2020届人教A版__解三角形单元测试
- 格式:docx
- 大小:359.26 KB
- 文档页数:11
解三角形一、单选题1.在ABC ∆中,B=30︒,C=45︒, c=1,则最短边长为( )A C .12D【答案】B【解析】由题意,易知B C A <<,所以b 最小.由正弦定理,得sin sin c B b C == 2.已知ABC ∆中,2=a ,3=b , 60=B ,那么=∠A ( )A . 45B . 90C . 135或 45D . 150或 30 【答案】A 【解析】试题分析:利用正弦定理,B bA a sin sin =得:22360sin 2sin sin 0===bB a A ,由于b a <,则B A <,于是045=A ,选A. 考点:利用正、余弦定理解三角形.【易错点评】利用正弦定理求三角形的内角,当求出b a <22sin =A 时,容易得出045=A 或 135,这时务必要研究角A 的范围,由于,则B A <,说明角A 为锐角,所以045=A .3.已知ABC ∆满足a b >,则下列结论错误的是( )A .AB > B .sin sin A B >C .cos cos A B <D .sin2sin2A B > 【答案】D【解析】由大边对大角,可知A B >,所以A 正确; 由正弦定理可知, sin sin A B >,所以B 正确;由A B >,且cos y x =在()0,π单调递减,可知cos cos A B <,所以C 正确; 当90,30A B ==时, a b >,但sin2sin2A B <,所以D 错误。
故选D 。
点睛:本题考查三角函数与解三角形的应用。
本题中涉及到大边对大角的应用,正弦定理的应用,三角函数单调性的应用等,需要学生对三角模块的综合掌握,同时结合特殊值法去找反例,提高解题效率。
4.在∆ABC 中,,30,,1=∠==A x b a 则使∆ABC 有两解的x 的范围是( )A 、)332,1( B 、),1(+∞ C 、)2,332( D 、)2,1( 【答案】D 【解析】试题分析:结合图形可知,三角形有两解的条件为,sin b x a b A a =><,所以01,sin 301b x x =><,12x <<,故选D 。
解三角形一、单选题1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a2+c2-b2=3ac ,则角B 的值为A 、6πB 、3πC 、6π或65πD 、3π或32π【答案】A 【解析】略 2.ABC ∆中,已知sin cos cos a b cA B C==,则ABC ∆为( ) A .等边三角形 B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形 【答案】B 【解析】因为sin cos cos a b c A B C ==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== ,即ABC ∆为等腰直角三角形,选B.3.已知△ABC 中,sinA :sinB :sinC =1 :1 是A .60°B .90°C .120°D .135° 【答案】C 【解析】略4.锐角ABC ∆中,若2A B =,则ab的取值范围是A 、()1,2B 、(C 、)2D 、【答案】D 【解析】略5.(2015秋•潍坊期末)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足bcosC=a ,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形 【答案】C【解析】试题分析:已知等式利用余弦定理化简,整理可得:a 2+c 2=b 2,利用勾股定理即可判断出△ABC 的形状.解:在△ABC 中,∵bcosC=a , ∴由余弦定理可得:cosC==,整理可得:a 2+c 2=b 2,∴利用勾股定理可得△ABC 的形状是直角三角形. 故选:C .考点:正弦定理;余弦定理.6.在ABC ∆中,角A 、B 、C 所对应的变分别为a 、b 、c ,则“”a b ≤是“sin sin ?A B ≤的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 【答案】A【解析】试题分析:由正弦定理得2sin sin a bR A B==(其中R 为ABC ∆外接圆的半径),则2sin a R A =, 2sin b R B =, 2sin 2sin sin sin a b R A R B A B ≤⇔≤⇔≤,因此“”a b ≤是“sin sin ?A B ≤的充分必要必要条件,故选A.考点:本题考查正弦定理与充分必要条件的判定,属于中等题.视频7.在钝角三角形ABC 中,三边长是连续自然数,则这样的三角形( ) A .一个也没有 B .有无数个 C .仅有一个 D .仅有2个 【答案】C 【解析】试题分析:设三边长分别是x ,x+1,x+2(x ∈N *) ∵三角形ABC 是钝角三角形ABC ∴最长边所对的角为钝角,可得x 2+(x+1)2<(x+2)2,整理得x 2﹣2x ﹣3<0 解之得﹣1<x <3,满足条件的正整数x=1或2但是三边为1、2、3时,不能构成三角形;而三边为2、3、4时,恰好构成钝角三角形 因此满足条件的三角形只有1个 考点:三角形的形状判断8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( ) A .等腰三角形 B .直角三角形C .等腰或直角三角形D .等腰直角三角 【答案】C 【解析】试题分析:利用三角形内角和可将已知条件化为,B C 2sin 2sin =,2C B π=+=∴或C B ,故选C .考点:三角形形状的判断.9.在ABC ∆中, •3AB BC =,其面积32S ⎡∈⎢⎣,则AB BC 与夹角的取值范围为( ) A .,64ππ⎡⎤⎢⎥⎣⎦ B .,43ππ⎡⎤⎢⎥⎣⎦ C .,63ππ⎡⎤⎢⎥⎣⎦ D .23,34ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】设|,?AB c BC a ==, AB 与BC 的夹角为θ33cos ?,AB BC ac ac cos θθ∴⋅==∴=13332222S acsin tan tan θθθ∴≤≤== 144tan ππθθ∴≤≤≤≤.故选B .10.在ABC △中,已知D 是AB 边上一点,若4AB DB =,1()4CD CA CB R λλ=+∈,则λ的值为A .23 B. 34 C. 23- D . 34-【答案】B 【解析】略11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sinA =sinC ,则△ABC 一定是 A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 【答案】B【解析】由正弦定理设asinA =bsinB=csinC=k,又sinA=sinC,即ak=ck,所以a=c.故选B.12.在ΔABC中,b=asinC,c=acosB,则ΔABC一定是()A.等腰三角形B.等腰直角三角形C.等边三角形D.直角三角形【答案】B【解析】在ΔABC中,∵b=asinC,c=acosB,由正弦定理可得sinB=sinAsinC,sinC=sinAsinB,∴sinB=sinAsinAsinB,∴sinA=1,∴A=π2,∴sinC=sinAsinB,即sinC=sinB,∴由正弦定理可得c=b,故ΔABC一定是等腰直角三角形,故选B.二、填空题13.在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c, a=1,且(bc−2)cosA+ accosB=1−b2,则△ABC面积的最大值为______________.【答案】√34【解析】【分析】根据余弦定理得到参数a的值,进而得到bc=1,根据重要不等式可得到面积的最值.【详解】由(bc−2)cosA+accosB=1−b2,得c(bcosA+acosB)+b2=1+2cosA,由bcosA+acosBc =sinBcosA+sinAcosBsinC=sin(A+B)sinC=1,所以bcosA+acosB=c.所以c2+b2=1+2cosA,故cosA=c2+b2−12,又由余弦定理,cosA=c 2+b2−a22bc, a=1,故bc=1,又cosA=c 2+b2−12≥2bc−12=12,所以sinA≤√32,故S△ABC=12bcsinA≤√34,当且仅当b=c=1即△ABC为等边三角形时等号成立,所以△ABC面积的最大值为√34.故答案为:√34【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现ab及b2、a2时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.14.在ABC ∆中,有下列命题: ①sin sin a A b B =; ②sin sin a B b A =; ③cos cos a B b A =;④若sin sin A B >,则A B >; ⑤若A B >,则sin sin A B >. 其中恒成立的命题序号为_____________ 【答案】②④⑤ 【解析】试题分析:由正弦定理得,命题①等价于22b a =,显然只有等腰三角形时才成立;命题②显然成立;cos cos a B b A=B A B A A B B A =⇔=-⇔=⇔0)sin(cos sin cos sin ,故只有在等腰三角形时成立;B A b a B sin sin A >⇔>⇔>,显然命题④⑤成立,考点:运用正弦定理判断与三角形的命题。
解三角形一、单选题1.已知α是三角形的一个内角,且32cos sin =+αα,则这个三角形( ) A .锐角三角形 B .钝角三角形 C .不等腰的直角三角形 D .等腰直角三角形 【答案】B 【解析】 试题分析:由题32cos sin =+αα, 则:()2225sin cos ,sin cos 0318αααα⎛⎫+==-< ⎪⎝⎭因为: sin 0,cos 0αα><,则三角形为钝角三角形。
考点:三角函数的变形及三角形形状的判断. 2.【答案】A【解析】本题考查向量的数量积及其最佳值问题如图示以为A 原点,以CA 和CB 所在直线为x 轴和y 轴建立直角坐标系,则()()()0,0,0,3,4,0A B C -,则()4,3CB = .设(),M x y 则()4,CM x y =+,由//CM CB 得443y x +=,即334y x =+,则()3,34x M x +,所以()()33,3,4,344x x AM x CM x =+=++;又AM CM ⊥,则0AM CM ⋅=,则()()()2223331617,34,34390444252x x x x x x x x x +⋅++=+++=++= 所以2251361440x x ++=解得3625x =-或4x =-(舍)所以()3648,2525M =-,所以()3648,2525AM =-设()()3,3,404a N a a +-≤≤,则()3,34a AN a =+,则()()()3648336348144,,33252542542525a a a AM AN a ⋅=-⋅+=-++⨯=即40a -≤≤时取最大值14425AM AN ⋅=故正确答案为A 3.在,则边的边长为( )A .B .3C .D .7【答案】A 【解析】试题分析:由题意得,三角形的面积,解得,在中,由余弦定理得,所以.考点:余弦定理及三角形的面积公式的应用.4.已知ABC ∆中,AB=AC=5,BC=6,则ABC ∆的面积为A .12B .15C .20D .25 【答案】A 【解析】试题分析:因为,ABC ∆中,AB=AC=5,BC=6,所以,BC4=,三角形的面积为12,选A 。
解三角形一、单选题1.在ABC ∆中,a 、b 、c 分别为内角A 、B 、C 所对的边,已知3π=A ,3=a ,6π=B ,则=b ( )A .1B .3C .3D .33 【答案】B【解析】解:因为13a b a sin B 2b 3sin A sin B sin A 32⨯=∴=== 2.已知ABC ∆中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则x 的取值范围是( )A 、3x >B 、02x <<C 、32x <<D 、32x <≤ 【答案】C 【解析】试题分析:根据正弦定理可得Bx sin 260sin 0=所以x B 3sin =要使三角形有两解需满足0<sinB<1 解得32x << .考点:正弦定理应用3.在△AOB 中(O 为坐标原点), )sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA , 若的面积是则AOB OB OA ∆-=⋅,5A .3B .235C .33D .435 【答案】B 【解析】4.【答案】C 【解析】略 5.【答案】A【解析】本题考查向量的数量积及其最佳值问题如图示以为A 原点,以CA 和CB 所在直线为x 轴和y 轴建立直角坐标系,则()()()0,0,0,3,4,0A B C -,则()4,3CB = .设(),M x y 则()4,CM x y =+,由//CM CB 得443y x +=,即334y x =+,则()3,34x M x +,所以()()33,3,4,344x x AM x CM x =+=++;又AM CM ⊥,则0AM CM ⋅=,则()()()2223331617,34,34390444252x x x x x x x x x +⋅++=+++=++= 所以2251361440x x ++=解得3625x =-或4x =-(舍)所以()3648,2525M =-,所以()3648,2525AM =-设()()3,3,404a N a a +-≤≤,则()3,34a AN a =+,则()()()3648336348144,,33252542542525a a a AM AN a ⋅=-⋅+=-++⨯=即40a -≤≤时取最大值14425AM AN ⋅=故正确答案为AABCMNxy6.(2015秋•宁城县期末)在△ABC 中,a=15,b=10,A=60°,则cosB=( ) A . B . C .D .【答案】C【解析】试题分析:先利用正弦定理求出sinB ,再利用同角三角函数的平方关系,可得结论.解:由正弦定理可得,∴sinB=.∵a >b ,A=60°,∴A >B , ∴=.故选C .考点:正弦定理;同角三角函数间的基本关系.7.在△ABC 中,内角A,B,C 对边的边长分别为,,,a b c A 为锐角,1lg lgb c+= lg sin A =lg 2-, 则ABC ∆为 ( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】D 【解析】试题分析:由已知得lglg sin b A c ==,所以b c =sin A =A 为锐角,故4A π=,由正弦定理得sin sin B C =,则sin C B ,3sin 4B B π(-,展开得B B B ,=0B B ,故tan 1B =,所以4B π=,所以ABC ∆是等腰直角三角形 考点:正弦定理和三角恒等变形.8.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( ).A .5B .5√2C .4√3D .6√2 【答案】B【解析】分析:由面积公式求得c ,再由余弦定理求得b ,最后由正弦定理求得外接圆直径.详解:∵a =1,B =45°,S △ABC =2,∴由三角形的面积公式得: S =12acsinB =12×1×c ×√22=2,∴c =4√2,又a =1,cosB =√22, 根据余弦定理得:b 2=1+32−8=25,解得b =5. ∴△ABC 的外接圆的直径为b sinB=√22=5√2.故选B .点睛:本题考查解三角形,应用解三角形中的所有公式:正弦定理、余弦定理、三角形面积公式,要注意按照题设条件顺序选用公式.9.ABC ∆,若sin sin a A b B =,则ABC ∆的形状为( )A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形 【答案】A 【解析】试题分析:由于已知中sin sin a A b B =,那么根据正弦定理sin sin a bA B=,那么可将角化为边,得到2222a bab a b a b r r=∴=∴=,因此可知该三角形是等腰三角形,故选A 。
解三角形一、单选题1.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R = ( ) A .2 B.C. D.【答案】D 【解析】如图:AD 是直径,则045D C ∠=∠=在直角三角形ABD 中,42sin sin 45AB R AD D ====R =故选D2.在ΔABC 中,角A ,B ,C 所对边分别是a ,b ,c ,若b =√11,c =3,且sinC =3√1111,满足题意的ΔABC 有( )A .0个B .一个C .2个D .不能确定 【答案】B【解析】b =√11,c =3,b >c ,C 为锐角,且sinC =3√1111, bsinC =√11×3√1111=3=c ,满足题意的ΔABC 有一个,选B.3.在ΔABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知a =1,b =√3,A =30∘,则c 边的长为( )BCA .2B .1C .1或2D .√3或2 【答案】C【解析】试题分析:;已知两边和其中一边的对角,可由正弦定理得到角B 的大小,再根据三角形的三角关系,得到三角形的形状,进而求得边长. 详解:根据正弦定理得到asinA =bsinB ⇒sinB =√32,故角B 为60∘或120∘,当角B 为60∘时角C 等于直角,三角形满足勾股定理,得到边c 等于2;当角B 等于120∘,角C 也等于30∘,此时三角形是等腰三角形,得到边c 等于1. 故答案为:C.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)a 2=b 2+c 2−2bc cos A ;(2)cos A =b 2+c 2−a 22bc,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30o ,45o ,60o 等特殊角的三角函数值,以便在解题中直接应用. 4.已知ΔABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a =2bcosC ,且b−ac−a =sinA+sinC sinB,则这个三角形的形状是( )A .等边三角形B .钝角三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】分析:先由正弦定理进行角化边得到a 2+b 2-c 2=ab 再由余弦定理可得C 值,结合a =2bcosC 即可得出结论.详解:由正弦定理化简(a-c )(sinA+sinC )=(a-b )sinB ,得:(a-c )(a+c )=b (a-b ), 整理得:a 2-c 2=ab-b 2,即a 2+b 2-c 2=ab ,由余弦定理得cosC =a 2+b 2−c 22ab=12⇒C =π3,再由a =2bcosC ,可得a=b ,结合C=60°,故三角形的形状为等边三角形,选A. 点睛:考查正余弦定理的运用,对b−ac−a =sinA+sinC sinB角化边得到a 2+b 2-c 2=ab 再由余弦定理得出C 值是解题关键,属于中档题.5.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 等于( ) A .19 B .−19 C .18 D .−18 【答案】B 【解析】 【分析】利用余弦定理求得cosB ,再利用数量积公式,即可求出结果. 【详解】∵三边长AB=7,BC=5,AC=6,∴cosB=AB2+BC2−AC22AB⋅BC =72+52−622×7×5=1935AB⋅BC=AB⋅BCcos(π−B)=7×5×(−1935)=−19.故选B.【点睛】本题考查平面向量数量积的运算,考查余弦定理,解题关键是明确数量积中两个向量的夹角与三角形内角的关系.6.在ΔABC中,tanA是以−4为第3项,4为第7项的等差数列的公差,tanB是以13为第3项,9为第6项的等比数列的公比,则该三角形形状为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】A【解析】【分析】首先由等差数列的通项公式和等比数列的通项公式,结合已知可得tanA=2,tanB=3,然后利用两角和的正切公式可求出tan(A+B)=−1,从而求出∠C,再结合题意确定A、B的范围,从而确定△ABC的形状.【详解】解:由题意可得,tanA=4−(−4)7−3=2,(tanB)3=913=27,所以tanB=3故tan(A+B)=2+31−2×3=−1,∵0<A+B<π,∴A+B=3π4,∴∠C=π4;又∵tanA>0,tanB>0,0<A<π,0<B<π,∴0<A<π2,0<B<π2,故△ABC为锐角三角形.故选:A.【点睛】本题主要考查了等差数列和等比数列的通项公式,两角和的正切公式,考查计算能力及分析能力,属于中档题。
第一章 解三角形章末检测(B )新人教A 版必修5(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →²AC →等于( )A .-2B .2C .±4D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( )A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 57.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形 12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135°13.在△ABC 中,若sin A a=cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________.15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A的仰角分别为α,β,CD=a,测角仪器的高是h,用a,h,α,β表示建筑物高度AB.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2b sin A.(1)求B的大小.(2)若a=33,c=5,求b.19.(12分)如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;(2)求四边形OPDC面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+32-122³2³3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴||²|AC →|²sin A =12³4³1³sin A = 3. ∴sin A =32.又∵0°<A <180°,∴A =60°或120°.²AC →=|AB →|²|AC →|cos A=4³1³cos A =±2.] 4.D [由正弦定理得b sin B =csin C, ∴sin C =c ²sin B b =2sin 120°6=12,∵c <b ,∴C 为锐角.∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ²AC ²cos A , 即72=52+AC 2-10AC ²cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B.∴sin B =10²sin 60°15=33.∵a >b ,A =60°,∴B <60°. ∴cos B =1-sin 2B =1-332=63.]8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ²BC cos B ,∴12=(3)2+BC 2-2³3³BC ³32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ²BC sin B =12³3³1³12=34.当BC =2时,S △ABC =12AB ²BC sin B =12³3³2³12=32.]10.C [由S △ABC =12BC ²BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ²BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.] 12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =a 2+b 2-c 22ab2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.]13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos Bb.∴sin B =cos B .∴B =45°.14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ²AC cos A ,∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12³5³8³sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64³32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )²b 2+c 2-a 22bc=a ²a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33.17.解 在△ACD 中,∠DAC =α-β, 由正弦定理,得AC sin β=DCα-β,∴AC =a sin βα-β∴AB =AE +EB =AC sin α+h =a sin βsin αα-β+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ²sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°. 由余弦定理b 2=a 2+c 2-2ac cos B=(33)2+52-2³33³5³cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ²OC ²cos θ =5-4cos θ, 所以y =S △OPC +S △PCD =12³1³2sin θ+34³(5-4cos θ) =2sin ⎝ ⎛⎭⎪⎫θ-π3+534.(2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2α1+α2;第二步:计算AN .由正弦定理AN =d sin β2β2-β1;第三步:计算MN ,由余弦定理 MN =AM 2+AN 2-2AM ³AN α1-β1. 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ.又OC -θ=2sin 120°,∴OC =43sin(60°-θ).因此△POC 的面积为S (θ)=12CP ²OC sin 120°=12²43sin θ²43sin(60°-θ)³32 =43sin θsin(60°-θ)=43sin θ⎝⎛⎭⎪⎪⎫32cos θ-12sin θ =2sin θ²cos θ-23sin 2θ=sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎪⎫2θ+π6-33∴θ=π6时,S (θ)取得最大值为33.。
解三角形一、单选题1.在ABC ∆中,,,4530,2===C A a 则ABC S ∆=A 、2B 、22C 、13+D 、()1321+【答案】C 【解析】 试题分析:2221051sin sin 22a c cc B A C =∴=∴==()11sin 260453122S ac B ∴==⨯⨯+=+ 考点:正弦定理及三角形面积公式2.△ABC 中,角A , B , C 所对的边分别是a , b , c , S 表示三角形的面积,若sin sin sin a A b B c C +=, ()22214S a c b =+-,则对△ABC 的形状的精确描述是( )A .直角三角形B .等腰三角形C .等腰或直角三角形D .等腰直角三角形 【答案】D【解析】试题分析:因为sin sin sin a A b B c C +=,由正弦定理可知222a b c +=,所以ABC ∆为直角三角形,又由三角形的面积公式,可知()22211sin 24ac B a c b =+-,即222sin cos 2a c b B B ac +-==,解得4B π∠=,综上所述,可得ABC ∆为等腰直角三角形,故选D .考点:三角形的综合应用.【方法点晴】本题主要考查了三角形的综合问题,其中解答中涉及到解三角形的正弦定理、余弦定理和三角形的面积公式等知识点综合问题,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题比较基础,属于基础题,本题的解答中根据正弦定理,得出ABC ∆为直角三角形,在利用三角形的面积公式和余弦定理,得出4B π∠=是解答关键.3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.若2a =,b+c=7,cosB=14-,则c =( )A .3B .4C .5D .6 【答案】A【解析】由题意结合余弦定理222cos 2a c b B ac +-=可得: 224144c b c +-=-,①由7b c +=可知: 7b c =-,② 代入①式可得:()2247144c c c+--=-,求解关于边长的方程可得: 3c =. 本题选择A 选项.4.已知在ΔABC 中, sin :sin :sin 3:2:4A B C =,那么cos C 的值为 A .14-B .14C .23-D .23【答案】A【解析】因为sin :sin :sin 3:2:4A B C =, 所以::3:2:4a b c =.所以2223241cosC .2324+-==-⨯⨯本题选择A 选项.5.在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论: ①6:5:4::=c b a ②6:5:2::=c b a③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A其中成立的个数是( )A .0个B .1个C .2个D .3 【答案】C 【解析】 试题分析:令sin sin sin a b ck A B C===,sin ,sin ,sin a k A b k B c k C ∴===. ::sin :sin :sin sin :sin :sin 4:5:6a b c k A k B k C A B C ∴===. 7.5a b c ++=,4567.52,7.5 2.5,7.53151515a cmb cmc cm ∴=⨯==⨯==⨯=.所以①③正确.故C 正确.考点:正弦定理. 6.的三内角A,B,C 所对边长分别是,若sinB−sinA sinC=√3a+ca+b,则角的大小为( ) A .B .C .D .【答案】B【解析】试题分析:由正弦定理得sinB−sinA sinC=√3a+c a+b⇒b−a c=√3a+c a+b⇒c 2+a 2−b 2=−√3ac ⇒cosB =c 2+a 2−b 22ac=−√32∵0<B <π∴B =5π6,选B考点:正弦定理,余弦定理7.设ABC ∆的内角A , B , C 的对边分别为a , b , c .若2a =, c =,1sin 2A =,且b c <,则B =( ) A .π6 B .π3 C .π2 D .2π3【答案】A【解析】因b c <, a c <,故由1sin 2A =可得30A =,由正弦定理可得:sin sin sin sin a c c A C A C a =⇒==,解之得120C =,即23C π=,则2366B ππππ=--=,应选答案A 。
1.(2023·苏州模拟)cos 24°cos 36°-sin 24°cos 54°等于( )A .cos 12°B .-cos 12°C .-12 D.122.(2023·合肥模拟)已知sin α+cos α=23,则sin ⎝⎛⎭⎫α-3π4等于( ) A .±13 B.13 C .-13 D .-2233.(2023·肇庆模拟)已知cos α=45,0<α<π2,则sin ⎝⎛⎭⎫α+π4等于( ) A.210 B.7210 C .-210 D .-72104.(2023·西安模拟)已知2cos ⎝⎛⎭⎫α+π6=sin α,则sin αcos α等于( ) A .-34 B.34 C .-237 D.2375.(2023·扬州质检)已知sin α=55,且α为锐角,tan β=-3,且β为钝角,则α+β的值为( ) A.π4 B.3π4 C.π3 D.2π36.(2023·威海模拟)已知α∈⎝⎛⎭⎫π,3π2,若tan ⎝⎛⎭⎫α+π3=-2,则cos ⎝⎛⎭⎫α+π12等于( ) A.31010 B.1010 C .-1010 D .-310107.化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.8.(2022·上海模拟)已知α,β∈⎝⎛⎭⎫-π2,0,且tan α+tan β+3tan αtan β=3,则α+β=______. 9.已知A ,B 均为钝角,且sin A =55,sin B =1010,求A +B 的值.10.在①tan(π+α)=3;②sin(π-α)-2sin ⎝⎛⎭⎫π2-α=cos(-α);③3sin ⎝⎛⎭⎫π2+α=cos ⎝⎛⎭⎫3π2+α中任选一个条件,补充在下面问题中,并解决问题.已知0<β<α<π2,________,cos(α+β)=-55. (1)求sin ⎝⎛⎭⎫α-π4; (2)求β.注:如果选择多个条件分别解答,按第一个解答计分.11.若sin θ-3cos θ=223,则cos ⎝⎛⎭⎫θ+π6等于( ) A .-23 B.23 C.23 D .-2312.(多选)已知α,β,γ∈⎝⎛⎭⎫0,π2,sin β+sin γ=sin α,cos α+cos γ=cos β,则下列说法正确的是( )A .cos(β-α)=32 B .cos(β-α)=12 C .β-α=π6 D .β-α=-π313.(2023·武汉质检)设sin ⎝⎛⎭⎫α-π7=2cos α·sin π7,则sin ⎝⎛⎭⎫α-π7cos ⎝⎛⎭⎫α-5π14的值为( ) A.14 B.12C .2D .4 14.(多选)下列结论正确的是( )A .sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=cos(α-γ)B .315sin x +35cos x =35sin ⎝⎛⎭⎫x +π6 C .f (x )=sin x 2+cos x 2的最大值为2D .sin 50°(1+3tan 10°)=115.(2023·抚州模拟)已知15sin θtan θ+16=0,θ∈(0,π),则cos ⎝⎛⎭⎫θ-π4=________. 16.在平面直角坐标系Oxy 中,先将线段OP 绕原点O 按逆时针方向旋转角θ,再将旋转后的线段OP 的长度变为原来的ρ(ρ>0)倍得到OP 1,我们把这个过程称为对点P 进行一次T (θ,ρ)变换得到点P 1,例如对点(1,0)进行一次T ⎝⎛⎭⎫π2,3变换得到点(0,3).若对点A (1,0)进行一次T ⎝⎛⎭⎫2π3,2变换得到点A 1,则A 1的坐标为________;若对点B ⎝⎛⎭⎫45,35进行一次T (θ,ρ)变换得到点B 1(-3,-4),对点B 1再进行一次T (θ,ρ)变换得到点B 2,则B 2的坐标为________.。
解三角形一、单选题1.如图,在中,,,点在边上,,,为垂足.若,则()A.B.C.D.【答案】C【解析】【分析】根据三角形的内角关系,结合正弦定理与倍角公式,即可求得cosA的值。
【详解】在中,在中,由正弦定理得,即,整理得故选:C.【点睛】本题考查了三角形中的边角关系,正弦定理与二倍角公式的简单应用,属于基础题。
2.在,3,160A 0===∆∆ABC S b ABC ,中,则=++++CB A cb a sin sin sin ( )A .338B .32C .3326D .3392【答案】D 【解析】 试题分析:S=12bcsinA=√3,112c ⨯⨯=c=4a²=b²+c²-2bccosA=1+16-2⨯1⨯4⨯cos60°=13由正弦定理=++++C B A c b a sin sin sin sin a A=3392 考点:正弦定理3.在△ABC 中,若AC =√19,AB =3,∠B =2π3,则BC =( )A .2B .3C .4D .5 【答案】A 【解析】 【分析】由已知,利用余弦定理可得关于BC 的方程,解方程可得BC 的值. 【详解】解:∵AC =√19,AB =3,∠B =2π3,∴由余弦定理可得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cosB ,可得:19=9+BC 2−2×3×BC ×cos2π3,可得:BC 2+3BC −10=0,∴解得:BC =2或−5(舍去). 故选:A . 【点睛】本题主要考查了余弦定理在解三角形中的应用,属于基础题.4.生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。
”这就是著名的欧拉线定理,在ΔABC 中,O,H,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个结论:(1)GH =2OG ;(2)GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =0;(3)AH =2OD ;(4)S ΔABG =S ΔBCG =S ΔACG 正确的个数为( ) A .1 B .2 C .3 D .4 【答案】D 【解析】分析:根据题意,画出图形,结合图形,利用欧拉线定理得出选项(1)正确; 根据三角形的重心性质得出选项(2)正确; 根据△AHG ∽△DOG ,判断选项(3)正确;求出S ΔABG =S ΔBCG =S ΔACG =13S △ABC ,判断选项(4)正确.详解:ΔABC 中,O,H,G 分别是外心、垂心和重心,,画出图形,如图所示;对于(1),根据欧拉线定理得HG =2OG ,选项(1)正确;对于(2),根据三角形的重心性质得GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =0,选项(2)正确; 对于(3),∵AH ∥OD ,∴△AHG ∽△DOG ,∴AH OD=AG DG=2,∴AH =2OD ,选项(3)正确;对于(4),过点G 作GE ⊥BC ,垂足为E ,则GEAN =DGDA =13,∴△BGC 的面积为S △BGC=12×BC ×GE =12×BC ×13×AN =13S △ABC ;同理,S △AGC=S △AGB=13S △ABC ,选项(4)正确. 故选D .点睛:本题考查了三角形中的重心,外心与垂心的应用问题,也考查了分析问题与解答问题的能力,是综合性题目5.在ΔABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,有下列结论: ①若a 2>b 2+c 2,则ΔABC 为钝角三角形; ②若a 2+b 2>c 2,则ΔABC 为锐角三角形; ③若A:B:C =1:2:3,则a:b:c =1:2:3. 其中正确的个数为 ( ) A .1 B .2 C .3 D .0【答案】A 【解析】 【分析】根据余弦定理可知,cosA =b 2+c 2−a 22bc,判断cosA 的正负,只需判断 b 2+c 2−a 2的正负即可判断①②,根据正弦定理,将角的比转化为角的正弦之比即可得边长之比判断③. 【详解】①由余弦定理cosA =b 2+c 2−a 22bc<0,所以A 为钝角,故①正确;②由余弦定理得cosA =b 2+c 2−a 22bc>0,所以C 为锐角,但A 和B 不一定为锐角,故②错误;③易知A =30°,B =60°,C =90°,由正弦定理得a:b:c =sinA:sinB:sinC =1:√3:2,故③错误. 【点睛】本题主要考查了余弦定理,正弦定理,属于中档题. 6.在ABC ∆中,若2=a ,则B c C b cos cos +等于A .4 B.2C .2 D.1【答案】A 【解析】 7.△ABC 中,如果==,那么△ABC 是( ).A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 【答案】B 【解析】试题分析:根据题意,由于==,则可知a:b:c=sinA:sinB:sinC,则原式可变形为cosA=cosB=cosC,故可知A=B=C,该三角形为等边三角形,故选B. 考点:正弦定理点评:主要是考查了正弦定理的运用,属于基础题。
章末综合测评(一) 解三角形满分:150分 时间:120分钟一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a =k ,b =3k (k >0),A =45°,则满足条件的三角形有( ) A .0个 B .1个 C .2个D .无数个A [由正弦定理得a sin A =bsin B ,所以sin B =b sin A a =62>1,即sin B >1,这是不成立的.所以没有满足此条件的三角形.]2.已知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°B [设最小边为5,则三角形的三边分别为5,7,8,设边长为7的边对应的角为θ,则由余弦定理可得49=25+64-80cos θ,解得cos θ=12,∴θ=60°.则最大角与最小角的和为180°-60°=120°.]3.在△ABC 中,A =π3,BC =3,AB =6,则C =( ) A .π4或3π4 B .3π4 C .π4D .π6C [由BC sin A =AB sin C ,得sin C =22. ∵BC =3,AB =6,∴A >C , 则C 为锐角,故C =π4.]4.在△ABC 中,a =15,b =20,A =30°,则cos B =( )A .±53 B .23 C .-53D .53A [因为a sin A =b sinB ,所以15sin 30°=20sin B ,解得sin B =23.因为b >a ,所以B >A ,故B 有两解,所以cos B =±53.]5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6B [∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b6=k (k >0),则⎩⎨⎧b +c =4k ,c +a =5k ,a +b =6k ,解得⎩⎪⎨⎪⎧a =72k ,b =52k ,c =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.]6.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果2b =a +c ,B =30°,△ABC 的面积为32,那么b 等于( )A .1+32B .1+ 3C .2+22D .2 3B [∵S △ABC =12ac sin B ,∴ac =6.又∵b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac ·cos 30°=4b 2-12-63, ∴b 2=4+23,∴b =1+ 3.]7.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0)C .⎝ ⎛⎭⎪⎫-12,0D .⎝ ⎛⎭⎪⎫12,+∞D [由正弦定理得:a =mk ,b =m (k +1),c =2mk ,(m >0), ∵⎩⎨⎧a +b >c ,a +c >b ,即⎩⎨⎧m (2k +1)>2mk ,3mk >m (k +1), ∴k >12.]8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A 2=c -b2c ,则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形B [由已知可得1-cos A 2=12-b 2c ,即cos A =bc ,b =c cos A .法一:由余弦定理得cos A =b 2+c 2-a 22bc ,则b =c ·b 2+c 2-a 22bc , 所以c 2=a 2+b 2,由此知△ABC 为直角三角形. 法二:由正弦定理,得sin B =sin C cos A . 在△ABC 中,sin B =sin(A +C ),从而有sin A cos C +cos A sin C =sin C cos A , 即sin A cos C =0.在△ABC 中,sin A ≠0,所以cos C =0.由此得C =π2,故△ABC 为直角三角形.]9.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2C . 2D .22C [∵a sin A =b sin B =c sin C=2R =8, ∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2.]10.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( )A .154B .1534C .2134D .3534B [∵三边不等,∴最大角大于60°.设最大角为α,故α所对的边长为a +2,∵sin α=32,∴α=120°.由余弦定理得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,故a =5,故三边长为3,5,7,S △ABC =12×3×5×sin 120°=1534.]11.如图,海平面上的甲船位于中心O 的南偏西30°,与O 相距15海里的C 处.现甲船以35海里/小时的速度沿直线CB 去营救位于中心O 正东方向25海里的B 处的乙船,则甲船到达B 处需要的时间为( )A .12小时 B .1小时 C .32小时D .2小时B [在△OBC 中,由余弦定理,得CB 2=CO 2+OB 2-2CO ·OB cos 120°=152+252+15×25=352,因此CB =35,3535=1(小时),因此甲船到达B 处需要的时间为1小时.]12.如图,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为()A .33B .36C .63D .66D [设BD =a ,则BC =2a ,AB =AD =32a . 在△ABD 中,由余弦定理,得cos A =AB 2+AD 2-BD 22AB ·AD =⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫32a 2-a 22×32a ·32a =13.又∵A 为△ABC 的内角,∴sin A =223. 在△ABC 中,由正弦定理得,BC sin A =ABsin C . ∴sin C =AB BC ·sin A =32a 2a ·223=66.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知△ABC 为钝角三角形,且C 为钝角,则a 2+b 2与c 2的大小关系为________.a 2+b 2<c 2[∵cos C =a 2+b 2-c 22ab ,且C 为钝角,∴cos C <0,∴a 2+b 2-c 2<0,故a 2+b 2<c 2.]14.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =________.2π3 [由3sin A =5sin B ,得3a =5b .又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b =-12.因为C ∈(0,π),所以C =2π3.]15.在锐角△ABC 中,BC =1,B =2A ,则ACcos A 的值等于________,AC 的取值范围为________.2 (2,3) [设A =θ⇒B =2θ. 由正弦定理得AC sin 2θ=BCsin θ, ∴AC 2cos θ=1⇒ACcos θ=2.由锐角△ABC 得0°<2θ<90°⇒0°<θ<45°. 又0°<180°-3θ<90°⇒30°<θ<60°, 故30°<θ<45°⇒22<cos θ<32, ∴AC =2cos θ∈(2,3).]16.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B =________.4 [∵b a +ab =6cos C , ∴a 2+b 2ab =6·a 2+b 2-c 22ab , ∴2a 2+2b 2-2c 2=c 2,又tan C tan A +tan C tan B =sin C cos A sin A cos C +sin C cos B sin B cos C =sin C (sin B cos A +cos B sin A )sin A sin B cos C =sin C sin (B +A )sin A sin B cos C =sin 2C sin A sin B cos C =c 2ab cos C =c 2ab a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=4.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[解](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.18.(本小题满分12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=3 5.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.[解](1)∵cos B=35>0,且0<B<π,∴sin B=1-cos2B=4 5.由正弦定理得asin A=bsin B,sin A=a sin Bb=2×454=25.(2)∵S △ABC =12ac sin B =4, ∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17. 19.(本小题满分12分)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b =2,求c 的值. [解] (1)∵cos A =2cos 2A2-1, ∴2cos 2A2=cos A +1.又2cos 2A2+cos A =0,∴2cos A +1=0, ∴cos A =-12,∴A =120°.(2)由余弦定理知a 2=b 2+c 2-2bc cos A , 又a =23,b =2,cos A =-12, ∴(23)2=22+c 2-2×2×c ×⎝ ⎛⎭⎪⎫-12,化简,得c 2+2c -8=0, 解得c =2或c =-4(舍去).20.(本小题满分12分)某观测站在城A 南偏西20°方向的C 处,由城A 出发的一条公路,走向是南偏东40°,在C 处测得公路距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时C 、D 间的距离为21千米,问这人还要走多少千米可到达城A ?[解] 如图所示,设∠ACD =α,∠CDB =β. 在△CBD 中,由余弦定理得 cos β=BD 2+CD 2-CB 22BD ·CD=202+212-3122×20×21=-17,∴sin β=437.而sin α=sin(β-60°)=sin βcos 60°-sin 60°cos β=437×12+32×17=5314.在△ACD 中,21sin 60°=ADsin α,∴AD =21×sin αsin 60°=15(千米).所以这人还要再走15千米可到达城A .21.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2C +22cos C +2=0.(1)求角C 的大小;(2)若b =2a ,△ABC 的面积为22sin A sin B ,求sin A 及c 的值. [解] (1)∵cos 2C +22cos C +2=0, ∴2cos 2C +22cos C +1=0, 即(2cos C +1)2=0, ∴cos C =-22. 又C ∈(0,π),∴C =3π4.(2)∵c 2=a 2+b 2-2ab cos C =3a 2+2a 2=5a 2, ∴c =5a ,即sin C =5sin A , ∴sin A =15sin C =1010. ∵S △ABC =12ab sin C ,且S △ABC =22sin A sin B , ∴12ab sin C =22sin A sin B ,∴absin A sin B sin C =2,由正弦定理得 ⎝ ⎛⎭⎪⎫c sin C 2sin C =2,解得c =1. 22.(本小题满分12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足sin A +3cos A =2.(1)求角A 的大小;(2)现给出三个条件:①a =2;②B =π4;③c =3b .试从中选出两个可以确定△ABC 的条件,写出你的方案并以此为依据求△ABC 的面积.(写出一种方案即可)[解] (1)依题意得2sin ⎝ ⎛⎭⎪⎫A +π3=2, 即sin ⎝ ⎛⎭⎪⎫A +π3=1,∵0<A <π,∴π3<A +π3<4π3,∴A +π3=π2, ∴A =π6.(2)参考方案:选择①②.由正弦定理a sin A =b sin B ,得b =a sin Bsin A =2 2. ∵A +B +C =π,∴sin C =sin(A +B )=sin A cos B +cos A sin B =2+64,∴S △ABC =12ab sin C =12×2×22×2+64=3+1.。
单元质检卷四三角函数、解三角形(B)(时间:60分钟满分:76分)一、选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
(2019全国3,文5)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为()A.2B.3C.4 D。
52。
(2020湖南郴州二模,文9)函数y=f(x)在区间—π2,π2上的大致图象如图所示,则f(x)可能是()A.f(x)=ln|sin x|B。
f(x)=ln(cos x)C.f(x)=-sin|tan x|D。
f(x)=-tan|cos x|3.(2020北京密云一模,8)函数f(x)=sin(ωx+φ)(ω〉0,|φ|〈π)的部分图象如图所示,则f(x)的单调递增区间为()A.—54+k π,—14+k π,k ∈ZB.—54+2k π,—14+2k π,k ∈ZC 。
-54+k ,—14+k ,k ∈ZD 。
—54+2k ,—14+2k ,k ∈Z4。
(2020河北5月模拟,理10)已知x 0是函数f (x )=2sin x cos x+2√3sin 2x —√3,x ∈-π4,π4的极小值点,则f (x 0)+f (2x 0)的值为( )A.0B 。
-3C.—2—√3 D 。
-2+√35.(2020云南玉溪一中测试)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x-y=0上,则sin(3π2+θ)+2cos (π-θ)sin(π2-θ)-sin (π-θ)=( )A.—32B.32C 。
0 D.236。
(2020山东济宁6月模拟,11)已知函数f (x )=sin[cos x ]+cos [sin x ],其中[x ]表示不超过实数x 的最大整数,下列关于f (x )的结论错误的是( ) A.f (π2)=cos 1B.f (x )的一个周期是2πC.f (x )在(0,π)内单调递减D.f (x )的最大值大于√2二、填空题:本题共2小题,每小题5分,共10分.7。
解三角形一、单选题1.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、.若3=c ,3C π=,且4=+b a ,则ABC ∆的面积为( )C.712【答案】A 【解析】 试题分析:由余弦定理2222cos c a b ab C=+-得()22219231632a b ab a b ab ab =+-⨯=+-=-71sin 32ab S ab C ∴=∴==考点:余弦定理解三角形2.在△ABC 中,,BC=2,B =60°,则BC 边上的高等于( )A B C D 【答案】A【解析】在ABC ∆中,由余弦定理可得, 2222cos AC AB BC AB BC B =+-⋅,把已知2,60AC BC B ===,代入可得217442AB AB =+-⨯,整理可得2230,3AB AB AB --=∴=,作AD BC ⊥垂足为,D Rt ABD ∆中,33602AD AB sin =⨯=,即BC ,故选A.【思路点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用. 3.在ΔABC 中,若(tanB+tanC )=tanBtanC −1,则sin2A=( )A 、−32 B 32、−12 D 、12【答案】B 【解析】 试题分析:由3(tan tan )tan tan 1B C B C +=-得tan tan 3tan()1tan tan 3B C B C B C ++==-,又因为,B C 为三角形内角,所以150B C +=︒,30,260A A =︒=︒,所以3sin 22A =,故选B. 考点:三角恒等变换.4.已知在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,且a =4,b +c =5,tan B +tan C +√3=√3tan B tan C ,则△ABC 的面积为 ( ) A .√34 B .3√3 C .3√34D .34【答案】C 【解析】 【分析】将tan B +tan C +√3=√3tan B tan C ,变形为tanB+tanC1−tanBtanC =−√3,然后利用两角和的正切公式和诱导公式可求得A=π3,进而由条件a =4,b +c =5,结合余弦定理,变形可得bc =3,利用三角形面积公式即可求得面积。
高二数学期中复习(1)《解三角形》 选择题(每小题5分,满分60分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60°D .60°或1202.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若a =,2A B =,则c o s B =( )A.3B.4C.5D.63.长为5、7、8的三角形的最大角与最小角之和为 ( ) A 90° B 120° C 135° D 150°4.不解三角形,下列判断正确的是( )A.7a =,14b =,30A =,有两解B.30a =,25b =,150A =,有一解C.6a =,9b =,45A =,有两解D.9b =,10c =,60B =,无解 5. 已知锐角三角形三边分别为3,4,a ,则a 的取值范围为( )A .15a <<B .17a << C5a < D7a <<6.在ABC ∆中,若2sin sin cos 2AB C =,则ABC ∆是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形7. 在ABC ∆中,A ∠=600,AB =2,且ABC S ∆=,则BC 边的长为( )AB .3 CD . 8.ABC ∆ 中,1,2==c a 则C 角的取值范围是( )A .⎥⎦⎤ ⎝⎛6,0π B. ⎥⎦⎤⎢⎣⎡3,6ππ C. ⎪⎭⎫⎢⎣⎡2,3ππ D. ⎪⎭⎫⎝⎛ππ,29. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( )A 13B 12C 34 D 010.如果满足60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11.在ABC ∆中,3A π=,3BC =,则ABC ∆的周长为( )A.)33B π++B.)36B π++C.6sin()33B π++ D.6sin()36B π++12.如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β, α(α<β),则A 点离地面的高度AB 等于( )A .)sin(sin sin αββα-aB .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-aD .)cos(sin cos βαβα-a二、填空题(每小题4分,满分16分)13、若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,则它的内切圆半径等于________14、在ABC ∆中,2,3,AB BC AC ===ABC ∆外接圆半径R = 15.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差数列,30,B =ABC ∆的面积为32,则b =____.16、如图,测量河对岸的塔高AB 时,可以选与 塔底B 在同一水平面内的两个测点C 与D .测得00153030BCD BDC CD ∠=∠==,,米,并在点C 测得塔顶A 的仰角为060, 则塔高AB= 米。
(完整)新课标⼈教A版⾼中数学必修五第⼀章《解三⾓形》单元测试题解三⾓形第Ⅰ卷(选择题共60分)⼀、选择题(共12⼩题,每⼩题5分,只有⼀个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23,则AC =( ) A .43 B .22 C .3 D .32.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .⾮钝⾓三⾓形 3.在△ABC 中,已知a =11,b =20,A =130°,则此三⾓形( )A .⽆解B .只有⼀解C .有两解D .解的个数不确定4. 海上有A 、B 两个⼩岛相距10海⾥,从A 岛望C 岛和B 岛成60ο的视⾓,从B 岛望C 岛和A岛成75ο视⾓,则B 、C 两岛的距离是()海⾥A. 65B. 35C. 25D. 5 5.边长为3、7、8的三⾓形中,最⼤⾓与最⼩⾓之和为 ( ) A .90° B .120° C .135° D .150°6.如图,设A ,B 两点在河的两岸,⼀测量者在A 的同侧,在所在的河岸边选定的⼀点C ,测出AC 的距离为502m ,45ACB ∠=?,105CAB ∠=?后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 1002mD. 200mB .2 C. 2 D. 38.如图,四边形ABCD中,B=C=120°,AB=4,BC=CD=2,则该四边形的⾯积等于( )A. 3 B.5 3C.6 3 D.7 39.在△ABC中,A=120°,AB=5,BC=7,则sin Bsin C的值为( )A.85B.58C.53D.3510.某海上缉私⼩分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°⽅向航⾏,进⾏海⾯巡逻,当⾏驶半⼩时到达B处时,发现北偏西45°⽅向有⼀艘船C,若C船位于A处北偏东30°⽅向上,则缉私艇B与船C的距离是( )A.5(6+2) km B.5(6-2) kmC.10(6+2) km D.10(6-2) km11.△ABC 的周长为20,⾯积为A =60°,则BC 的长等于( ) A .5 B.6 C .7D .812.在ABC △中,⾓A B C 、、所对的边分别为,,a b c ,若120,C c ∠=?=,则() A .a b > B .a b <C .a b =D .a 与b 的⼤⼩关系不能确定第Ⅱ卷(⾮选择题共90分)⼆、填空题(共4⼩题,每⼩题5分):13.三⾓形的两边分别是5和3,它们夹⾓的余弦值是⽅程06752=--x x 的根,则此三⾓形的⾯积是。
解三角形一、单选题1.若cos c a B =,sin b a C =,则ABC ∆是( )A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形 【答案】B 【解析】试题分析:cos sin sin cos cos sin 02c a B C A B A B A π=∴=∴=∴=,sin sin sin sin sin sin 4b a C B A C B C B C π=∴=∴=∴==,三角形是等腰直角三角形考点:1.正弦定理;2.三角函数基本公式2.设ΔA n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3,⋯,若b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=a n +c n2,c n+1=a n +b n2,则∠A n 的最大值为( )A .π6B .π3C .π2D .2π3【答案】B【解析】由题设可得2a 1=b 1+c 1>2c 1,即a 1>c 1,则归纳可得a n >c n ,由a n+1=a n ,b n+1=a n +c n2可知:a n −b n =a n −c n2>0,即a n >b n ,所以a n 最大,则a n 是三角形中的最大角;又因为b n+1>√a n c n ,c n+1>√a n b n ,所以(b n+1)2+(c n+1)2−a n+12=(√a n c n )2+(√a n b n )2−a n 2=a n (c n +b n −a n )>0,即cosA n+1>0,所以应选答案B 。
3.已知的内角,面积S 满足所对的边,则下列不等式一定成立的是A .B .()162ac a b +>C .D .1224abc ≤≤ 【答案】A【解析】试题分析:由题设得: ()()1sin2+sin 2sin 22A B C ππ-=-+1sin2+sin2B+sin22A C ⇒=⇒()()1sin 222+sin2B+sin22B C C π-+= ()1sin2B+sin2sin 222C B C ⇒-+=⇒()()1sin21cos2sin21-cos2B 2B C C -+= ()14sin sin sin cos cos sin 2B C B C B C ⇒+=1sin sin sin 8A B C ⇒=(1)由三角形面积公式1sin 2s ab C =及正弦定理得: 214sin sin sin 2s R A B C =⨯所以24s R =又因为12s ≤≤,所以248R ≤≤ 所以()338sin sin sin b c b cbc b c abc R A B C R a a+++=⨯=⨯>恒成立,所以()8bc b c +>故选A.考点:1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.视频4.在ABC ∆中,若B A sin sin >,则( )A .B A = B .B A <C .B A >D .不确定 【答案】C 【解析】试题分析:根据正弦定理r BbA a 2sin sin ==(r 为三角形外接圆半径),有r b B r a A 2sin ,2sin ==,所以根据题意有rbr a 22,即b a ,根据三角形中,大边对大角有B A . 考点:正弦定理.5.在某个位置测得某山峰仰角为α,对着山峰在水平地面上前进1200米后测得仰角为2α,继续在水平地面上前进400√3米后,测得山峰的仰角为4α,则该山峰的高度为( )A .300米B .450 米C .300 √3米D .600米 【答案】D 【解析】【分析】作出符合题意的图形,利用三角函数、解三角形等知识即可得到结论. 【详解】根据题意画出图形如下图所示.则由题意得AD =1200m,DE =400√3m ,∠ABD =∠BAD =α,∠BDE =∠DBE =2α, ∴BD =AD =1200m ,BE =DE =400√3m , 设山峰的高度为ℎ,则sin2α=ℎ1200,sin4α=400√3,∴cos2α=√32, 由题意得2α为锐角, ∴2α=30°,∴ℎ=1200sin2α=1200×12=600(m).故该山峰的高度为600米. 故选D . 【点睛】本题考查解三角形在实际问题中的应用,解题的关键是根据题意画出图形,然后结合图形根据解三角形的知识求解,考查理解和运用知识解决问题的能力. 6.已知在⊿ABC 中,BCb c cos cos =,则此三角形为( ) A . 直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰或直角三角形 【答案】B 【解析】略7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若23,3a b A π==∠=,则B ∠= ( )A .4π或6πB .12πC .4πD .6π【答案】C【解析】由正弦定理,得32πsin 3=,解得sin B =,又因为2π3A ∠=,所以π4B ∠=;故选C. 8.设ΔABC 中,角A,B,C 所对的边分别为a,b,c ,若a =2, c =2√3, cos A =√32,且b <c ,则b =( )A .√3B .2C .2√2D .1 【答案】B 【解析】由题意,根据余弦定理a 2=b 2+c 2−2bccosA ,得b 2+(2√3)2−2b ⋅2√3⋅√32=22,即b 2−6b +8=0,解得b =2或4,又b <c =2√3,所以b =2,故选B. 点睛:此题主要考查了余弦定理在解三角形中的应用,以及解一元二次方程的运算能力等方面的知识,属于中档题型,也是常考题型.在解决过程中,注意条件b <c 的使用,即在解三角形中有“大角对大边,小解对小边”或是“大边对大角,小边对小角”的说法.9.已知ΔABC 的内角A , B , C 的对边分别是a , b , c ,且(a 2+b 2−c 2)⋅(acosB +bcosA )=abc ,若a +b =2,则c 的取值范围为( ) A .(0,2) B .[1,2) C .[12,2) D .(1,2]【答案】B【解析】由正余弦定理,得2cosC (sinAcosB +sinBcosA )=sinC .即2cosCsin (A +B )=sinC .所以2cosCsinC =sinC ,因为sinC ≠0,所以cosC =12.又C ∈(0,π),所以C =π3.因为c 2=a 2+b 2−2abcosC =(a +b)2−3ab ,且(a +b)2≥4ab ,所以ab ≤1. 所以c 2≥1,即c ≥1,又c <a +b =2. 所以1≤c <2. 故选B.点睛:在解三角形问题里,通常遇见三边的平方式,例如a 2+b 2−c 2,要想到利用余弦定理转化,当遇见边和正余弦的式子时,通常是利用边化角进而化简,总之正余弦定理可以将边和角进行灵活转化,两个都可以尝试一下.10.在ΔOAB 中,∠AOB =120o ,OA =OB =2√3,边AB 的四等分点分别为A 1,A 2,A 3,A 1 靠近A ,执行下图算法后结果为( )A .6B .7C .8D .9 【答案】D 【解析】 【分析】根据程序框图进行运行,得到不满足条件的取值,即可得到结论. 【详解】∵ΔOAB 中,∠AOB =120o ,OA =OB =2√3,∴AA 2=3,AA 1=32,AA 3=92,OA 2=√3,则由余弦定理可得OA =√212, 则cos∠AOA 3=(2√3)2+(√212)2−(92)22×22√3×√212=12+214−8146√7=6√7=12√70 ,∴三次运行的结果是S =OA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅OA ⃑⃑⃑⃑⃑ +OA 2⃑⃑⃑⃑⃑⃑⃑⃑ ⋅OA ⃑⃑⃑⃑⃑ +OA 3⃑⃑⃑⃑⃑⃑⃑⃑ ⋅OA ⃑⃑⃑⃑⃑=(OA 1⃑⃑⃑⃑⃑⃑⃑⃑ +OA 2⃑⃑⃑⃑⃑⃑⃑⃑ +OA 3⃑⃑⃑⃑⃑⃑⃑⃑ )⋅OA ⃑⃑⃑⃑⃑ =3OA 2⃑⃑⃑⃑⃑⃑⃑⃑ ⋅OA ⃑⃑⃑⃑⃑ =3×√3×2√3×12=9,故选D . 【点睛】本题主要考查程序框图的应用和识别,根据向量积的定义和运算性质,以及余弦定理是解决本题的关键,综合性较强,难度较大.11.若ABC ∆的角,,A B C 所对应的边分别为,,a b c ,且2a =, 4B π=, 4ABC S ∆=,则b =( )A B . C D .【答案】B【解析】在ABC ∆中, a 2=, 4B π=, 4ABC S ∆=可得142452csin =⨯⨯︒,解得c =. 由余弦定理可得:b === 故选B .12.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,已知sin cos 1cos2CC C -=-,若ABC ∆的面积()13sin 22S a b C =+= ,则ABC ∆的周长为( )A .5+B 5C .3D 3 【答案】D【解析】由2sin cos 1cos2sin cos 2cos 11cos 22222C C C C CC C ⎛⎫-=-⇒--=- ⎪⎝⎭ cos 2cos -2sin 10,cos 02222C C C C⎛⎫⇒-=≠ ⎪⎝⎭ 1sin -cos 222C C ∴=- ,两边平方得3sin 4C = ,由1sin -cos 222C C ∴=-可得sin<cos ,0,022242C C C C ππ∴∴<<<< ,由3sin 4C =得cos C = 又()13sin 22S a b C =+=可得4,2a b ab a b +==∴== 再根据余弦定理可得2222cos 8c a b ab C =+-=-解得1c =-,故ABC ∆3故选D二、填空题13.在ΔABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2=b 2+bc +c 2,则A =_____________. 【答案】120° 【解析】 【分析】根据已知可化为余弦定理的形式,从而求出A 的余弦,进而求出A. 【详解】由题意可知,cosA =b 2+c 2−a 22bc=−bc 2bc=−12,所以A =120°.【点睛】本题主要考查了利用余弦定理公式求三角形的角,属于中档题.14.在ABC ∆中, ︒=30B ,32=AB ,2=AC 。
解三角形一、单选题1.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边, a =2,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为A B .2 C . D . 【答案】A【解析】由正弦定理得: ()()()2b a b c b c +-=-,即224b c bc +-=,由余弦定理得:2241cos 222b c bc A bc bc +-===, 3A π∴=,又2242b c bc bc bc bc +-=≥-=,4bc ∴≤,当且仅当2b c ==时取等号,此时ABC ∆为正三角形,则ABC ∆的面积的最大值为11sin 422S bc A ==⨯=故选A. 点睛: 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.2.ABC ∆中,)0,5(),0,5(B A -,点C 在双曲线191622=-y x 上,则CB A sin sin sin -=( ) A53 B 53± C 54 D 54± 【答案】D 【解析】试题分析:根据正弦定理可知C BA sin sin sin -84105BC AC AB ,故选D. 考点:正弦定理,双曲线的定义. 3.如果等腰三角形的顶角的余弦值为35,则底边上的高与底边的比值为 A .12 B .45 C .23D .1 【答案】D【解析】设等腰三角形的顶角为2α,底边上的高为h ,底边长为2x ,由三角形知识得tan x h α=,∵3cos 25α=,∴222222cos sin 1tan 3cos 2cos sin 1tan 5ααααααα--===++,∴1tan 2xhα==,∴2h x =,∴底边上的高与底边的比值为1,故选D 4.ABC ∆的内角A , B , C 所对的边分别为a , b , c , 2a =,b =,45A =︒,则B =( )A .30︒B .60︒C .30︒或150︒D .60︒或120︒ 【答案】A【解析】由正弦定理可得:a bsinA sinB=,1222bsinA sinB a ===. 又因为2a =,b =, a b >,所以A B >,所以30B =︒,故选A.5.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =b ,a cos C =c (2-cos A ),则cos B =( ) AB .14CD【答案】B【解析】∵a cos C =c (2-cos A ),∴a cos C +c cos A =2c ,由正弦定理可得:sin A cos C +sin C cos A =2sin C , ∴sin B =sin (A +C )=2sin C , ∴b =2c ,由a =b ,可得a =b =2c ,∴22221cos 2224a cbc B ac c c +-===⋅.故选:B .6.在ABC ∆中,已知A=45,2,a b ==B 等于( )A .30B .60C .150D .30或150 【答案】A 【解析】 试题分析:由正弦定理得045,21sin sin sin sin 0>>∴>==⇒=B b a A a b B B b A a 故知B=300,所以选A. 考点:正弦定理.7.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若060=A ,045=B ,6=a 则=b ( )A .5B .2C .3D .2 【答案】B 【解析】试题分析:由正弦定理得sin sin a bA B=,即006sin 60sin 45b =,得006sin 452sin 60b ==,选B .考点:正弦定理 8.在中,则等于( )A .60°B .45°C .120°D .150° 【答案】D【解析】试题分析:由已知得b 2+c 2-a 2=−√3bc,根据余弦定理cosA =b 2+c 2−a 22bc=−√32, ∴∠A =150°.考点:1、余弦定理;2、特殊角的三角函数值.9.已知a ,b ,c 分别是△ABC 中角A ,B ,C 的对边长,b 和c 是关于x 的方程x 2﹣9x+25cosA=0的两个根(b >c ),且,则△ABC 的形状为( )A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形 【答案】C 【解析】试题分析:由已知:(sinB+sinC+sinA )(sinB+sinC ﹣sinA )=sinBsinC ,利用正弦定理可得b 2+c 2﹣a 2=bc ,进而利用余弦定理求cosA ,从而可求sinA 的值,由方程x 2﹣9x+25cosA=0,可得x 2﹣9x+20=0,从而b ,c ,利用余弦定理a 2=b 2+c 2﹣2bccosA=9,可求得a ,直接判断三角形的形状即可.解:由已知:(sinB+sinC+sinA )(sinB+sinC ﹣sinA )=sinBsinC ,∴sin 2B+sin 2C ﹣sin 2A=sinBsinC , 由正弦定理:∴b 2+c 2﹣a 2=bc ,由余弦定理cosA==,∴sinA=,又∵由(1)方程x 2﹣9x+25cosA=0即x 2﹣9x+20=0,则b=5,c=4, ∴a 2=b 2+c 2﹣2bccosA=9,∴a=3, ∴b 2=c 2+a 2,三角形是直角三角形10.在锐角三角形中, ,,a b c 分别是内角,,A B C 的对边,设2B A =,则ab的取值范围是( ) A .3232 B .)2,2 C .2,3 D .02(,) 【答案】A 【解析】2,B A =∴由正弦定理sin sin a bA B=得:sin sin sin 1sin sin22sin cos 2cos a A A A b B A A A A ====, B 为锐角,即090B <<,且2,B A A=∴C为锐角,0290{ 0180390A A ︒︒︒<<<-< ,所以233045,cos 22A A <<∴<<22cos 3A <<, 31232cos 2A <<ab 的取值范围是3232,故选A. 11.已知ΔABC 的面积为4,∠A =900,则2AB +AC 的最小值为( ) A .8 B .4 C .8√2 D .4√2 【答案】A【解析】分析:由题意知ΔABC 的面积为4,且∠A =900,得AB ⋅AC =8,再由均值不等式,即可求解2AB +AC 的最小值.详解:由题意知ΔABC 的面积为4,且∠A =900,所以S =12AB ⋅AC =4,即AB ⋅AC =8,所以2AB +AC ≥2√2AB ⋅AC =2√2×8=8,当且仅当AB =2,AC =4时取得等号, 所以2AB +AC 的最小值为8,故选A.点睛:本题主要考查了均值不等式求最小值和三角形的面积公式的应用,其中解答中熟记均值不等式的使用条件,以及等号成立的条件是解答的关键,着重考查了分析问题和解答问题的能力.12.若ΔABC的内角A,B,C所对的边a,b,c满足(a+b)2−c2=4,且C=60∘,则ab的值为()A.34B.23C.32D.43【答案】D【解析】【分析】:根据题意和余弦定理,直接求解。
【详解】:(a+b)2−c2=4,整理可得:c2+4=a2+b2+2ab,C=60∘由余弦定理:c2=a2+ b2−2cosCab=a2+b2−ab,由此解得ab=43,故选D【点睛】:余弦定理:c2=a2+b2−2cosCab。
二、填空题13.在ΔABC中,角A,B,C的对边分别为a,b,c,若a2=b2+c2−bc,则asinBb的值为__________.【答案】√32【解析】由题意得b2+c2−a2=bc,∴cosA=b 2+c2−a22bc=bc2bc=12,又0<A<π,故A=π3.在ΔABC中,由正弦定理得asin A =bsinB,∴a sin Bb =sinA=√32.答案:√3214.A、B两只船分别从同在东西方向上相距145km的甲乙两地开出。
A从甲地自东向西行驶,B从乙地自北向南行驶;A的速度是40km/h,,B的速度是16km/h,经过________小时,AB间的距离最短。
【答案】25 8【解析】解:利用方位图,可知,设经过t小时后,相距最近,则有A 行驶的距离为40t,B 行驶的距离为16t ,|AB|= 22214540t)+16t (- 当t=258时,则距离最近 15.[2014·北京海淀区模拟]一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时________.【答案】10海里【解析】如图,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10,在Rt △ABC 中,可得AB =5,于是这只船的速度是50.5=10(海里/小时). 16.如图,在圆内接四边形ABCD 中,2AB =, 1AD =,33cos sin BC BD CD αβ=+,则四边形ABCD 周长的取值范围为__________.【答案】(37,327+【解析】由题意知, ()BDC παβ∠=-+33cos sin BC BD CD αβ=+,由正弦定理得,3sin 3sin cos sin sin BDC βααβ∠=+ ,即()3sin 3sin cos sin sin αββααβ+=+,由两角差公式并整理得,3sin cos sin sin αβαβ=,又()0αβπ∈,,,所以tan 33πββ=⇒=,由四边形ABCD 为圆的内接四边形,所以23A ππβ∠=-=,由余弦定理得, 22222cos 41221cos 73BD AB AD AB AD A π=+-⋅=+-⨯⨯⨯=,又()2222222cos 3BD BC CD BC CD BC CD BC CD BC CD BC CDβ=+-⋅⋅=+-⋅=+-⋅,所以()()22734BC CD BC CD BC CD +=+-⋅≥,即BC CD +≤,又BC CD BD +>=ABCD 的周长取值范围为(3++.点睛:此题主要考查了圆内接四边形性质、正弦定理、余弦定理在解三角形中的应用,以及两角和差公式、均值不等式的应用等,属于中高档题型,也是高频考点.根据条件cos sin CD αβ=+,由正弦定理、结合两角和正弦公式、圆内接四边形性质,可求出3πβ=,再根据余弦定理、结合均值不等式、三角形两边之和大于第三边可求得四边形ABCD 的周长取值范围为(3+.三、解答题17.在三角形ABC 中,角角A,B,C 所对的边分别为a,b,c ,且a +c =2b =2,a =2sinA ,则此三角形的面积S ΔABC = . 【答案】【解析】试题分析:由题意得,b sinB =asinA =2,而,∴,又2b =a +c ,B 不可能是钝角,cosB =√32,而cosB =(a+c)2−2ac−b 22ac=3−2ac 2ac,即3−2ac 2ac=√32,∴,∴S ΔABC =;故填.考点:1.正弦定理;2.三角形的面积公式.18.设ABC ∆的内角,,A B C 的对边分别为,,a b c , b =, 23B π=. (1)若2a =,求角C ;(2)若D 为AC 的中点, BD =,求ABC ∆的周长.【答案】(1)6π;(2)【解析】试题分析:(1)由正弦定理先求得A ,再由三角形内角和定理可得C ;(2)在ABC ∆中由余弦定理可得,a c 的一个方程,由180ADB CBD ∠+∠=︒,分别应用余弦定理利用这两个角余弦和为0又得一个,a c 的方程,联立可解得,a c ,从而得周长. 试题解析:(1)在ABC 中,由正弦定理得: sin sin b aB A=, 所以1sin 2A =,又由于a b <,所以6A π=, 由于23B π=,所以6C π=. (2)在ABC 中,由余弦定理得2211222a c ac+--=,即2212a c ac ++=.①又由于ADB CDB π∠+∠=,故而cos cos 0ADB CDB ∠+∠=,即:0=,所以2210a c +=,② 解①②得: 2ac =.故而()222214a c a c ac +=++=,即a c +=,所以ABC 的周长为a b c ++=+.19.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C 处.(1)求渔船甲的速度; (2)求sinα的值.【答案】(1)21海里/小时;(2)3√314. 【解析】试题分析:解:①∴(4分)∴∴V 甲海里/小时 (6分) ②在中,由正弦定理得∴∴(12分)考点:正弦定理,余弦定理点评:主要是考查了正弦定理和余弦定理的运用,属于基础题。