.∴△ABC是等边三角形时,△ABC的面积最大,设等边△ABC的边长为a,则=,解得a=3,∴S△ABC==,∵球心O到△ABC所在平面的距离为1,∴点P到平面ABC的距离的最大值为h=R+d=2+1=3,∴三棱锥P﹣ABC体积的最大值为:==.故选:A.12.【解答】解∵在三棱锥P﹣ABC中,△ABC是Rt△且AB⊥BC,∠CAB=30°,BC=2,∴PC=2BC=4,BP==2,取BC中点E,则PE=BE=DE=2,∵点P在平面ABC的射影D点在△ABC的外接圆上,四边形ABCD的对角线,AD>CD,∴cos∠BED=cos∠BEB==﹣,∴∠BED=∠BEP=∠PED=120°,∴PD=PB=BD=2,∴BC=CD=2,设球心为O,则OE⊥平面BPDC,∵OD=2,四棱锥P﹣ABCD的外接球半径为,∴OE==1,∴四棱锥P﹣ABCD的高PD=2OE=2,∴四棱锥P﹣ABCD的体积为:V====.故选:B.13.【解答】解::延长PH交BC于D,连接AD,∵H是△PBC的垂心,∴BC⊥PD,∵AH⊥平面PBC,BC⊂平面PBC,∴AH⊥BC,又AH⊂平面APD,PD⊂平面P AD,AH∩PD=H,∴BC⊥平面APD,又AD⊂平面APD,∴BC⊥AD,连接BH并延长交PC于E,连接AE,由AH⊥平面PBC可得AH⊥PC,又BE⊥PC,AH∩BE=H,∴PC⊥平面ABE,∴AB⊥PC.设P在平面ABC上的射影为O,延长CO交AB于F,连接PF.∵PO⊥AB,PC∩PO=P,∴AB⊥平面PCF.∴PF⊥AB,CF⊥AB.∴O是△ABC的中心,F是AB的中点,∴PB=P A==PC,当P A,PB,PC两两垂直时,三棱锥P﹣ABC体积取得最大值时,三棱锥P﹣ABC的外接球的半径R满足:(2R)2=,解得R=.体积==.故选:D.14.【解答】解:如图所示,正四面体ABCD中,取BC、BD、AD、AC的中点G、H、K、L,因为P、Q分别是棱AB,CD的中点,所以PQ的中点O也为定点;由对称性知,PQ和EF的中点都在中截面GHKL上;由=++=++,所以=(+);又在正四面体中,对棱垂直,所以•=0;所以4=+,即4OM2=PE2+QF2;若点M的轨迹是以O为圆心的圆,则PE2+QF2为定值.故选:D.15.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正三角形所在平面或其平行平面为平面α时,满足平面α与正方体每条棱所成的角均相等,并且如图所示的正三角形,为平面α截正方体所形成的三角形截面中,截面面积最大者.因为正三角形的边长为,正方体ABCD﹣A1B1C1D1的三个面在平面α内的正投影是三个全等的菱形(如图所示),可以看成两个边长为的等边三角形,所以正方体在平面α内的正投影面积是S=2×=.故选:B.16.【解答】解:将三角形ABC与三角形ACD展成平面,BP+PE的最小值,即为BE两点之间连线的距离,则BE=设AB=2a,则∠BAD=120°,由余弦定理,解得,则正四面体棱长为,因为正四面体的外接球半径是棱长的倍,所以,设外接球半径为R,则,则表面积S=4πR2=4π•3=12π.故选:A.17.【解答】解:为了建立四棱锥P﹣AEMF的体积与原三棱锥的体积的关系,我们先引用下面的事实,(如图)设A1,B1,C1分别在三棱锥S﹣ABC的侧棱SA,SB,SC上,又S﹣A1B1C1与S﹣ABC的体积分别为V1和V,则事实上,设C,C1在平面SAB的射影分别为H,H1,则又所以下面回到原题:设,∵P﹣ABCD的体积V0=,于是由上面的事实有:+,得:==xy+xy=,于是,而由0<≤1,x≤1,得,则V=x+y=x+(),又得,所以,当时,V'<0,V为减函数,当时,V’>0,V为增函数所以得:,又,得V max=,故答案为[],故选:B.18.【解答】解:如图,AB=CD=a,AC=AD=BC=BD=2.过A作AE⊥CD于E,连结BE,则AE==BE,又AB=a,∴=,∴=,令,则f′(a)=16a3﹣3a5=0,解得当a2=时,(V A﹣BCD)max=.∴此三棱锥体积的取值范围是(0,].故选:B.19.【解答】解:取SC中点M,连接AM、MB,因为△SAC是等边三角形,且SB=BC,∴AM⊥SC,MB⊥SC,∴SC⊥平面AMB,∴平面SAC⊥平面AMB,由三余弦定理,可知,cos∠SAM•cos∠MAB=cos∠SAB,由边长条件可知,∠SAM=30°,∠SAB=90°,代入上式解得cos∠MAB=0,∴∠MAB=90°,因为SC⊥平面AMB,∴球心O在平面AMB上,作OO1⊥平面SAC,易得,,取AB中点N,连接ON,∴ON⊥AB,∴OO1AN四点共圆,AO为这四点共圆的直径,也是三棱锥S﹣ABC的半径,连接O1N,∵∠MAB=90°,由勾股定理,得,∴O1N为三棱锥S﹣ABC的半径R,∴.故选:A.20.【解答】解:由球的对称性可知,当三个正四棱柱都处于正中间契合的时候,其外接球半径最小,所以,此时该球为底面边长为4、2,高为8的长方体的外接球时,设球的半径为R,所以,所以,所以球的最小表面积为.故选:D.21.【解答】解:依题意,点P是该球面上的一个动点(不与A,B重合),即P点与A,B不共线,故三点确定一个平面,设该平面与球的截面为圆O,设∠APB所对的弧的长度与圆O的周长之比为t,所以当t最小时,∠APB最小,当t最大时,∠APB最大.根据球的性质得,①当圆O为球的大圆且弧∠APB所对的弧是该大圆的劣弧时,此时弧APB长度最小,圆的周长最大,t1最小,如图P1,此时AB=OA=OB=1,所以∠AOB=,∴∠AP1B==,②若圆O为球的大圆所对的优弧,则t2=1﹣t1最大,如图中的P2.此时∠AP2B=π﹣∠AP1B=(圆的内接四边形对角互补).故选:A.22.【解答】解:过A1作A1E⊥BB1,垂足为E,∵平面ABB1A1∥平面DCC1D1,∴A1B1∥D1C1.过D1作D1H⊥CC1,垂足为H,∵DG=AA1=5,∴EB1=8﹣5=3.∵平面ABB1A1∥平面DCC1D1,A1B1和D1C1是它们分别与截面的交线,∴A1B1∥D1C1.过D1作D1H⊥CC1,垂足为H,则EB1=FH=3,∴DD1=12﹣3=9.作A1G⊥DD1,垂足为G,作GF⊥CC1,垂足为F,连接EF,EH,则几何体被分割成一个长方体ABCD﹣A1EFG,一个斜三棱柱A1B1E﹣D1C1H,一个直三棱柱A1D1G﹣EHF.从而几何体的体积为:V=3×4×5+×3×4×3+×3×4×4=102.故选:B.23.【解答】解:设AB=m,AC=n,则S△ABC=△ABC的外接圆直径BC=取BC的中点M,则当PM⊥平面ABC时,三棱锥的体积最大此时球心O在PM上,V max=×mn×(+3)≤××(+3)令t=,则f(t)=t()f′(t)=由f′(t)=0,解得t=0(舍),t=8,f(t)在(0,8)递增,在(8,9)递减故f(8)最大,为所以三棱锥P﹣ABC的最大体积为故选:B.24.【解答】解:如图:∵SA=SB=SC=1,AB=AC=,BC=,∴SC⊥SA,SA⊥SB,∠CSB=120°,取CA,AB的中点O1,O2,则O1,O2是球的两个截面圆的圆心,设O为球心,则OO1⊥平面SAC,OO2⊥平面BSA,取SA的中点E,连O1E,O2E,则O1E∥SC,O2E⊥SC,∴∠O1EO2=120°,∠O1OO2=60°,又OO1=OO2,∴△OO1O2是正三角形,∴OO1=O1O2=BC=,在直角三角形AO1O中,|OA|===,所以球的半径R为.则球的表面积为4πR2=4π×()2=5π.故选:C.25.【解答】解:∵三棱柱ABC﹣A1B1C1的底面△ABC是正三角形,AA1⊥平面ABC,AB=2,AA1=,D为BC中点,∴AD⊥B1C1,AD⊥BB1,∵B1C1∩BB1=B1,∴AD⊥平面DB1C1,∴三棱锥A﹣B1DC1的体积为:===1.故选:C.二.填空题(共5小题)26.【解答】解:由题意可得将该三棱锥放在长方体中,且长方体的长宽高分别为SA=2,SB=3,SC=4,设外接球的半径为R,再由长方体的对角线等于其外接球的直径可得(2R)2=22+32+42=29,所以4R2=29,所以外接球的表面积S=4πR2=29π,故答案为:29π.27.【解答】解:设球O的半径为R,△ABC的外接圆的圆心O1,半径为r,在△ABC中,由余弦定理可得(4)2=a2+b2﹣2ab cos60°,即a2+b2=ab+48≥2ab,即ab≤48,所以V P﹣ABC=ab sin60°(R+OO1)≤×48×(R+OO1)×=4(R+OO1),由题意可得4(R+OO1)=16,所以R+OO1=4①,在△ABC中,2r==,所以r=4,而R2=r2+OO12,所以R2=16,所以球的表面积S=4πR2=64π,故答案为:64π.28.【解答】解:半圆柱的立体图如图所示,其侧视图是矩形ABCD,所以AB•AD=8,即4×AD=8,所以AD=2,所以半圆柱的底面半圆的半径为2.故答案为:2.29.【解答】解:设正三棱锥的底面边长为a,高为h,如图,过顶点S作底面ABC的垂线,垂足为O,过O作OD 垂直AB于D,连接SD,∴AB=a,SO=h.∴SO⊥底面ABC,AB⊂底面ABC,∴AB⊥SO,SO⊥OD,又∵AB⊥OD,SO∩OD=O,∴AB⊥平面SOD,又∵SD⊂平面SOD,∴AB⊥SD,即SD为侧面SAB的斜高,三棱锥体积=,得a2h=12,又O为底面中心,∴OD==,SD==,三棱锥的表面积S=+3××=,将代入得:S==.∴S′=,令S′=0,得=0,令,(t>0),上式可化为t2﹣2t﹣3=0,解得t=3,或t=﹣1(舍),∴=3,得h=2,当0<h<2时,S′<0,当h>2时,S′>0,故S在(0,2)上单调递减,在(2,+∞)上S单调递增,故当h=2时,表面积最小,此时S=3=6,故填:6.30.【解答】解:根据几何意义得出:边长为8的正方形,球的截面圆为正方形的内切圆,∴圆的半径为:4,∵球面恰好接触水面时测得水深为6cm,∴d=8﹣6=2,∴球的半径为:R=,R=5∴球的体积为π×(5)3=cm3故答案为.三.解答题(共10小题)31.【解答】解:(1)如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,∵△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.∵AB=2,∴S△ABC=×2××sin60°=6,又DE=×AE=×2×sin60°=,∴PE===;S△P AB=S△PBC=S△PCA=×2×=3;∴三棱锥的表面积为S表面积=3×3+6=9+6;(2)设内切球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵PD=1,∴V三棱锥P﹣ABC=S△ABC h=•6•1=2;又三棱锥P﹣ABC的体积为V=S表面积•r=×(9+6)r=(3+2)r,由等体积可得r==﹣2,∴内切球的半径为﹣2.32.【解答】解:三棱台ABC﹣A1B1C1,AB=2A1B1,M是A1B1的中点,N在线段B1C1上,且B1N=2NC1,不妨设平面ACC1A1⊥平面ABC,设△ABC是边长为6的等边三角形,则△A1B1C1是边长为3的等边三角形,设棱台的高为3,取AC中点O,A1C1中点G,以O为原点,OB为x轴,OC为y轴,OG为z轴,建立空间直角坐标系,=9,==,三棱台ABC﹣A1B1C1的体积V==.==﹣=,∴==,A(0,﹣3,0),M(,﹣,3),N(,1,3),C1(0,,3),=(,,3),=(,4,3),=(0,,3),设平面AMN的法向量=(x,y,z),,取x=14,得=(14,2,﹣5),∴点C1到平面AMN的距离d==,cos<>===.sin<>==,∴S△AMN===,∴==,设平面AMN与CC1交于点H,则点H到直线AN的距离是点M到AN的距离的,∴=,∴==,∴过点A,M,N的平面把这个棱台分为两部分,体积较小部分的体积为:++=+=,体积较大部分的体积为:V﹣(++)==,∴体积较小部分与体积较大部分的体积比值为=.33.【解答】解:(1)证明:∵AA1=A1C=AC=2,且O为AC中点,∴A1O⊥AC.又侧面AA1C1C⊥底面ABC,交线为AC,A1O⊂平面A1AC,∴A1O⊥平面ABC.(6分)(2)存在点E,且E为线段BC1的中点.理由:取B1C的中点M,从而O M是△CAB1的一条中位线,OM∥AB1,又AB1⊂平面A1AB,OM⊄平面A1AB,∴OM∥平面A1AB,故BC1的中点M即为所求的E点.(12分)34.【解答】解:设球心为O,△ABC外接圆的圆心为O′,设球的半径为2r,则OO′=r,如图所示;又AB=18,BC=24,AC=30,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴O′A=AC=15;在Rt△OO′A中,(2r)2=152+r2,解得r=5,∴球的半径为R=2r=10;∴球的表面积为S=4π•=1200π,体积为V==4000π.35.【解答】解:(Ⅰ)过A作AH⊥BC,垂足为H,在Rt△ABH中,B=45°,所以AH=BH=3,在Rt△ACH中,C =60°,所以CH=,将△ABC绕直线BC旋转一周得到一个几何体,是以AH为底面半径,以BH,CH为高的两个圆锥,所以体积为==(9+3)π;(Ⅱ)设BD=DC=x.AC=y,在△ABD和ACD中,由余弦定理得到,化简得到2x2=y2+2,①,在△ABC中,4x2=18+y2﹣2×,即4x2=y2﹣5y+18.②由①②得到y=2或者(y=﹣7舍去);因为cos∠BAC=,所以sin∠BAC=,所以S=AB•AC•sin∠BAC=.36.【解答】解:(1)【法一】∵BOCD为正方形,∴BC⊥OD,∠AOB为二面角B﹣CO﹣A的平面角∴AO⊥BO,∵AO⊥CO,且BO∩CO=O∴AO⊥平面BCO,又BC⊆平面BCO∴AO⊥BC,且DO∩AO=O∴BC⊥平面ADO,且AD⊆平面ADO,∴BC⊥AD.【法二】分别以OA,OC,OB为x轴,y轴,z轴的正方向,建立空间直角坐标系,则设O(0,0,0),A(2,0,0),B(0,0,2),C(0,2,0),D(0,2,2);有=(﹣2,2,2),=(﹣2,2,0),∴•=0,∴⊥,即BC⊥AD.(2)三棱锥C﹣AOD的体积为:V C﹣AOD=V A﹣COD=•S△COD•OA=××2×2×2=.37.【解答】证明:(1)如图5﹣2,由于棱AB⊥平面BCD,过B作CD边上的高BE,则AB⊥BE,CD⊥BE,故BE是异面直线AB与CD的距离,即d=BE.所以V A﹣BCD=AB•S△BCD=a=abd.(2)如图5﹣3,过A作底面BCD的垂线,垂足为O,连结BO与CD相交于E.连结AE,再过E作AB的垂线,垂足为F.因为AB⊥CD,所以BO⊥CD(三垂线定理的逆定理),所以CD⊥平面ABE,因为EF⊂平面ABE,所以CD⊥EF,又EF⊥AB.所以EF即为异面直线AB,CD的公垂线.所以EF=d.注意到CD⊥平面ABE.所以V A﹣BCD=CD•S△ABE=•AB•EF•CD=abd为定值.(3)如图5﹣4:将四面体ABCD补成一个平行六面体ABB'D'﹣A'CC'D.由于AB,CD所成角为θ,所以∠DCA'=θ,又异面直线AB与CD间的距离即上、下两底面AB',A'C'的距离,所以V ABB'D'﹣A'CC'D=ab sinθ×2d=abd sinθ.显然V A﹣BCD=V ABB'D'﹣A'CC'D=abd sinθ.38.【解答】(1)证明:因为VC⊥平面ABC,BC⊂平面ABC,所以VC⊥BC,又因为点C为圆O上一点,且AB为直径,所以AC⊥BC,又因为VC,AC⊂平面VAC,VC∩AC=C,所以BC⊥平面VAC.…(4分)(2)如图,取VC的中点N,连接MN,AN,则MN∥BC,由(I)得BC⊥平面VAC,所以MN⊥平面VAC,则∠MAN为直线AM与平面VAC所成的角.即∠MAN=,所以MN=AN;…(6分)令AC=a,则BC=,MN=;因为VC=2,M为VC中点,所以AN=,所以,=,解得a=1…(10分)因为MN∥BC,所以…(12分)39.【解答】证明:(1)直三棱柱ADE﹣BCF中,∵AB⊥平面ADE,∴AB⊥AD,又AD⊥AF,∴AD⊥平面ABFE,AD⊂平面P AD,∴平面P AD⊥平面ABFE….(6分)解:(2)连结BD与AC交于点O,连结PO,∵正四棱锥P﹣ABCD,∴PO⊥平面ABCD,又∵直三棱柱ADE﹣BCF,∴AB⊥AE,且有AD⊥平面ABEF,∴AD⊥AE,∴AE⊥平面ABCD,则PO∥AE,∵AE⊂平面ABEF,∴PO∥平面ABEF,则P到平面ABEF的距离等于O到平面ABEF的距离,又∵O为BD中点,∴O到平面ABEF的距离为=1,∴P到平面ABF的距离为d=1,∴=,设正四棱锥P﹣ABCD的高为h,∵正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,∴=4V P﹣ABF=,解得h=2,∴正四棱锥P﹣ABCD的高为2.40.【解答】(Ⅰ)证明:∵DE∥BC,∠C=90°,∴DE⊥AD,同时DE⊥DC,又AD∩DC=D,∴DE⊥平面ACD.又∵DE∥BC,∴BC⊥平面ACD;(Ⅱ)解:由(Ⅰ)可知,BC⊥平面ACD,又AD⊂平面ADC,∴AD⊥BC.又∵∠ADC=90°,∴AD⊥DC.又∵BC∩DC=C,∴AD⊥平面BCDE.∴=;(Ⅲ)解:分别取AD,EA,AB的中点N,P,Q,并连接MN,NP,PQ,QM,∵平面α∥平面ACD,∴平面α与平面ACD的交线平行于AC,∵M是中点,∴平面α与平面ACD的交线是△ACD的中位线MN,同理可证,四边形MNPQ是平面α截四棱锥A﹣BCDE的截面,即S=S MNPQ.由(Ⅰ)可知,BC⊥平面ACD,∴BC⊥AC,又∵QM∥AC,MN∥BC,∴QM⊥MN.∴四边形MNPQ是直角梯形.在Rt△ADC中,AD=CD=2,∴AC=.MN=AC=2,NP=,MQ=.∴S=(1+3)×.。
高一数学空间几何体试题答案及解析1.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(Ⅰ)当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(Ⅱ)设BE=x,问当x为何值时,三棱锥A CDF的体积有最大值?并求出这个最大值.【答案】(1)存在点,;(2)当时,三棱锥的最大值.【解析】(1)与立体几何有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用空间中点、线、面的位置关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;四是利用线面平行的定义,一般用反证法;(3)在求所列函数的最值时,若用基本不等式时,等号取不到时,可利用函数的单调性求解;(4)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.试题解析:解:(Ⅰ)假设存在使得满足条件CP∥平面ABEF在平面内过点作交于,在平面内作直线交于点,连结 3分∵∴ 4分∵5分又∴平面∥平面 6分又∵∴,故点就是所求的点 7分又∵∴ 8分(Ⅱ)因为平面ABEF平面EFDC,平面ABEF平面EFDC=EF,又AF EF,所以AF⊥平面EFDC 10分由已知BE=x,所以AF=x(),则FD=8x.∴ 12分故当且仅当,即=4时,等号成立所以,当=4时,有最大值,最大值为 14分解法二:故所以,当=4时,有最大值,最大值为 14分【考点】(1)探究性问题;(2)求体积的最大值.2.下图中的几何体是由哪个平面图形旋转得到的()【答案】A【解析】几何体的上半部分是一个圆锥,下半部分是一个圆台,故选A【考点】简单旋转体的概念3.一个正方体的顶点都在球面上,它的棱长为,则球的表面积是()A.B.C.D.【答案】B【解析】因为一个正方体的棱长为为2,则该正方体的对角线长为.又因为该正方体的顶点都在球面上,所以球的直径就是正方体的对角线,即球的半径.又因为球的表面积.故选B.【考点】1.球的内接正方体.2.球的表面积公式.3.长方体的对称性.4.若圆锥的表面积,侧面展开图的圆心角为,则该圆锥的体积为______.【答案】【解析】设该圆锥的底面圆的半径为,母线长为,因为侧面展开图的圆心角为,所以,因为圆锥的表面积,所以,所以该圆锥的体积为【考点】本小题主要考查圆锥的侧面积和表面积的关系以及圆锥的体积计算.点评:解决本题的关键是正确运用圆锥中相应的计算公式、圆锥的侧面展开图的关系等求出,进而求出圆锥的高,然后利用圆锥的体积公式计算体积.5.某高速公路收费站入口处的安全标识墩如图1所示。
高三数学空间几何体试题答案及解析1.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.B.C.1D.【答案】C【解析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1故选C点评:本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.2.(2013•天津)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③【答案】C【解析】①由球的体积公式V=可知,若一个球的半径缩小到原来的,则其体积缩小到原来的;故①正确;②若两组数据的平均数相等,则它们的标准差不一定相等,如2,2,2和1,2,3;这两组数据的平均数相等,它们的标准差不相等,故②错;③圆的圆心到直线x+y+1=0的距离d==半径r,故直线x+y+1=0与圆相切,③正确.故选C.3.如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A .8B .9C .10D .11【答案】A【解析】因为过EF 做垂直于CD (AB )的平面垂直平分CD ,所以该平面与过AB 中点并与AB 垂直的平面平行,平面和正方体的4个侧面相交,由于EF 和正方体的侧棱不平行,所以它与正方体的六个面所在的平面相交的平面个数为4.同理与CE 相交的平面有4个,共8个,选A.【考点】该题主要考查空间点、线、面的位置关系,考查空间直线与平面的平行与相交,考查空间想象能力和逻辑思维能力.4. 如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,,是中点.(1)证明:平面平面;(2)求点到平面的距离.【答案】(1)详见解析;(2)【解析】(1)根据中位线可得∥,从而可证得∥平面。
高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
高中数学立体几何高难度练习题及参考答案2023【题目1】已知立方体ABCDEFGH的棱长为a,M为AD的中点,N为BF的中点,P为MN的中点。
求证:四边形MNHP是一个矩形。
【解答1】根据题意,我们可以先求出MN的长度。
由于M为AD的中点,因此DM = a/2。
同理,BN = a/2。
根据勾股定理,可以得到三角形MND的斜边ND的长度:ND = √(MN² + DM²)= √(MN² + (a/2)²)根据三角形BNF的性质,可以得到BNF是一个等腰直角三角形,因此NF = BN = a/2。
同理,我们可以计算出FP的长度:FP = NF = a/2最后,我们可以比较四边形MNHP的对角线长度。
根据反证法,如果MNHP不是一个矩形,那么MN和HP的长度应该不相等,即MN ≠ HP。
假设MN > HP,即MN² > HP²由于HP = FP = a/2,我们可以得到:MN² > (a/2)²将MN²和(a/2)²的值代入,得到:(MN² + (a/2)²) > (a/2)²经过整理化简,可得:MN > a/2这与MN = a/2矛盾,因此假设成立。
同理,可以得出假设MN < HP亦不成立。
由以上推理可知,四边形MNHP是一个矩形。
证毕。
【题目2】在三棱柱ABC-A'B'C'中,已知AB = 3,BC = 4,CA = 5,且AA'垂直于平面ABCD。
求证:A'B'² = 4² + 3² + 5²。
【解答2】根据题意,我们可以利用勾股定理和垂直平面的性质来解答此题。
首先,考虑三角形ABC。
由已知条件可知,它是一个直角三角形,且AB = 3,BC = 4,CA = 5。
高三数学空间几何体试题答案及解析1.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有3个人从不同的角度观察,结果如图所示.若记3的对面的数字为,4的对面的数字为,则 ( )A.3B.7C.8D.11【答案】C【解析】从图中可看出,与4相邻的是1、6、3、5,故与4相对的是2;与3相邻的是1、2、4、5,故与3相对的是6,所以.【考点】空间几何体.2.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有3个人从不同的角度观察,结果如图所示.若记3的对面的数字为,4的对面的数字为,则 ( )A.3B.7C.8D.11【答案】C【解析】从图中可看出,与4相邻的是1、6、3、5,故与4相对的是2;与3相邻的是1、2、4、5,故与3相对的是6,所以.【考点】空间几何体.3.已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,则旋转形成的圆柱的侧面积的最大值为.【答案】81【解析】假设矩形的一边为(),则另一边为.以x长的变为轴旋转成的圆柱的侧面积为.所以当时,.【考点】1.旋转体的知识.2.函数的最值问题.4.已知四面体的外接球的球心在上,且平面,,若四面体的体积为,则该球的表面积为()A.B.C.D.【答案】D【解析】如下图所示,由于四面体的外接球的球心在上,则为其外接球的一条直径,因此,设球的半径为,在中,,由勾股定理得,,由于为球上一点,则,且平面,所以,,所以球的表面积为,故选D.【考点】1.勾股定理;2.三角形的面积;3.三棱锥的体积;4.球的表面积5.如图所示,在正方体ABCD A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行【答案】D【解析】由于C1D1与A1B1平行,MN与C1D1是异面直线,所以MN与A1B1是异面直线,故选项D错误.6.如图,正方形BCDE的边长为a,已知AB=BC,将直角△ABE沿BE边折起,A点在平面BCDE 上的射影为D点,则对翻折后的几何体有如下描述:(1)AB与DE所成角的正切值是.(2)三棱锥B-ACE的体积是a3.(3)AB∥CD.(4)平面EAB⊥平面ADE.其中正确的叙述有(写出所有正确结论的编号).【答案】(1)(2)(4)【解析】翻折后得到的直观图如图所示.AB与DE所成的角也就是AB与BC所成的角,即为∠ABC.因为AD⊥平面BCDE,所以平面ADC⊥平面BCDE. 又因为四边形BCDE为正方形,所以BC⊥CD.可得BC⊥平面ACD.所以BC⊥AC.因为BC=a,AB=BC=a,则AC== a.在Rt△ABC中,tan∠ABC==.故(1)正确;由AD==a,可得VB-ACE =VA-BCE=×a2·a=,故(2)正确;因为AB与CD异面,故(3)错;因为AD⊥平面BCDE,所以平面ADE⊥平面BCDE.又BE⊥ED,所以BE⊥平面ADE,故平面EAB⊥平面ADE,故(4)正确.7.如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.(Ⅰ)证明:平面ADE∥平面BCF;(Ⅱ)求二面角D-AE-F的正切值.【答案】(Ⅰ)利用线线平行,则面面平行证明,即可得证;(Ⅱ).【解析】(Ⅰ)先证明四边形为平行四边形得,又,所以平面平面;(Ⅱ)建立空间直角坐标系,先求出平面的一个法向量,再求出平面的一个法向量,然后利用公式即可求出余弦值为,进而求出正切值.试题解析:(Ⅰ)取的中点,的中点,连接.则,又平面平面,所以平面,同理平面,所以又易得,所以四边形为平行四边形,所以,又,所以平面平面. (6分)(Ⅱ)建立如图所示的空间直角坐标系,设,则,,,,,.设平面的一个法向量是,则,令,得. (9分)设平面的一个法向量是,则令,得.所以,易知二面角为锐二面角,故其余弦值为,所以二面角的正切值为. (12分)【考点】1.平面与平面垂直的判定方法;2.二面角的求法.8.已知某四棱锥的三视图,如图。
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
(数学 2 必修)第一章空间几何体[ 基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A. 棱台B. 棱锥C. 棱柱D. 都不对主视图左视图俯视图2.棱长都是1的三棱锥的表面积为()A. 3B. 2 3C. 3 3D. 4 33.长方体的一个顶点上三条棱长分别是3, 4,5 ,且它的8 个顶点都在同一球面上,则这个球的表面积是()A.25 B.50 C.125 D.都不对4.正方体的内切球和外接球的半径之比为()A. 3 :1 B.3: 2 C.2: 3 D.3:35.在△ABC中,AB BC ABC ,若使绕直线BC 旋转一周,2, 1.5, 120则所形成的几何体的体积是()A. 92B.72C.52D.326.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长分别是9和15 ,则这个棱柱的侧面积是()A.130 B.140 C.150 D.160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,. .专业知识分享. .顶点最少的一个棱台有________条侧棱。
2.若三个球的表面积之比是1: 2 :3,则它们的体积之比是_____________。
3.正方体ABCD A1B1C1D1 中,O是上底面ABCD 中心,若正方体的棱长为a,则三棱锥O AB D 的体积为_____________。
1 14.如图,E,F 分别为正方体的面ADD1 A1 、面BCC1B1 的中心,则四边形B F D1E 在该正方体的面上的射影可能是____________ 。
5.已知一个长方体共一顶点的三个面的面积分别是 2 、 3 、 6 ,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15 ,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
高二数学空间几何体试题答案及解析1.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20B.15C.12D.10【答案】D【解析】由图可知对于上底面的每一个顶点,在下底面有两个顶点与其连线可成为五棱柱的对角线,故五棱柱的对角线的条数共有条.【考点】正五棱柱的几何特征.2.设长方体的三条棱长分别为、、,若长方体所有棱长度之和为,一条对角线长度为,体积为,则等于( ).A.B.C.D.【答案】A【解析】设长方体的长、宽、高分别为a,b,c,由题意可知,a+b+c=6…①,abc=2…②,a2+b2+c2=25…③,由①式平方-②可得ab+bc+ac=…④,④÷②得: =,故选A【考点】本题考查了长方体的有关知识点评:此类问题主要考查了点、线、面间的距离计算,考查空间想象能力、运算能力,是基础题.3.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于.【答案】【解析】设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是对角线O1O2=OE,而OE=,∴两圆心的距离O1O2=【考点】本题考查了球的有关概念,两平面垂直的性质.点评:求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.4.如图,已知正三棱柱的各条棱长都相等,是侧棱的中点,则异面直线所成的角的大小是【答案】【解析】根据已知的的各条棱长都相等,设棱长为2,那么可知CM=1,且AB1=,那么在该三棱柱的下方再补上一个三棱柱,将BM平移到线面的三棱柱内,然后结合已知的线段长可以解得,三边长为,那么利用解三角形余弦定理可知所求的角为直角,故答案为【考点】本试题考查了异面直线的所成的角。
点评:解决异面直线所成的角,关键的是将其平移到一个平面内,然后利用三角形的余弦定理得到结论。
高一数学空间几何体试题答案及解析1.长方体的表面积是24,所有棱长的和是24,则对角线的长是().A. B.4 C.3D.2【答案】B【解析】设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.【考点】长方体的结构特征,面积和棱长的关系.2.如图是一平面图形的直观图,斜边,则这个平面图形的面积是()A.B.1C.D.【答案】D【解析】根据直观图可知,根据直观图与平面图的关系可知,平面图中, ,在轴上,且 ,所以.【考点】直观图与平面图的关系3.某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆,三视图尺寸如图所示(单位cm);(1)求出这个工件的体积;(2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米1元,现要制作10个这样的工件,请计算喷漆总费用(精确到整数部分).【答案】(1) ;(2)314元【解析】(1)根据三视图可知该工件是一个圆锥的形状,其中圆的半径为2,母线长为3,所以圆锥的高 .又根据圆锥的体积公式 .可得 .故填 .(2)因为圆锥的表面积公式为.又因为,.所以.所以10个共要.所以共需要元.所以填314元.试题解析:(1)由三视图可知,几何体为圆锥,底面直径为4,母线长为3, 2分设圆锥高为,则 4分则 6分(2)圆锥的侧面积, 8分则表面积=侧面积+底面积=(平方厘米)喷漆总费用=元 11分【考点】1 三视图 2 圆锥的体积 3 圆锥的表面积4.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。
故选C。
【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。
5.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(Ⅰ)求证:直线平面;(Ⅱ)求点到平面的距离.【答案】(Ⅰ)取的中点为,连接,推出,,且,利用四边形为平行四边形,得到,所以直线平面.(Ⅱ)点到平面的距离为.【解析】(Ⅰ)取的中点为,连接,因为为的中点,为中点,所以,,且,所以四边形为平行四边形,所以,又因为,所以直线平面.(Ⅱ)由已知得,所以,因为底面三角形为正三角形,为中点,所以, 所以,由(Ⅰ)知,所以,因为,所以,,设点到平面的距离为,由等体积法得,所以,得,即点到平面的距离为.【考点】正三棱柱的几何特征,平行关系,垂直关系,体积计算,距离计算。
【高中数学】数学复习题《空间向量与立体几何》知识点练习一、选择题1.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤ ⎥⎝⎦④三棱锥1D APC -的体积不变 A .①② B .①②④C .③④D .①④【答案】B 【解析】 【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.2.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.3.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A .7B .3C .1+3D .2【答案】A 【解析】 【分析】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值,Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=.所以11=90+60=150MA D ∠o o o2211111111132cos 13223()72MD A D A M A D A M MA D ∴=+-∠=+-⨯⨯-⋅⨯=故选A . 【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.4.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A .23B .13C .12D .34【答案】B 【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯, 选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.5.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥β B .若α⊥β,n ∥α,则n ⊥β C .若m ∥α,m ∥β,则α∥β D .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β 【答案】D 【解析】 【分析】根据直线、平面平行垂直的关系进行判断.【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误; 在D 中,若m ⊥α,m ⊥β,则α∥β, ∴若n ⊥α,则n ⊥β,故D 正确. 故选:D. 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.6.一个几何体的三视图如图所示,则该几何体的体积为A .238 B .823+C .283D .10【答案】A 【解析】 【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可. 【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+232832V =⨯⨯=, 故选A. 【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.7.如图,在正方体1111ABCD A B C D - 中,,E F 分别为111,B C C D 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠ 的最大值是( )A .2B .2C .22D .32【答案】C 【解析】分析:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,则AO =P PM ,从而A 1P=C 1M ,由此能求出tan ∠APA 1的最大值.详解:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,设正方形ABCD ﹣A 1B 1C 1D 1中棱长为1,∵在正方形ABCD ﹣A 1B 1C 1D 1中,E ,F 分别为B 1C 1,C 1D 1的中点, 点P 是底面A 1B 1C 1D 1内一点,且AP ∥平面EFDB , ∴AO =P PM ,∴A 1P=C 1M=244AC =, ∴tan ∠APA 1=11AA A P242. ∴tan ∠APA 1的最大值是2. 故选D .点睛:本题考查角的正切值的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查运算求解能力,是中档题.8.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .3 B .13C .58 D .387【答案】C 【解析】 【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值. 【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得224442AB =+=,所以2242AC BC CD AB ⋅===. 由勾股定理得2222115229CF CC C F =+=+=,2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得())()22229222958cos 22922CDF +-∠==⨯⨯.故选:C. 【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.9.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A 3B .πC .3πD .12π【答案】C 【解析】该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,把这个三棱锥放到正方体中,即可求出其外接球的表面积. 【详解】由三视图可知,该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,如图所示该几何体是棱长为1的正方体中的三棱锥1A BCD AB BC BD -===,.所以该三棱锥的外接球即为此正方体的外接球,球的直径2r 为正方体体对角线的长. 即22221113r =++=. 所以外接球的表面积为243r ππ=. 故选:C . 【点睛】本题考查几何体的三视图,考查学生的空间想象能力,属于基础题.10.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥; ②若//αβ,m α⊥,则m β⊥; ③若//m α,//n α,则//m n ; ④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( ) A .①和② B .②和③C .③和④D .①和④【答案】A 【解析】 【分析】逐一分析命题①②③④的正误,可得出合适的选项. 【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确; 对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误. 故选:A.本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.11.如图,正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为a ,侧棱长为2a ,则1AC 与侧面11ABB A 所成的角是( )A .30°B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法能求出1AC 与侧面11ABB A 所成的角. 【详解】解:以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系, 则3(a A ,2a ,0),1(0C ,02)a ,13(a A 2a 2)a ,(0B ,a ,0), 13(a AC =u u u u r ,2a -2)a ,3(a AB =u u u r ,2a ,0),1(0AA =u u u r ,02)a , 设平面11ABB A 的法向量(n x =r,y ,)z ,则13·022·20a a n AB x y n AA az ⎧=-+=⎪⎨⎪==⎩u u u v v u u u v v ,取1x =,得(1n =r 3,0),设1AC 与侧面11ABB A 所成的角为θ,则111||31sin |cos ,|2||||23n AC a n AC n AC a θ=<>===r u u u u rr u u u u r g r u u u ur g , 30θ∴=︒,1AC ∴与侧面11ABB A 所成的角为30°.故选:A .【点睛】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.12.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( ) A .39B .33C .13D .3【答案】B 【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB = ∴132232ABC S ∆=⨯⨯=∵CD ⊥底面ABC ,//AE CD ,2CD AE == ∴四边形AEDC 为矩形,则F 为EC 与AD 的中点 ∴三棱锥F ABC -的高为112CD = ∴三棱锥F ABC -的体积为13313V ==故选B.13.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( )A .αβγ>>B .γβα>>C .βαγ>>D .不确定【答案】A 【解析】 【分析】D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos2POAPB a α=∠,sin cos 2PO CPB a β=∠,sin cos2POCPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO POAPB PD a α==∠,同理可得:sin cos 2PO CPB a β=∠,sin cos2POCPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>.故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.14.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)()A.441斛B.431斛C.426斛D.412斛【答案】A【解析】【分析】由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出.【详解】解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.∴体积117127812714V=⨯⨯⨯+⨯⨯=,2∴粮仓可以储存的粟米714441=≈斛.1.62故选:A.15.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为()A .152πB .12πC .112π D .212π【答案】A 【解析】 【分析】由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可. 【详解】由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥,因为31149=3=8832V ππ⨯⨯球, 221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A 【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.16.已知直线和不同的平面,下列命题中正确的是A .//m m αβαβ⊥⎫⇒⎬⊥⎭ B .m m αββα⊥⎫⇒⊥⎬⊂⎭C .//////m m ααββ⎫⇒⎬⎭ D .////m m αββα⎫⇒⎬⊂⎭【答案】D 【解析】 【分析】对各个选项逐一进行分析即可 【详解】A ,若αβ⊥,m β⊥,则有可能m α⊂,故A 错误B ,若αβ⊥,m α⊂,则m 与β不一定垂直,可能相交或平行,故B 错误C ,若//m α,//m β则推不出//αβ,面面平行需要在一个面内找出两条相交线与另一个平面平行,故C 错误D ,若//αβ,m α⊂,则有//m β,故D 正确故选D 【点睛】本题考查了线面平行与面面平行的判断和性质,在对其判定时需要运用其平行的判定定理或者性质定理,所以要对课本知识掌握牢固,从而判断结果17.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是边OA ,CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量OA u u u v ,OB uuu v ,OC u u u v 表示向量OG u u u v是( )A .2233OG OA OB OC =++u u u v u u u v u u u v u u u vB .122233OG OA OB OC u u u v u u u v u u u v u u u v =++C .111633OG OA OB OC =++u u u v u u u v u u u v u u u vD .112633OG OA OB OC =++u u u v u u u v u u u v u u u v【答案】C 【解析】 【分析】根据所给的图形和一组基底,从起点O 出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论. 【详解】2OG OM MG OM MN 3=+=+u u u r u u u u r u u Q u u r u u u u r u u u u r,()()2121111OM MO OC CN OM OC OB OC OA OB OC 3333633u u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u ur u u u r u u u r =+++=++-=++111OG OA OB OC 633u u u r u u u r u u u r u u u r ∴=++ ,故选:C . 【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程.18.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32 D .52【答案】C 【解析】 【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可. 【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点, 俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.19.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π【答案】C 【解析】 【分析】根据题意可知,圆柱的底面半径为1,高为2,利用圆柱的体积公式即可求出结果。
1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.解答:解:(Ⅰ)取PD的中点F,连接EF,AF,∵E为PC中点,∴EF∥CD,且,在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.(4分)(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,∴PD⊥AD.(5分)如图,以D为原点建立空间直角坐标系D﹣xyz.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分),,∴,BC⊥DB,(8分)又由PD⊥平面ABCD,可得PD⊥BC,∴BC⊥平面PBD.(9分)(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)∵,,且λ∈(0,1)∴Q(0,2λ,1﹣λ),(11分)设平面QBD的法向量为=(a,b,c),,,由,,得,∴,(12分)∴,(13分)因λ∈(0,1),解得.(14分)4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱S D⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.解答:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF 中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.。
高中几何体试题及答案大全试题一:直线与平面的关系题目:在空间直角坐标系中,直线l过点A(1, 2, 3)且与向量(2, -1, 0)平行。
求证:直线l与平面x - 2y + z = 6平行。
答案:首先,直线l的参数方程可以表示为:\[ x = 1 + 2t, \quad y = 2 - t, \quad z = 3 \]其中\( t \)为参数。
接下来,将直线l的参数方程代入平面方程x - 2y + z = 6,得到:\[ (1 + 2t) - 2(2 - t) + 3 = 6 \]\[ 1 + 2t - 4 + 2t + 3 = 6 \]\[ 4t = 6 \]\[ t = \frac{3}{2} \]由于直线l的参数方程中,参数\( t \)可以取任意实数,而代入平面方程后,\( t \)有唯一解,这表明直线l与平面x - 2y + z = 6平行。
试题二:立体几何体积计算题目:一个正方体的边长为a,求其外接球的体积。
答案:正方体的外接球的直径等于正方体的对角线长度,即:\[ 2R = a\sqrt{3} \]其中\( R \)为外接球的半径。
由此可得外接球的半径为:\[ R = \frac{a\sqrt{3}}{2} \]球的体积公式为:\[ V = \frac{4}{3}\pi R^3 \]代入\( R \)的值,得到正方体外接球的体积为:\[ V = \frac{4}{3}\pi \left(\frac{a\sqrt{3}}{2}\right)^3 =\frac{\pi a^3\sqrt{3}}{2} \]试题三:圆锥曲线问题题目:已知椭圆的方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \),其中a > b > 0。
求椭圆的焦点坐标。
答案:椭圆的焦点位于主轴上,根据椭圆的性质,焦点到椭圆中心的距离为c,满足以下关系:\[ c^2 = a^2 - b^2 \]假设焦点位于x轴上,焦点的坐标为\( (c, 0) \)和\( (-c, 0) \)。
高一数学空间几何体试题答案及解析1.两个球的体积之比是,那么这两个球的表面积之比是()A.B.C.D.【答案】B【解析】设半径分别为r,R;则故选B2.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为()A.45πB.27πC.36πD.54π【答案】D【解析】因为球的表面积为36π,所以球的半径为3,因为该球外切于圆柱,所以圆柱的底面半径为3,高为6,所以圆柱的表面积.3.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为 .【答案】或0【解析】依题意可得,三棱锥中较长的两条棱长为,设这两条棱所在直线的所成角为。
若这两条棱相交,则这两条棱长所在面的第三条棱长为,由余弦定理可得。
若这两条棱异面,如图,不妨设,取中点,连接。
因为,所以有,从而有面,所以,则4.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为,体积为,则这个球的表面积是()A.B.C.D.【答案】C【解析】正四棱柱的底面积为,正四棱柱的底面的边长为,正四棱柱的底面的对角线为,正四棱柱的对角线为,而球的直径等于正四棱柱的对角线,即,5.将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了()A.B.12a2C.18a2D.24a2【答案】B【解析】27个全等的小正方体的棱长为边长为a的正方体的表面积为27个全等的小正方体的表面积和为则表面积增加了。
故选B6.两个球体积之和为12π,且这两个球大圆周长之和为6π,那么这两球半径之差是()A.B.1C.2D.3【答案】B【解析】7.直径为10cm的一个大金属球,熔化后铸成若干个直径为2cm的小球,如果不计损耗,可铸成这样的小球的个数为()A.5B.15C.25D.125【答案】D【解析】设个数为则故选D8.与正方体各面都相切的球,它的表面积与正方体的表面积之比为()A.B.C.D.【答案】B【解析】设正方体棱长为a,球半径为r;由条件知则球表面积正方体的表面积之比为故选B9.球的表面积扩大为原来的4倍,则它的体积扩大为原来的___________倍【答案】8【解析】设球半径为扩大后球半径为则于是扩大后体积为所以它的体积扩大为原来的8倍.10.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是()A.①②B.①C.③④D.①②③④【答案】A【解析】由斜二测画法规则知:①正确;平行性不变,故②正确;正方形的直观图是平行四边形,③错误;因为平行于y′轴的线段长减半,平行于x′轴的线段长不变,故④错误.故选A11.下列说法中正确的是()A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形【答案】D【解析】坐标轴上的两条直线的直观图是成角的两条直线;梯形的直观图不可能是平行四边形,平行的一组对边长度不相等,它们的直观图的长度也不相等;矩形的直观图是平行四边形,不可能是梯形;正方形的直观图是平行四边形。
【⾼考压轴题】空间⽴体⼏何经典⼤题汇编100题(含答案)【⾼考压轴题】空间⽴体⼏何经典⼤题汇编100题(含答案)未命名⼀、解答题1.直三棱柱'''ABC A B C -中,底⾯ABC 是边长为2的正三⾓形,'D 是棱''A C 的中点,且'AA =.(1)若点M 为棱'CC 的中点,求异⾯直线'AB 与BM 所成⾓的余弦值;(2)若点M 在棱'CC 上,且'A M ⊥平⾯''AB D ,求线段CM 的长.2.如图,在三棱台DEF ABC -中,2AB DE =,CF ⊥平⾯ABC ,AB BC ⊥,45BAC ∠=?,CF DE =,,G H 分别为,AC BC 的中点.(1)求证://BD 平⾯FGH ;(2)求平⾯FGH 与平⾯ACFD 所成⾓(锐⾓)的⼤⼩.3.在直三棱柱111ABC A B C -中,AC BC ==12AB AA ==,E 是棱1CC 的中点.(1)求证:平⾯1A AB ⊥平⾯1A BE ; (2)求⼆⾯⾓1A BE A --的余弦值.4.如图,四棱锥P ABCD -中,PA ⊥平⾯,,ABCD AB AD CD BC ==. (1)求证:平⾯PBD ⊥平⾯PAC ;(2)若120,60B A D B CD ∠=∠=,且P B P D ⊥,求⼆⾯⾓B PC D --的平⾯⾓的⼤⼩.5.如图,在三棱柱111ABC A B C -中,四边形11BB C C 是矩形,11AB B C ⊥,平⾯1A BC ⊥平⾯11AB C .(1)求证:11AB A B ⊥;(2)若113B C =,4AB =,160ABB ?∠=,求⼆⾯⾓1A A C B --的余弦值.6.如图,在正⽅体1111ABCD A B C D -中,,E F 分别是111,CC B C 的中点.(1)求证:1A F //平⾯1AD E ;(2)求⼆⾯⾓1D E A DC --余弦值.7.在多⾯体ABCDEF 中,四边形ABCD 是正⽅形,//EF AB ,1DE EF ==,2DC BF ==,30EAD ?∠=.(Ⅰ)求证:AE ⊥平⾯CDEF ;(Ⅱ)在线段BD 上确定⼀点G ,使得平⾯EAD 与平⾯FAG 所成的⾓为30?. 8.已知四棱锥P ABCD -中,平⾯PCD ⊥平⾯ABCD ,且22PD PC BC ===, 2,3BCD ABD π∠=是等边三⾓形,AC B D E =. (1)证明:PC ⊥平⾯PAD ; (2)求⼆⾯⾓P AB C --的余弦值.9.已知直⾓梯形ABCD 中,//AB CD ,AB AD ⊥,22AB AD CD ===,E 、F 分别是边AD 、BC 上的点,且//EF AB ,沿EF 将EFCD 折起并连接成如图的多⾯体CD ABFE -,折后BE ED ⊥.(Ⅰ)求证:AE FC ⊥;(Ⅱ)若折后直线AC 与平⾯ABFE 所成⾓θABCD ⊥平⾯FCB .10.如图,在四棱锥S ABCD -中,SA ⊥平⾯ABCD ,且90ABC BCD ∠=∠=?,22SA AB BC CD ====,E 是边SB 的中点.(1)求证:AE ⊥平⾯SBC ;(2)若F 是线段SB 上的动点(不含端点):问当BF FS为何值时,⼆⾯⾓D CF B--余弦值为10-. 11.如图,已知三棱柱111ABC A B C -,侧⾯11BCC B ABC ⊥底⾯. (Ⅰ)若,M N 分别是1,AB AC 的中点,求证:11//MN BCC B 平⾯; (Ⅱ)若三棱柱111ABC A B C -的各棱长均为2,侧棱1BB 与底⾯ABC 所成的⾓为60?,问在线段11A C 上是否存在⼀点P ,使得平⾯111B CP ACC A ⊥平⾯?若存在,求1C P 与1PA 的⽐值,若不存在,说明理由.12.已知某⼏何体直观图和三视图如图所⽰,其正视图为矩形,侧视图为等腰直⾓三⾓形,俯视图为直⾓梯形.(1)求证:BN 11C B N ⊥平⾯;(2)11sin C N CNB θθ设为直线与平⾯所成的⾓,求的值;(3)设M 为AB 中点,在BC 边上找⼀点P ,使MP //平⾯1CNB 并求BPPC的值. 13.如图,在直三棱柱111ABC A B C -中,,D E 分别是棱,BC AB 的中点,点F 在1CC 棱上,且AB AC =,13AA=,2BC CF ==.(1)求证:1//C E 平⾯ADF ;(2)当2AB =时,求⼆⾯⾓111A C E B --的余弦值.14.如图,在直三棱柱111ABC A B C -中,已知1CA CB ==,12AA =,90BCA ?∠=.(1)求异⾯直线1BA 与1CB 夹⾓的余弦值;(2)求⼆⾯⾓1B AB C --平⾯⾓的余弦值.15.已知正三棱柱中,、分别为的中点,设.(1)求证:平⾯平⾯;(2)若⼆⾯⾓的平⾯⾓为,求实数的值,并判断此时⼆⾯⾓是否为直⼆⾯⾓,请说明理由.16.在直三棱柱中,13,2,AA AB BC AC D ====是AC 中点. (Ⅰ)求证:1B C //平⾯1A BD ;(Ⅱ)求点1B 到平⾯1A BD 的距离;(Ⅲ)求⼆⾯⾓11A DB B --的余弦值.17.如图,在三棱柱ABC -111A B C 中,侧棱与底⾯垂直,090BAC ∠=,AB AC =1AA =2=,点,M N 分别为1A B 和11B C 的中点.(1)证明:1A M ⊥MC ;(2)求⼆⾯⾓N MC A --的正弦值.18.如图,四边形ABCD 是正⽅形,EA ⊥平⾯ABCD ,//EA PD ,22AD PD EA ===,F ,G ,H 分别为PB ,EB ,PC 的中点.(1)求证://FG 平⾯PED ;(2)求平⾯FGH 与平⾯PBC 所成锐⼆⾯⾓的⼤⼩;(3)在线段PC 上是否存在⼀点M ,使直线FM 与直线PA 所成的⾓为3π若存在,求出线段PM 的长;若不存在,请说明理由.19.已知五边形ABCDE 是由直⾓梯形ABCD 和等腰直⾓三⾓形ADE 构成,如图所⽰, AB AD ⊥, AE DE ⊥, AB CD ,且224AB CD DE ===,将五边形ABCDE 沿着AD 折起,且使平⾯ABCD ⊥平⾯ADE .(Ⅰ)若M 为DE 中点,边BC 上是否存在⼀点N ,使得MN 平⾯ABE ?若存在,求BNBC的值;若不存在,说明理由;(Ⅱ)求⼆⾯⾓A BE C --的平⾯⾓的余弦值.20.如图,在以,,,,,A B C D E F 为顶点的多⾯体中,四边形ACDF 是菱形,60,,//FAC AC BC AB DE ∠=?⊥, //,2,1,BC EF AC BC BF ===(1)求证:BC ⊥平⾯ACDF ;(2)求⼆⾯⾓C AE F --的余弦值.21.在PABC 中,4PA =,PC =45P ∠=?,D 是PA 中点(如图1).将PCD ?沿CD 折起到图2中1PCD ?的位置,得到四棱锥1P ABCD -.(1)将PCD ?沿CD 折起的过程中,CD ⊥平⾯1P DA 是否成⽴?并证明你的结论;(2)若1P D 与平⾯ABCD 所成的⾓为60°,且1PDA ?为锐⾓三⾓形,求平⾯1P AD 和平⾯1P BC 所成⾓的余弦值.22.四棱锥P ABCD -中,侧⾯PDC 是边长为2的正三⾓形,且与底⾯垂直,底⾯ABCD 是60ADC ∠=?的菱形,M 为PB 的中点,Q 为CD 的中点.(1)求证:PA CD ⊥;(2)求AQ 与平⾯CDM 所成的⾓.23.如图,在正⽅体ABCD – A 1B 1C 1D 1中,点E ,F ,G 分别是棱BC ,A 1B 1,B 1C 1的中点.(1)求异⾯直线EF 与DG 所成⾓的余弦值;(2)设⼆⾯⾓A —BD —G 的⼤⼩为θ,求 |cos θ| 的值.24.如图,四边形ABCD 与BDEF 均为菱形, 60DAB DBF ∠=∠=?,且F A F C =.(1)求证:AC ⊥平⾯BDEF ;(2)求直线AF 与平⾯BCF 所成⾓的正弦值.25.如图,在正⽅体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上⼀点,且异⾯直线1B E 与BG 所成⾓的余弦值为25.(1)证明:E 为AB 的中点;(2)求平⾯1B EF 与平⾯11ABC D 所成锐⼆⾯⾓的余弦值.26.如图,ABC ?中,02,4,90AC BC ACB ==∠=,,D E 分别是,AC AB 的中点,将ADE ?沿DE 折起成PDE ?,使⾯PDE ⊥⾯BCDE ,,H F 分别是PD 和BE 的中点,平⾯BCH 与PE ,PF 分别交于点,I G .(1)求证://IH BC ;(2)求⼆⾯⾓P GI C --的正弦值.27.如图,矩形ABCD 中,6AB =,AD =点F 是AC 上的动点.现将矩形ABCD沿着对⾓线AC 折成⼆⾯⾓D AC B '--,使得D B '=.(Ⅰ)求证:当AF =D F BC '⊥;(Ⅱ)试求CF 的长,使得⼆⾯⾓A D F B -'-的⼤⼩为4π.28.如图,在三棱锥P ABC -中,,,CP CA CB 两两垂直且相等,过PA 的中点D 作平⾯α∥BC ,且α分别交PB ,PC 于M 、N ,交,AB AC 的延长线于,E F .(Ⅰ)求证:EF ⊥平⾯PAC ;(Ⅱ)若2AB BE =,求⼆⾯⾓P DM N --的余弦值.29.如图1,在M B C △中,24BM BC ==,BM BC ⊥,A ,D 分别为BM ,MC 的中点.将MAD △沿AD 折起到PAD △的位置,使90PAB ∠=,如图2,连结PB ,PC .(Ⅰ)求证:平⾯PAD ⊥平⾯ABCD ;(Ⅱ)若E 为PC 中点,求直线DE 与平⾯PBD 所成⾓的正弦值;(Ⅲ)线段PC 上是否存在⼀点G ,使⼆⾯⾓G AD P --求出PGPC的值;若不存在,请说明理由.30.如图,在四棱锥P ABCD -中,PA ⊥平⾯ABCD ,底⾯ABCD 是菱形.(1)求证:BD ⊥平⾯PAC ;(2)若PA AB BD ==,求PC 与平⾯PBD 所成⾓的正弦值.31.如图,四棱锥P ABCD -中,底⾯ABCD 为梯形,PD ⊥底⾯ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===过A 作⼀个平⾯α使得//α平⾯PBC .(1)求平⾯α将四棱锥P ABCD -分成两部分⼏何体的体积之⽐;(2)若平⾯α与平⾯PBC PA 与平⾯PBC 所成⾓的正弦值.32.如图⼏何体ADM-BCN 中,ABCD 是正⽅形,CD //NM ,,AD MD CD CN ⊥⊥,MDC ∠=120o ,30CDN ∠=,24MN MD ==.(Ⅰ)求证://AB CDMN 平⾯;(Ⅱ)求证:DN AMD ⊥平⾯;(Ⅲ)求⼆⾯⾓N AM D --的余弦值.33.如图所⽰,在四棱锥P ABCD -中,底⾯ABCD 为正⽅形,PA ⊥平⾯ABCD ,且1PA AB ==,点E 在线段PC 上,且2PE EC =. (Ⅰ)证明:平⾯BDE ⊥平⾯PCD ;(Ⅱ)求⼆⾯⾓P BD E --的余弦值.34.在如图所⽰的多⾯体ABCDE 中,AB ⊥平⾯ACD ,DE ⊥平⾯ACD ,AC AD CD DE 2AB 1G =====,,为AD 中点,F 是CE 的中点. (1)证明:BF 平⾯ACD (2)求点G 到平⾯BCE 的距离.35.如图所⽰,四棱锥P ABCD -的侧⾯PAD ⊥底⾯ABCD ,底⾯ABCD 是直⾓梯形,且//,AB CD AB AD ⊥,12CD PD AD AB ===,E 是PB 中点.(1)求证:CE ⊥平⾯PAB ;(2)若4CE AB ==,求直线CE 与平⾯PDC 所成⾓的⼤⼩.36.如图,在四棱锥E ABCD -中,ABD ?是正三⾓形,BCD ?是等腰三⾓形,120BCD ∠=,EC BD ⊥.(1)求证:BE DE =;(2)若AB =AE =EBD ⊥平⾯ABCD ,直线AE 与平⾯ABD 所成的⾓为45°,求⼆⾯⾓B AE D --的余弦值.37.如图1,在平⾏四边形11ABB A 中,160ABB ∠=?,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平⾏四边形11ABB A 1沿C 1C 折起如图2所⽰,连接1B C 、1B A 、11B A .(1)求证:11AB CC ⊥;(2)若1AB =11C AB A --的正弦值.38.如图,已知四棱锥S ABCD -中,底⾯ABCD 是边长为2的菱形,60BAD ∠=?,SA SD SB ===点E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=,SA //平⾯BEF .(1)求实数λ的值;(2)求⼆⾯⾓S BE F --的余弦值.39.如图所⽰,在四棱锥P ABCD -中,平⾯PAD ⊥平⾯ABCD ,底⾯ABCD 是正⽅形,且PA PD =,90APD ?∠=.(Ⅰ)证明:平⾯PAB ⊥平⾯PCD ;(Ⅱ)求⼆⾯⾓A PB C --的余弦值.40.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.41.如图,直⾓梯形BDFE 中,||EF BD ,BE BD ⊥,EF =等腰梯形ABCD 中,||AB CD ,AC BD ⊥,24AB CD ==,且平⾯BDFE ⊥平⾯ABCD . (1)求证:AC ⊥平⾯BDFE ;(2)若BF 与平⾯ABCD 所成⾓为4π,求⼆⾯⾓B DF C --的余弦值.42.在如图所⽰的⼏何体中,正⽅形ABEF 所在的平⾯与正三⾓形ABC 所在的平⾯互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点.(1)求证://AD 平⾯BFM ;(2)求⾯EDF 与⾯ADB 所成锐⼆⾯⾓的⼤⼩.43.如图,四⾯体中,分别是的中点,(1)求证:平⾯;(2)求直线与平⾯所成⾓的正弦值.44.如图,已知正⽅体ABCD A B C D ''''-的棱长为1,E ,F ,G ,H 分别是棱AB ,CC ',AA ',C D ''的中点.(1)求证:EF 平⾯GHD ;(2)求直线EF 与BD '所成的⾓.45.如图,在四棱锥P -ABCD 中,底⾯ABCD 是边长为2的菱形,∠ABC =60°,PAB ?为正三⾓形,且侧⾯P AB ⊥底⾯ABCD ,E 为线段AB 的中点,M 在线段PD 上.(I )当M 是线段PD 的中点时,求证:PB // 平⾯ACM ;(II )求证:PE AC ⊥;(III )是否存在点M ,使⼆⾯⾓M EC D --的⼤⼩为60°,若存在,求出PMPD的值;若不存在,请说明理由.46.长⽅形ABCD 中,2AB AD =,M 是DC 中点(图1).将△ADM 沿AM 折起,使得AD BM ⊥(图2)在图2中:(1)求证:平⾯ADM ⊥平⾯ABCM ;(2)在线段BD 上是否存点E ,使得⼆⾯⾓E AM D --为⼤⼩为π4,说明理由. 47.如下图,在空间直⾓坐标系O xyz -中,正四⾯体(各条棱均相等的三棱锥)ABCD 的顶点,,A B C 分别在x 轴,y 轴,z 轴上.(Ⅰ)求证://CD 平⾯OAB ;(Ⅱ)求⼆⾯⾓C AB D --的余弦值.48.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平⾯ABCD ,底⾯ABCD 为梯形, //AD BC ,AB DC ==1122AD AA BC ===,点P ,Q 分别为11A D ,AD 的中点.(Ⅰ)求证://CQ 平⾯1PAC ;(Ⅱ)求⼆⾯⾓1C AP D --的余弦值;(Ⅲ)在线段BC 上是否存在点E ,使PE 与平⾯1PAC 所成⾓的正弦值是21若存在,求BE 的长;若不存在,请说明理由.49.如图在棱锥P ABCD -中,ABCD 为矩形,PD ⊥⾯ABCD ,2PB =,PB 与⾯PCD 成045⾓,PB 与⾯ABD 成030⾓.(1)在PB 上是否存在⼀点E ,使PC ⊥⾯ADE ,若存在确定E 点位置,若不存在,请说明理由;(2)当E 为PB 中点时,求⼆⾯⾓P AE D --的余弦值.50.如图所⽰,在底⾯为正⽅形的四棱柱1111ABCD A B C D -中,1111,2,3AA A B A D AB AA B π===∠=.(1)证明:平⾯1A BD ⊥平⾯11A BC ;(2)求直线1AC 与平⾯1DBC 所成⾓的正弦值.51.如图,在等腰梯形ABCD 中,060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三⾓形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证:AD BD ⊥;(2)若平⾯BEC 与平⾯AECD 所成⼆⾯⾓的平⾯⾓为0120,求直线AE 与平⾯ABD所成⾓的正弦值.52.如图,已知四棱锥P ABCD - 中,//,,3,4,4,AB CD AB AD AB CD AD AP ⊥====060PAB PAD ∠=∠=.(1)证明:顶点P 在底⾯ABCD 的射影在BAD ∠的平分线上;(2)求⼆⾯⾓B PD C --的余弦值.53.如图,三棱柱111ABC A B C -中,AB ⊥平⾯11AAC C ,12AA AB AC ===,160A AC ∠=.过1AA 的平⾯交11B C 于点E ,交BC 于点F .(l)求证:1A C ⊥平⾯1ABC ;(Ⅱ)求证:四边形1AA EF 为平⾏四边形; (Ⅲ)若是23BF BC =,求⼆⾯⾓1B AC F --的⼤⼩. 54.如图,在四棱锥P ABCD -中,底⾯ABCD 为梯形,平⾯PAD ⊥平⾯,//,ABCD BC AD ,PA PD ⊥,60,AB AD PDA E ⊥∠=为侧棱PD 的中点,且2,4AB BC AD ===.(1)证明://CE 平⾯PAB ;(2)求⼆⾯⾓A PB C --的余弦值.55.如图1,梯形ABCD 中,AD BC ∥,CD BC ⊥,1BC CD ==,2AD =,E。
1 高中数学空间几何体一、选择题(本大题共12小题,每小题5分,共60分) 1.表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为(的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A .p 32B .p 31C .p 32D .p 322 2.如图所示是一个无盖的正方体盒子展开后的平面图,.如图所示是一个无盖的正方体盒子展开后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 为(为( )A .1800B .1200 C .600D .450 3.已知三棱锥S -ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,r AC 2=,则球的体积与三棱锥体积之比是(,则球的体积与三棱锥体积之比是( ) A .p B .p 2 C .p 3 D .p 44.如图所示,如图所示,一个空间几何体的正视图、一个空间几何体的正视图、一个空间几何体的正视图、侧视图、侧视图、侧视图、俯视图为全等的等腰直角三角形,俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1 B .21 C .31 D .61 5.一平面截球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是(积是( )A .33100cm pB .33208cm pC .33500cm pD .33416cm p6.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为(.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( )A .6:5p B .2:6p C .2:pD .12:5p 7.一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分别为h 1、h 2、h 3,则h 1:h 2:h 3等于(等于( )A .1:1:3B .2:2:3C .2:2:3D .3:2:38.如图所示的一个5×4×4的长方体,阴影所示为穿透的三个洞,的长方体,阴影所示为穿透的三个洞, 那么剩下的部分的体积是(那么剩下的部分的体积是( ) A .50 B B..54 C 54 C..56 D D..582 9.9.一个正三棱锥的四个顶是半径为一个正三棱锥的四个顶是半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是(圆上,则该正三棱锥的体积是( )A .123B .43C .33D D..433 1010.如图用□表示.如图用□表示1个正方体,用□(浅黑)表示两个正方体叠加,用□(深黑)表示三个立方体叠加,示三个立方体叠加,那么右图是由那么右图是由7个立方体叠成的几何体,个立方体叠成的几何体,从正前方观察,从正前方观察,从正前方观察,可画出可画出的平面图形是(的平面图形是( ))11.11.如图所示,水平地面上有一个大球,现作如下方法测量球的大小:用一个锐角为如图所示,水平地面上有一个大球,现作如下方法测量球的大小:用一个锐角为600的三角板,斜边紧靠球面,一条直角边紧靠地面,的三角板,斜边紧靠球面,一条直角边紧靠地面,并使三角板与地面垂直,并使三角板与地面垂直,P P 为三角板与球的切点,为三角板与球的切点,如果测得PA PA==5,则球的表面积为(,则球的表面积为( ))A .p 200B .p 300C .p 3200D .p 330012.12.一个盛满水的三棱锥容器,一个盛满水的三棱锥容器,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞不久发现三条侧棱上各有一个小洞D 、E 、F ;且知SD SD::DA DA==SE SE::EB EB==CF CF::FS FS==2:1,若仍用这个容器盛水,则最多可盛原来水的(,若仍用这个容器盛水,则最多可盛原来水的( ))A .2923B .2723C .2719D .3531二、填空题(本大题共4小题,每小题4分,共16分)分)13.13.若棱长为若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为的正方体的顶点都在同一球面上,则该球的表面积为______________________________。
高中数学空间几何体练习题一.选择题(共25小题)1.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,若存在球与该“堑堵”表面所在的五个平面都相切,则图中边长a的所有可能取值组成的集合为()A.{2﹣2,2+2} B.{1,+1,﹣1}C.{2﹣2,2+2,2,4} D.{2,2+2,2﹣2} 2.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是()A.41πB.C.25πD.3.已知四边形ABCD是边长为5的菱形,对角线BD=8(如图1),现以AC为折痕将菱形折起,使点B达到点P的位置.棱AC,PD的中点分别为E,F,且四面体P ACD的外接球球心落在四面体内部(如图2),则线段EF长度的取值范围为()A.(,4)B.(1,)C.(,6)D.4.三棱锥P﹣ABC中.AB⊥BC,△P AC为等边三角形,二面角P﹣AC﹣B的余弦值为,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为()A.1B.2C.D.5.已知P,A,B,C是半径为3的球面上四点,其中P A过球心,,则三棱锥P﹣ABC的体积是()A.B.2C.D.6.在空间直角坐标系O﹣xyz中,四面体OABC各顶点坐标分别为:O(0,0,0),A(0,0,2),B(,0,0),C(0,,0).假设蚂蚁窝在O点,一只蚂蚁从O点出发,需要在AB,AC上分别任意选择一点留下信息,然后再返回O点.那么完成这个工作所需要走的最短路径长度是()A.2B.C.D.27.我国古代数学名著《九章算术•商功》中将底面是直角三角形的直三棱柱称之为“堑堵”,如图为一个堑堵ABC﹣DFE,AB⊥BC,AB=6,其体积为120,若将该“堑堵”放入一个球形容器中,则该球形容器表面积的最小值为()A.100πB.108πC.116πD.120π8.如图,在平面四边形ABCD中,满足AB=BC,CD=AD,且AB+AD=10,BD=8.沿着BD把ABD折起,使点A到达点P的位置,且使PC=2,则三棱锥P﹣BCD体积的最大值为()A.12B.12C.D.9.在棱长为2的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点,若满足|PB|+|PD1|=m的点P的个数大于6个,则m的取值范围是()A.B.C.D.10.已知长方体ABCD﹣A1B1C1D1中,AB=AA1=4,B1D与平面ABCD夹角的正弦值为,M为线段AA1的中点,点N在线段AD上,且AN=2,S∈平面A1B1C1D1.若V三棱锥S﹣BMN=V,记直线SC与CC1的夹角为θ.则tanθ的最小值为()A.B.C.D.11.已知三棱锥P﹣ABC的外接球O半径为2,球心O到△ABC所在平面的距离为1,则三棱锥P﹣ABC体积的最大值为()12.在三棱锥P﹣ABC中,△ABC是Rt△且AB⊥BC,∠CAB=30°,BC=2,点P在平面ABC的射影D点在△ABC 的外接圆上,四边形ABCD的对角线,AD>CD,若四棱锥P﹣ABCD的外接球半径为,则四棱锥P﹣ABCD的体积为()A.B.C.D.13.已知三棱锥P﹣ABC的底面是正三角形,,点A在侧面PBC内的射影H是△PBC的垂心,当三棱锥P﹣ABC体积最大值时,三棱锥P﹣ABC的外接球的体积为()A.B.C.6πD.14.在正四面体ABCD中,P,Q分别是棱AB,CD的中点,E,F分别是直线AB,CD上的动点,M是EF的中点,则能使点M的轨迹是圆的条件是()A.PE+QF=2B.PE•QF=2C.PE=2QF D.PE2+QF2=215.已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是()A.B.C.D.16.如图所示,正四面体ABCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为,则该正四面体的外接球表面积是()A.12πB.32πC.8πD.24π17.设P﹣ABCD是一个高为3,底面边长为2的正四棱锥,M为PC中点,过AM作平面AEMF与线段PB,PD分别交于点E,F(可以是线段端点),则四棱锥P﹣AEMF的体积的取值范围为()A.[,2]B.[,]C.[1,]D.[1,2]18.有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个对棱相等的三棱锥形的铁架,则此三棱锥体积的取值范围是()A.(0,]B.(0,]C.(0,]D.(0,]19.已知球O为三棱锥S﹣ABC的外接球,,则球O的表面积是()20.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经90°榫卯起来,如图,若正四棱柱的高为8,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为()(容器壁的厚度忽略不计)A.21πB.40πC.41πD.84π21.已知球O的半径为1,A,B是该球面上的两点,且线段AB=1,点P是该球面上的一个动点(不与A,B重合),则∠APB的最小值与最大值分别是()A.B.C.D.22.如图,A1B1C1D1是以ABCD为底面的长方体的一个斜截面,其中AB=4,BC=3,AA1=5,BB1=8,CC1=12,则该几何体的体积为()A.96B.102C.104D.14423.已知三棱锥P﹣ABC的四个顶点都在半径为3的球面上,AB⊥AC,则该三棱锥体积的最大值是()A.B.C.D.3224.已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=AC=,BC=,则球的表面积为()A.12πB.3πC.5πD.6π25.三棱柱ABC﹣A1B1C1的底面△ABC是正三角形,AA1⊥平面ABC,AB=2,AA1=,D为BC中点,则三棱锥A ﹣B1DC1的体积为()A.3B.C.1D.二.填空题(共5小题)26.若三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=3,SC=4,则此三棱锥的外接球的表面积是.27.若三棱锥P﹣ABC的所有定点均在球O的表面上,且AB=4,∠ACB=60°,三棱锥P﹣ABC的体积的最大值为16,则球O的表面积为.28.已知一个半圆柱的高为4,其俯视图如图所示,侧视图的面积为8,则该半圆柱的底面半圆的半径为.29.已知正三棱锥的体积为,则其表面积的最小值为.30.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为.三.解答题(共10小题)31.正三棱锥的高为1,底面边长为2,内有一个球与它的四个面都相切,求:(1)棱锥的表面积;(2)内切球的半径.32.如图,已知三棱台ABC﹣A1B1C1,AB=2A1B1,M是A1B1的中点,N在线段B1C1上,且B1N=2NC1,过点A,M,N的平面把这个棱台分为两部分,求体积较小部分与体积较大部分的体积比值.33.如图,在三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC 中点.(1)证明:A1O⊥平面ABC;(2)在BC1上是否存在一点E,使得OE∥平面A1AB?若存在,确定点E的位置;若不存在,说明理由.34.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=18,BC=24,AC=30,求球的表面积和体积.35.在△ABC中,AB=3.(1)若∠B=45°,∠C=60°,将△ABC绕直线BC旋转一周得到一个几何体,求这个几何体的体积.(2)设D是BC的中点,AD=2,cos∠BAC=,求△ABC的面积.36.在平面直角坐标系xoy中,已知四点A(2,0),B(﹣2,0),C(0,﹣2),D(﹣2,﹣2),把坐标系平面沿y 轴折为直二面角.(1)求证:BC⊥AD;(2)求三棱锥C﹣AOD的体积.37.四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.(Ⅰ)若θ=,且棱AB垂直于平面BCD,求四面体ABCD的体积;(Ⅱ)当θ=时,证明:四面体ABCD的体积为一定值;(Ⅲ)求四面体ABCD的体积.38.如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(1)求证:BC⊥平面VAC;(2)若直线AM与平面VAC所成角为,求三棱锥B﹣ACM的体积.39.如图所示,该几何体是一个由直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2(1)证明:平面P AD⊥平面ABFE;(2)若正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,求正四棱锥P﹣ABCD的高.40.如图,在△ABC中,∠C为直角,AC=BC=4.沿△ABC的中位线DE,将平面ADE折起,使得∠ADC=90°,得到四棱锥A﹣BCDE.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求三棱锥E﹣ABC的体积;(Ⅲ)M是棱CD的中点,过M作平面α与平面ABC平行,设平面α截四棱锥A﹣BCDE所得截面面积为S,试求S的值.参考答案与试题解析一.选择题(共25小题)1.【解答】解:由三视图可知直三棱柱的底面斜边的高为1,斜边长为2,直角三角形,棱柱的高为a,若存在球与该“堑堵”表面所在的五个平面都相切,则球半径R满足:①R==(此时球为棱柱的内切球),解得:a=2﹣2,②R=且R+1=R(此时球在棱柱外,正视图中球对称的圆在直角的夹角内),解得:a=2+2,③R=且R+tan22.5°R=(此时球在棱柱外,正视图中球对称的圆在45°角的夹角内),解得:a=2,故选:D.2.【解答】解:由三视图得到直观图,如图,该几何体为三棱锥D1﹣CC1E,正方体的棱长为4,E为BB1的中点,取出该几何体如图,三棱锥E﹣C1D1C,底面三角形C1D1C为等腰直角三角形,直角边长为4,侧面EC 1C⊥底面C1D1C,.则底面三角形的外心为CD1的中点G,设△EC1C的外心为H,分别过G与H作底面C1D1C与侧面EC1C的垂线相交于O,则O为三棱锥E﹣C1D1C的外接球的球心,在△EC1C中,求得CK=4,sin∠ECK=,则2EH=,即EH=,则HK=,,则.∴该几何体外接球的表面积是4.故选:A.3.【解答】解:如图,由题意可知△APC的外心O1在中线PE上,设过点O1的直线l1⊥平面APC,可知l1⊂平面PED,同理△ADC的外心O2在中线DE上,设过点O2的直线l2⊥平面ADC,则l2⊂平面PED,由对称性知直线l1,l2的交点O在直线EF上.根据外接球的性质,点O为四面体APCD的外接球的球心.由题意得EA=3,PE=4,而O1A2=O1E2+EA2,O1A+O1E=PE=4,∴O1E=.令∠PEF=θ,显然0<θ<,∴EF=PE cosθ=4cosθ<4.∵cosθ==,∴OE•EF=O1E•PE=,又OE<EF,∴EF2>,即EF>.综上所述,<EF<4.∴线段EF长度的取值范围为(,4).故选:A.4.【解答】解:如图所示,过点P作PE⊥面ABC,垂足为E,过点E作ED⊥AC交AC于点D,连接PD,则∠PDE为二面角P﹣AC﹣B的平面角的补角,即有cos∠PDE=,易知AC⊥面PDE,则AC⊥PD,而△P AC为等边三角形,∴D为AC中点,设AB=a,BC=b,AC==c,则PE=PD sin∠PDE=×c×=,故三棱锥P﹣ABC的体积为:V=×ab×=≤×=,当且仅当a=b=时,体积最大,此时B、D、E共线.设三棱锥P﹣ABC的外接球的球心为O,半径为R,由已知,4πR2=8π,得R=.过点O作OF⊥PE于F,则四边形ODEF为矩形,则OD=EF=,ED=OF=PD cos∠PDE=,PE=,在Rt△PFO中,()2=,解得c=2.∴三棱锥P﹣ABC的体积的最大值为:.故选:D.5.【解答】解:∵P,A,B,C是半径为3的球面上四点,其中P A过球心,,∴由余弦定理得cos B==﹣,∴B=120°,设△ABC外接圆的半径为r,则由正弦定理,得==2r,解得r=2.∴球心到平面ABC的距离d===.∴三棱锥P﹣ABC的体积:V===.故选:D.6.【解答】解:将四面体OABC沿着OA剪开,展开后如下图所示,最短路径就是△AOO'的边OO',∵O(0,0,0),A(0,0,2),B(,0,0),C(0,,0),∴AO=2,BO=,AB=AC=,BC=,由余弦定理知,在△OAB中,cos∠OAB===,∴∠OAB=30°=∠O'AC,在△ABC中,cos∠BAC===,∴sin∠BAC==,∴cos∠OAO'=cos(∠BAC+∠OAB+∠O'AC)=cos(∠BAC+60°)=cos∠BAC•cos60°﹣sin∠BAC•sin60°=×﹣×=.在△AOO'中,OO'2=AO2+AO'2﹣2AO•AO'cos∠OAO'=4+4﹣2×2×2×=5+,∴OO'=.故选:C.7.【解答】解:设BC=a,BF=b,则该“堑堵”的体积V=S△ABC•BF==120,整理,得ab=40,要使“堑堵”放入球形容器,则该球的半径不小于“堑堵”的外接球半径,设其外接球的半径为R,∵在堑堵ABC﹣DFE中,BA,BC,BF两两垂直,∴堑堵ABC﹣DFE外接球的一条直径是以BA,BC,BF为相邻三条棱的长方体的体对角线,即2R==,∵a2+b2≥2ab=80,(当且仅当a=b时,取等号),∴外接球的表面积S=4πR2≥116π,∴球形容器的表面积最小值为116π.故选:C.8.【解答】解:过点P作PE⊥BD于E,连结CE,由题意知△BPD≌△BCD,CE⊥BD,且PE=CE,∴BD⊥平面PCE,∴V P﹣BCD=V B﹣PCE+V D﹣PCE==,∴当S△PCE最大时,V P﹣BCD取得最大值,取PC的中点F,则EF⊥PC,∴S△PCE=•EF=,∵PB+PD=10,BD=8,∴点P到以BD为焦点的椭圆上,∴PE的最大值为对应短半轴长,∴PE最大值为=3,∴S△PCE最大值为2,∴三棱锥P﹣BCD体积的最大值为.故选:C.9.【解答】解:分类讨论:①∵正方体的棱长为2,∴BD1=2,∵点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=2,∴点P是以2c=2为焦距,以a=为长半轴,以为短半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在正方体的12条棱上各有一点满足条件.∴满足|PB|+|PD1|=2的点P的个数为12个.满足条件.②8个顶点中,除了B,D1两个以外的6个顶点满足|PB|+|PD1|=2+2,且是正方体棱上的所有点中的最大值,只有这6个顶点.因此除了以上6个顶点以外的点满足:|PB|+|PD1|<2+2,不难得出满足条件:2≤|PB|+|PD1|<2+2的点P都满足|PB|+|PD1|=m的点P的个数大于6个,由选择支可得只能选择D.故选:D.10.【解答】解:如图所示,设BC=x,则=,解得x=6.V三棱锥S﹣BMN=V,设点S到平面BMN的距离为d.则h•=×4×(4×6﹣﹣﹣),解得h=.记直线SC与CC1的夹角为θ.则tanθ=.可得最小值为设S(x,y,4).B(6,4,0).M(6,0,2).N(4,0,0).=(2,0,2).=(2,4,0).设平面BMN的法向量为=(a,b,c),则•=•=0.可得2a+2c=0,2a+4b=0,取=(2,﹣1,﹣2).=(x﹣4,y,4).∴=,化为:2x﹣y=0,或:2x﹣y=32(舍去),由2x﹣y=0,G(2,4,0),可得点S的轨迹为线段D1G.过点C1作C1S⊥D1G,此时SC1的最小值===,tanθ=.故选:A.11.【解答】解:∵三棱锥P﹣ABC的外接球O半径为R=2,球心O到△ABC所在平面的距离为d=1,∴△ABC的外接圆的半径r==.∴△ABC是等边三角形时,△ABC的面积最大,设等边△ABC的边长为a,则=,解得a=3,∴S△ABC==,∵球心O到△ABC所在平面的距离为1,∴点P到平面ABC的距离的最大值为h=R+d=2+1=3,∴三棱锥P﹣ABC体积的最大值为:==.故选:A.12.【解答】解∵在三棱锥P﹣ABC中,△ABC是Rt△且AB⊥BC,∠CAB=30°,BC=2,∴PC=2BC=4,BP==2,取BC中点E,则PE=BE=DE=2,∵点P在平面ABC的射影D点在△ABC的外接圆上,四边形ABCD的对角线,AD>CD,∴cos∠BED=cos∠BEB==﹣,∴∠BED=∠BEP=∠PED=120°,∴PD=PB=BD=2,∴BC=CD=2,设球心为O,则OE⊥平面BPDC,∵OD=2,四棱锥P﹣ABCD的外接球半径为,∴OE==1,∴四棱锥P﹣ABCD的高PD=2OE=2,∴四棱锥P﹣ABCD的体积为:V====.故选:B.13.【解答】解::延长PH交BC于D,连接AD,∵H是△PBC的垂心,∴BC⊥PD,∵AH⊥平面PBC,BC⊂平面PBC,∴AH⊥BC,又AH⊂平面APD,PD⊂平面P AD,AH∩PD=H,∴BC⊥平面APD,又AD⊂平面APD,∴BC⊥AD,连接BH并延长交PC于E,连接AE,由AH⊥平面PBC可得AH⊥PC,又BE⊥PC,AH∩BE=H,∴PC⊥平面ABE,∴AB⊥PC.设P在平面ABC上的射影为O,延长CO交AB于F,连接PF.∵PO⊥AB,PC∩PO=P,∴AB⊥平面PCF.∴PF⊥AB,CF⊥AB.∴O是△ABC的中心,F是AB的中点,∴PB=P A==PC,当P A,PB,PC两两垂直时,三棱锥P﹣ABC体积取得最大值时,三棱锥P﹣ABC的外接球的半径R满足:(2R)2=,解得R=.体积==.故选:D.14.【解答】解:如图所示,正四面体ABCD中,取BC、BD、AD、AC的中点G、H、K、L,因为P、Q分别是棱AB,CD的中点,所以PQ的中点O也为定点;由对称性知,PQ和EF的中点都在中截面GHKL上;由=++=++,所以=(+);又在正四面体中,对棱垂直,所以•=0;所以4=+,即4OM2=PE2+QF2;若点M的轨迹是以O为圆心的圆,则PE2+QF2为定值.故选:D.15.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正三角形所在平面或其平行平面为平面α时,满足平面α与正方体每条棱所成的角均相等,并且如图所示的正三角形,为平面α截正方体所形成的三角形截面中,截面面积最大者.因为正三角形的边长为,正方体ABCD﹣A1B1C1D1的三个面在平面α内的正投影是三个全等的菱形(如图所示),可以看成两个边长为的等边三角形,所以正方体在平面α内的正投影面积是S=2×=.故选:B.16.【解答】解:将三角形ABC与三角形ACD展成平面,BP+PE的最小值,即为BE两点之间连线的距离,则BE=设AB=2a,则∠BAD=120°,由余弦定理,解得,则正四面体棱长为,因为正四面体的外接球半径是棱长的倍,所以,设外接球半径为R,则,则表面积S=4πR2=4π•3=12π.故选:A.17.【解答】解:为了建立四棱锥P﹣AEMF的体积与原三棱锥的体积的关系,我们先引用下面的事实,(如图)设A1,B1,C1分别在三棱锥S﹣ABC的侧棱SA,SB,SC上,又S﹣A1B1C1与S﹣ABC的体积分别为V1和V,则事实上,设C,C1在平面SAB的射影分别为H,H1,则又所以下面回到原题:设,∵P﹣ABCD的体积V0=,于是由上面的事实有:+,得:==xy+xy=,于是,而由0<≤1,x≤1,得,则V=x+y=x+(),又得,所以,当时,V'<0,V为减函数,当时,V’>0,V为增函数所以得:,又,得V max=,故答案为[],故选:B.18.【解答】解:如图,AB=CD=a,AC=AD=BC=BD=2.过A作AE⊥CD于E,连结BE,则AE==BE,又AB=a,∴=,∴=,令,则f′(a)=16a3﹣3a5=0,解得当a2=时,(V A﹣BCD)max=.∴此三棱锥体积的取值范围是(0,].故选:B.19.【解答】解:取SC中点M,连接AM、MB,因为△SAC是等边三角形,且SB=BC,∴AM⊥SC,MB⊥SC,∴SC⊥平面AMB,∴平面SAC⊥平面AMB,由三余弦定理,可知,cos∠SAM•cos∠MAB=cos∠SAB,由边长条件可知,∠SAM=30°,∠SAB=90°,代入上式解得cos∠MAB=0,∴∠MAB=90°,因为SC⊥平面AMB,∴球心O在平面AMB上,作OO1⊥平面SAC,易得,,取AB中点N,连接ON,∴ON⊥AB,∴OO1AN四点共圆,AO为这四点共圆的直径,也是三棱锥S﹣ABC的半径,连接O1N,∵∠MAB=90°,由勾股定理,得,∴O1N为三棱锥S﹣ABC的半径R,∴.故选:A.20.【解答】解:由球的对称性可知,当三个正四棱柱都处于正中间契合的时候,其外接球半径最小,所以,此时该球为底面边长为4、2,高为8的长方体的外接球时,设球的半径为R,所以,所以,所以球的最小表面积为.故选:D.21.【解答】解:依题意,点P是该球面上的一个动点(不与A,B重合),即P点与A,B不共线,故三点确定一个平面,设该平面与球的截面为圆O,设∠APB所对的弧的长度与圆O的周长之比为t,所以当t最小时,∠APB最小,当t最大时,∠APB最大.根据球的性质得,①当圆O为球的大圆且弧∠APB所对的弧是该大圆的劣弧时,此时弧APB长度最小,圆的周长最大,t1最小,如图P1,此时AB=OA=OB=1,所以∠AOB=,∴∠AP1B==,②若圆O为球的大圆所对的优弧,则t2=1﹣t1最大,如图中的P2.此时∠AP2B=π﹣∠AP1B=(圆的内接四边形对角互补).故选:A.22.【解答】解:过A1作A1E⊥BB1,垂足为E,∵平面ABB1A1∥平面DCC1D1,∴A1B1∥D1C1.过D1作D1H⊥CC1,垂足为H,∵DG=AA1=5,∴EB1=8﹣5=3.∵平面ABB1A1∥平面DCC1D1,A1B1和D1C1是它们分别与截面的交线,∴A1B1∥D1C1.过D1作D1H⊥CC1,垂足为H,则EB1=FH=3,∴DD1=12﹣3=9.作A1G⊥DD1,垂足为G,作GF⊥CC1,垂足为F,连接EF,EH,则几何体被分割成一个长方体ABCD﹣A1EFG,一个斜三棱柱A1B1E﹣D1C1H,一个直三棱柱A1D1G﹣EHF.从而几何体的体积为:V=3×4×5+×3×4×3+×3×4×4=102.故选:B.23.【解答】解:设AB=m,AC=n,则S△ABC=△ABC的外接圆直径BC=取BC的中点M,则当PM⊥平面ABC时,三棱锥的体积最大此时球心O在PM上,V max=×mn×(+3)≤××(+3)令t=,则f(t)=t()f′(t)=由f′(t)=0,解得t=0(舍),t=8,f(t)在(0,8)递增,在(8,9)递减故f(8)最大,为所以三棱锥P﹣ABC的最大体积为故选:B.24.【解答】解:如图:∵SA=SB=SC=1,AB=AC=,BC=,∴SC⊥SA,SA⊥SB,∠CSB=120°,取CA,AB的中点O1,O2,则O1,O2是球的两个截面圆的圆心,设O为球心,则OO1⊥平面SAC,OO2⊥平面BSA,取SA的中点E,连O1E,O2E,则O1E∥SC,O2E⊥SC,∴∠O1EO2=120°,∠O1OO2=60°,又OO1=OO2,∴△OO1O2是正三角形,∴OO1=O1O2=BC=,在直角三角形AO1O中,|OA|===,所以球的半径R为.则球的表面积为4πR2=4π×()2=5π.故选:C.25.【解答】解:∵三棱柱ABC﹣A1B1C1的底面△ABC是正三角形,AA1⊥平面ABC,AB=2,AA1=,D为BC中点,∴AD⊥B1C1,AD⊥BB1,∵B1C1∩BB1=B1,∴AD⊥平面DB1C1,∴三棱锥A﹣B1DC1的体积为:===1.故选:C.二.填空题(共5小题)26.【解答】解:由题意可得将该三棱锥放在长方体中,且长方体的长宽高分别为SA=2,SB=3,SC=4,设外接球的半径为R,再由长方体的对角线等于其外接球的直径可得(2R)2=22+32+42=29,所以4R2=29,所以外接球的表面积S=4πR2=29π,故答案为:29π.27.【解答】解:设球O的半径为R,△ABC的外接圆的圆心O1,半径为r,在△ABC中,由余弦定理可得(4)2=a2+b2﹣2ab cos60°,即a2+b2=ab+48≥2ab,即ab≤48,所以V P﹣ABC=ab sin60°(R+OO1)≤×48×(R+OO1)×=4(R+OO1),由题意可得4(R+OO1)=16,所以R+OO1=4①,在△ABC中,2r==,所以r=4,而R2=r2+OO12,所以R2=16,所以球的表面积S=4πR2=64π,故答案为:64π.28.【解答】解:半圆柱的立体图如图所示,其侧视图是矩形ABCD,所以AB•AD=8,即4×AD=8,所以AD=2,所以半圆柱的底面半圆的半径为2.故答案为:2.29.【解答】解:设正三棱锥的底面边长为a,高为h,如图,过顶点S作底面ABC的垂线,垂足为O,过O作OD 垂直AB于D,连接SD,∴AB=a,SO=h.∴SO⊥底面ABC,AB⊂底面ABC,∴AB⊥SO,SO⊥OD,又∵AB⊥OD,SO∩OD=O,∴AB⊥平面SOD,又∵SD⊂平面SOD,∴AB⊥SD,即SD为侧面SAB的斜高,三棱锥体积=,得a2h=12,又O为底面中心,∴OD==,SD==,三棱锥的表面积S=+3××=,将代入得:S==.∴S′=,令S′=0,得=0,令,(t>0),上式可化为t2﹣2t﹣3=0,解得t=3,或t=﹣1(舍),∴=3,得h=2,当0<h<2时,S′<0,当h>2时,S′>0,故S在(0,2)上单调递减,在(2,+∞)上S单调递增,故当h=2时,表面积最小,此时S=3=6,故填:6.30.【解答】解:根据几何意义得出:边长为8的正方形,球的截面圆为正方形的内切圆,∴圆的半径为:4,∵球面恰好接触水面时测得水深为6cm,∴d=8﹣6=2,∴球的半径为:R=,R=5∴球的体积为π×(5)3=cm3故答案为.三.解答题(共10小题)31.【解答】解:(1)如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,∵△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.∵AB=2,∴S△ABC=×2××sin60°=6,又DE=×AE=×2×sin60°=,∴PE===;S△P AB=S△PBC=S△PCA=×2×=3;∴三棱锥的表面积为S表面积=3×3+6=9+6;(2)设内切球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵PD=1,∴V三棱锥P﹣ABC=S△ABC h=•6•1=2;又三棱锥P﹣ABC的体积为V=S表面积•r=×(9+6)r=(3+2)r,由等体积可得r==﹣2,∴内切球的半径为﹣2.32.【解答】解:三棱台ABC﹣A1B1C1,AB=2A1B1,M是A1B1的中点,N在线段B1C1上,且B1N=2NC1,不妨设平面ACC1A1⊥平面ABC,设△ABC是边长为6的等边三角形,则△A1B1C1是边长为3的等边三角形,设棱台的高为3,取AC中点O,A1C1中点G,以O为原点,OB为x轴,OC为y轴,OG为z轴,建立空间直角坐标系,=9,==,三棱台ABC﹣A1B1C1的体积V==.==﹣=,∴==,A(0,﹣3,0),M(,﹣,3),N(,1,3),C1(0,,3),=(,,3),=(,4,3),=(0,,3),设平面AMN的法向量=(x,y,z),,取x=14,得=(14,2,﹣5),∴点C1到平面AMN的距离d==,cos<>===.sin<>==,∴S△AMN===,∴==,设平面AMN与CC1交于点H,则点H到直线AN的距离是点M到AN的距离的,∴=,∴==,∴过点A,M,N的平面把这个棱台分为两部分,体积较小部分的体积为:++=+=,体积较大部分的体积为:V﹣(++)==,∴体积较小部分与体积较大部分的体积比值为=.33.【解答】解:(1)证明:∵AA1=A1C=AC=2,且O为AC中点,∴A1O⊥AC.又侧面AA1C1C⊥底面ABC,交线为AC,A1O⊂平面A1AC,∴A1O⊥平面ABC.(6分)(2)存在点E,且E为线段BC1的中点.理由:取B1C的中点M,从而O M是△CAB1的一条中位线,OM∥AB1,又AB1⊂平面A1AB,OM⊄平面A1AB,∴OM∥平面A1AB,故BC1的中点M即为所求的E点.(12分)34.【解答】解:设球心为O,△ABC外接圆的圆心为O′,设球的半径为2r,则OO′=r,如图所示;又AB=18,BC=24,AC=30,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴O′A=AC=15;在Rt△OO′A中,(2r)2=152+r2,解得r=5,∴球的半径为R=2r=10;∴球的表面积为S=4π•=1200π,体积为V==4000π.35.【解答】解:(Ⅰ)过A作AH⊥BC,垂足为H,在Rt△ABH中,B=45°,所以AH=BH=3,在Rt△ACH中,C =60°,所以CH=,将△ABC绕直线BC旋转一周得到一个几何体,是以AH为底面半径,以BH,CH为高的两个圆锥,所以体积为==(9+3)π;(Ⅱ)设BD=DC=x.AC=y,在△ABD和ACD中,由余弦定理得到,化简得到2x2=y2+2,①,在△ABC中,4x2=18+y2﹣2×,即4x2=y2﹣5y+18.②由①②得到y=2或者(y=﹣7舍去);因为cos∠BAC=,所以sin∠BAC=,所以S=AB•AC•sin∠BAC=.36.【解答】解:(1)【法一】∵BOCD为正方形,∴BC⊥OD,∠AOB为二面角B﹣CO﹣A的平面角∴AO⊥BO,∵AO⊥CO,且BO∩CO=O∴AO⊥平面BCO,又BC⊆平面BCO∴AO⊥BC,且DO∩AO=O∴BC⊥平面ADO,且AD⊆平面ADO,∴BC⊥AD.【法二】分别以OA,OC,OB为x轴,y轴,z轴的正方向,建立空间直角坐标系,则设O(0,0,0),A(2,0,0),B(0,0,2),C(0,2,0),D(0,2,2);有=(﹣2,2,2),=(﹣2,2,0),∴•=0,∴⊥,即BC⊥AD.(2)三棱锥C﹣AOD的体积为:V C﹣AOD=V A﹣COD=•S△COD•OA=××2×2×2=.37.【解答】证明:(1)如图5﹣2,由于棱AB⊥平面BCD,过B作CD边上的高BE,则AB⊥BE,CD⊥BE,故BE是异面直线AB与CD的距离,即d=BE.所以V A﹣BCD=AB•S△BCD=a=abd.(2)如图5﹣3,过A作底面BCD的垂线,垂足为O,连结BO与CD相交于E.连结AE,再过E作AB的垂线,垂足为F.因为AB⊥CD,所以BO⊥CD(三垂线定理的逆定理),所以CD⊥平面ABE,因为EF⊂平面ABE,所以CD⊥EF,又EF⊥AB.所以EF即为异面直线AB,CD的公垂线.所以EF=d.注意到CD⊥平面ABE.所以V A﹣BCD=CD•S△ABE=•AB•EF•CD=abd为定值.(3)如图5﹣4:将四面体ABCD补成一个平行六面体ABB'D'﹣A'CC'D.由于AB,CD所成角为θ,所以∠DCA'=θ,又异面直线AB与CD间的距离即上、下两底面AB',A'C'的距离,所以V ABB'D'﹣A'CC'D=ab sinθ×2d=abd sinθ.显然V A﹣BCD=V ABB'D'﹣A'CC'D=abd sinθ.38.【解答】(1)证明:因为VC⊥平面ABC,BC⊂平面ABC,所以VC⊥BC,又因为点C为圆O上一点,且AB为直径,所以AC⊥BC,又因为VC,AC⊂平面VAC,VC∩AC=C,所以BC⊥平面VAC.…(4分)(2)如图,取VC的中点N,连接MN,AN,则MN∥BC,由(I)得BC⊥平面VAC,所以MN⊥平面VAC,则∠MAN为直线AM与平面VAC所成的角.即∠MAN=,所以MN=AN;…(6分)令AC=a,则BC=,MN=;因为VC=2,M为VC中点,所以AN=,所以,=,解得a=1…(10分)因为MN∥BC,所以…(12分)39.【解答】证明:(1)直三棱柱ADE﹣BCF中,∵AB⊥平面ADE,∴AB⊥AD,又AD⊥AF,∴AD⊥平面ABFE,AD⊂平面P AD,∴平面P AD⊥平面ABFE….(6分)解:(2)连结BD与AC交于点O,连结PO,∵正四棱锥P﹣ABCD,∴PO⊥平面ABCD,又∵直三棱柱ADE﹣BCF,∴AB⊥AE,且有AD⊥平面ABEF,∴AD⊥AE,∴AE⊥平面ABCD,则PO∥AE,∵AE⊂平面ABEF,∴PO∥平面ABEF,则P到平面ABEF的距离等于O到平面ABEF的距离,又∵O为BD中点,∴O到平面ABEF的距离为=1,∴P到平面ABF的距离为d=1,∴=,设正四棱锥P﹣ABCD的高为h,∵正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,∴=4V P﹣ABF=,解得h=2,∴正四棱锥P﹣ABCD的高为2.40.【解答】(Ⅰ)证明:∵DE∥BC,∠C=90°,∴DE⊥AD,同时DE⊥DC,又AD∩DC=D,∴DE⊥平面ACD.又∵DE∥BC,∴BC⊥平面ACD;(Ⅱ)解:由(Ⅰ)可知,BC⊥平面ACD,又AD⊂平面ADC,∴AD⊥BC.又∵∠ADC=90°,∴AD⊥DC.又∵BC∩DC=C,∴AD⊥平面BCDE.∴=;(Ⅲ)解:分别取AD,EA,AB的中点N,P,Q,并连接MN,NP,PQ,QM,∵平面α∥平面ACD,∴平面α与平面ACD的交线平行于AC,∵M是中点,∴平面α与平面ACD的交线是△ACD的中位线MN,同理可证,四边形MNPQ是平面α截四棱锥A﹣BCDE的截面,即S=S MNPQ.由(Ⅰ)可知,BC⊥平面ACD,∴BC⊥AC,又∵QM∥AC,MN∥BC,∴QM⊥MN.∴四边形MNPQ是直角梯形.在Rt△ADC中,AD=CD=2,∴AC=.MN=AC=2,NP=,MQ=.∴S=(1+3)×.。