高中数学《解三角形》单元测试题(基础题含答案)
- 格式:doc
- 大小:132.50 KB
- 文档页数:16
必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
一、选择题1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,c =S =( )A .4B C .16D .122.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( )AB .CD .3.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若3,60a b A ===︒,则边c =( ) A .1B .2C .4D .64.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .5.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .,12⎛⎫⎪⎪⎝⎭B .12⎛⎝⎭ C .,22⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭6.在ABC 中,若2a =,b =30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒7.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形 8.在ABC 中,tansin 2A BC +=,若2AB =,则ABC 周长的取值范围是( )A .(2,B .(4⎤⎦C .(4,2+D .(2⎤+⎦9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( )A .35mB .10mC .490013m D .10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒11.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1B .2C D 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .BC .32D 二、填空题13.已知在锐角ABC ,且212tan tan sin A B A +=,其内角A ,B ,C 所对边分别为a ,b ,c ,则边c 的 最小值为_____________.14.在ABC 中,2AB =,4AC =,则C ∠的取值范围为______.15.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________. 16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .18.如图,为了测量山坡上灯塔CD 的高度,某人从高为40h =的楼AB 的底部A 处和楼顶B 处分别测得仰角为60β=︒,30α=︒,若山坡高为32a =,则灯塔高度是________.19.在平面四边形ABCD 中,∠A =∠B =∠C =α(0<α<2π),已知AB 的取值范围是(1,2),则cos α的值为_____.20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++=⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.22.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5a =,6c =,3sin 5B =.(1)求b 和sin A 的值;(2)求三角形BC 边的中线AD 长; (3)求πsin(2)4A +的值. 23.已知在△ABC 中,a ∶b ∶c =2∶6∶3+1),求角A 的大小.24.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD .25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 22C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.2.C解析:C【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=, sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=, 222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =3.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.4.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴22222a cb ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.5.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+, 由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.6.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭, 所以23131cos 23sin sin sin cos sin 2322444B B B B B B B π⎛⎫-⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 32cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭, 即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.8.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.9.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h,由已知可知,OA OB h ==,且150AOB ∠=,在三角形AOB中,由余弦定理得222352cos15033h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得h =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.10.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.11.D解析:D 【分析】根据()2243S a b c =+-3cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭122224=+⨯=. 故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a>0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC 故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.2【分析】先化切为弦结合正余弦定理将角化边再由面积公式求得构造函数再用导数求得最值【详解】由得即结合正弦定理得再由余弦定理可得整理又由余弦定理可得代入上式得又锐角的面积所以时所以设函数求导可得由得所解析:2 【分析】先化切为弦,结合正、余弦定理将角化边,再由面积公式求得)22cos 3sin A c A-=,构造函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,再用导数求得最值.【详解】 由212tan tan sin A B A +=,得2cos sin cos sin 2sin sin sin A B B A A B A+=, 即2cos sin cos sin 2sin A B B A B +=,结合正弦定理得2cos cos 2b A a B b +=,再由余弦定理可得2222222222b c a a c b b a b bc ac+-+-⋅+⋅=,整理22234c b a bc +-=.又由余弦定理可得2222cos b a bc A c -=-,代入上式得()22cos c bc A =-,又锐角ABC 的面积1sin 2bc A =bc =)22cos 3sin A c A-=, 设函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,求导可得()212cos sin xf x x-'=,由()212cos 0sin x f x x -'==,得3x π=,所以在0,3π⎛⎫ ⎪⎝⎭上单调递减,在,32ππ⎛⎫⎪⎝⎭上单调递增,所以()3f x f π⎛⎫≥= ⎪⎝⎭于是24c =≥,即2c ≥,当且仅当3A π=时,等号成立. 故答案为:2 【点晴】结合正、余弦定理将角化边,构造函数求最值是本题解题的关键.14.【分析】先根据三角形任意两边之和大于第三边求出的范围再结合余弦定理可以用表示求出的范围进而求得的取值范围【详解】解:在中内角的对边分别是由题意得即令所以所以根据导数与函数单调性的关系得:函数在上单调解析:π0,6⎛⎤⎥⎝⎦【分析】先根据三角形任意两边之和大于第三边求出a 的范围,再结合余弦定理可以用a 表示cos C ,求出cos C 的范围,进而求得C ∠的取值范围. 【详解】解:在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c , 由题意得2c =,4b =, b c a b c -<<+,即26a <<,2222123cos 2882a b c a a C ab a a+-+===+, 令()382x f x x =+,所以()2221312'828x f x x x-=-=, 所以根据导数与函数单调性的关系得:函数()f x 在(2,上单调递减,在()上单调递增,所以当26x <<时,()f x 的取值范围为2⎫⎪⎢⎪⎣⎭.所以cos C ⎫∈⎪⎪⎣⎭又因为0πc <<, 所以π0,6C ⎛⎤∈ ⎥⎝⎦.故答案为:π0,6⎛⎤⎥⎝⎦.【点睛】本题考查余弦定理解三角形,三角形的性质,考查运算能力与化归转化思想,是中档题.15.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题解析:3【分析】利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABCS ab C =,即可求出三角形的面积.【详解】由()224c a b =-+可得:22224c a b ab =+-+, 在ABC 中,由余弦定理得:2222cos c a b ab C =+-, 即222c a b ab =++, 所以24ab ab -+=, 即43ab =,所以114sin 223ABCSab C ==⨯=,【点睛】本题主要考查了余弦定理,面积公式的应用,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C . 【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-= 即222sin sin sin sin sin A B C A B +-= 根据正弦定理得222a b c ab +-=故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈得3C π=故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题.17.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.18.28【分析】作于延长线交地面于则由求得从而可得然后即得【详解】如图于延长线交地面于则而所以即所以故答案为:28【点睛】本题考查解三角形的应用掌握仰角概念是解题基础测量高度问题常常涉及到直角三角形因此解析:28 【分析】作BN DC ⊥于N ,DC 延长线交地面于M ,则AM BN =,AM DM ⊥,tan DM AM β=,tan DN BN α=,由40DM DN -=求得BN ,从而可得DM ,然后即得DC . 【详解】如图,BN DC ⊥于N ,DC 延长线交地面于M ,则tan DN BN α=,tan DM AM β=,而BN AM =,所以tan tan BN BN h βα-=,即(tan 60tan 30)40BN ︒-︒=,40203tan 60tan 30BN ==︒-︒,所以tan 60tan 603220333228DC AM CM BN =︒-=︒-=⨯-=. 故答案为:28.【点睛】本题考查解三角形的应用,掌握仰角概念是解题基础.测量高度问题常常涉及到直角三角形,因此掌握直角三角形中的三角函数定义是解题关键,有时还需要用三角函数恒等变换公式.19.【分析】延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在与中分别运用正弦定理可得关于的方程联立可得答案【详解】解:如图延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在中由正弦定理可得 解析:24【分析】延长BA ,CD 交与E 点,过点C 作CFAD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==,设BC x =,在BCE ∆与BCF ∆中,分别运用正弦定理可得关于cos α的方程,联立可得答案. 【详解】解:如图,,延长BA ,CD 交与E 点,过点C 作CF AD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==, 设BC x =,在BCE ∆中,由正弦定理可得:sin sin BC BEE BCE=∠∠,即:2sin(2)sin x παα=-,可得22cos xα=, 同理,在BCF ∆中,由正弦定理可得:sin sin BC BFBFC BCF=∠∠,即:1sin sin(2)x απα=-,可得2cos 1x α=, 故可得:2124cos α=,可得21cos 8α=,又02<<πα,故2cos α=, 故答案为:24. 【点睛】本题主要考查利用正弦定理解三角形,考查学生数学建模的能力与运算能力,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中 解析:7【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.答案见解析 【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=,则1cos 2A =,故3A π=, 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++=⎪⎝⎭,则cos2cos 0A A +=,故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=. 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 22.(113;(2)2;(3)26. 【分析】(1)确定B 锐角,求得cos B ,由余弦定理求得b ,再由正弦定理得sin A ; (2)在ABD △中由余弦定理求得中线AD ,(3)确定A 是锐角,求得cos A ,由二倍角公式求得sin 2,cos 2A A ,然后由两角和的正弦公式求值. 【详解】(1)在ABC 中,因为a b >,故由3sin 5B =,可得cos 45B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b = 由正弦定理sin sin a b A B =,得sin sin a B A b ==. 所以,bsin A(2)设BC 边的中点为D ,在ABD △中,cos 45B = 由余弦定理得:2AD ===, (3)由(1)及a c <,得cos A =,所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 444A A A +=+=.【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,解题时根据已知条件选用正弦定理或余弦定理求解,注意在用平方关系求得角的余弦时,先确定角的范围,然后计算.23.45A =︒【分析】利用余弦定理可求A 的大小. 【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 2k k k b c aA bc+-+-===, 而A 为三角形内角,故45A =︒. 24.(1)π4A =;(2)a =AD = 【分析】(1()sin sin sin tan cos C BA C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD . 【详解】解:(1()sin sin sin tan cos C BA C A C -=-, ()()sin sin sin tan cos C A CA C A C -+=-, ∴2sin sin cos cos sin sin sin cos cos AC A C A C C A C A--=-,∵sin 0C ≠,∴2sincos cos AA A+=∴cos 2A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A=+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==, 又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴AD = 【点睛】 关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.25.2+【分析】 利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长.【详解】 由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。
解三角形练习题一:在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(). A.43B.2 3C. 3D.3 2题二:在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=23,c=22,1+tan Atan B=2cb,则C =().A.30°B.45°C.45°或135°D.60°题三:在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________.题四:在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.求角A的大小.题五:在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为________.题六:在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C. 求证:a,b,c成等比数列.题七:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.题八:如图,在△ABC中,已知B=π3,AC=43,D为BC边上一点.若AB=AD,则△ADC的周长的最大值为________.题九:如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=513,cos∠ADC=35.(1)求sin∠ABD的值;(2)求BD的长.题十:如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)().A.2.7 m B.17.3 mC.37.3 m D.373 m题十一:在△ABC中,若sin2A+sin2B < sin2C,则△ABC的形状是().A.锐角三角形B.直角三角形C.钝角三角形D.不能确定题十二:在△ABC中,a=2b cos C,则这个三角形一定是().A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形解三角形参考答案题一: B.详解:由正弦定理得:BC sin A = AC sin B ,即32sin 60° = AC sin 45° ,所以AC = 3232×22 =2 3. 题二: B.详解:由1+tan A tan B =2c b和正弦定理, 得cos A sin B +sin A cos B =2sin C cos A ,即sin C =2sin C cos A ,所以cos A =12,则A =60°. 由正弦定理得23sin A = 22sin C , 则sin C = 22, 又c < a ,则C < 60°,故C = 45°.题三: 30°或150°详解:由正弦定理得sin B =2sin A sin B ,因为sin B ≠ 0,所以sin A = 12,所以A =30°或A =150°. 题四: A =π3. 详解:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,所以2sin B cos A -sin(A +C )=0,即sin B (2cos A -1)=0.因为0 < B < π,所以sin B ≠ 0,所以cos A = 12. 因为0 < A < π,所以A = π3. 题五: 49π3. 详解:记△ABC 的外接圆半径为R .依题意得2B =A +C ,又A +C +B =π,因此有B = π3,所以AC =AB 2+BC 2-2AB ·BC ·cos B =7.又2R =AC sin B = 7sin 60°,即R = 73,故△ABC 的外接圆的面积是πR 2= 49π3. 题六: 见详解.详解:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B ()sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C ,所以sin B sin(A +C )=sin A sin C .又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C .由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.题七: (1) 303;(2) 小艇航行速度的最小值为1013 海里/小时. 详解:(1)设相遇时小艇航行的距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400 = 900()t -132+300, 故当t = 13时,S min =103,v = 10313=303, 即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,如图所示.由题意可得:(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°),化简得: v 2=400t 2-600t +900=400()1t -342+675. 由于0 < t ≤ 12,即1t ≥ 2,所以当 1t=2时,v 取得最小值1013, 即小艇航行速度的最小值为1013海里/小时.题八: 8+4 3.详解:因为AB =AD ,B = π3,所以△ABD 为正三角形, 在△ADC 中,根据正弦定理,可得AD sin C = 43sin 2π3 = DC sin ()π3-C , 所以AD =8sin C ,DC =8sin ()π3-C ,所以△ADC 的周长为AD +DC +AC=8sin C +8sin ()π3-C +4 3=8⎝⎛⎭⎫sin C +32cos C -12sin C +4 3 =8⎝⎛⎭⎫12sin C +32cos C +4 3 =8sin ()C +π3+43,因为∠ADC = 2π3,所以0 < C < π3,所以π3 < C +π3 < 2π3,所以当C +π3 = π2,即C = π6时,△ADC 的周长的最大值为8+4 3. 题九: (1) 3365.(2) 25. 详解:(1)因为cos ∠ADC = 35, 所以sin ∠ADC =1-cos 2∠ADC = 45. 又sin ∠BAD = 513, 所以cos ∠BAD =1-sin 2∠BAD =1213. 因为∠ABD =∠ADC -∠BAD ,所以sin ∠ABD =sin(∠ADC -∠BAD )=sin ∠ADC cos ∠BAD -cos ∠ADC sin ∠BAD= 45 × 1213 - 35 × 513 = 3365. (2)在△ABD 中,由正弦定理得BD sin ∠BAD = AD sin ∠ABD, 所以BD = AD ×sin ∠BAD sin ∠ABD= 33×5133365=25. 题十: C.详解:在△ACE 中,tan 30°=CE AE = CM -10AE . 所以AE = CM -10tan 30°. 在△AED 中,tan 45°=DE AE = CM +10AE , 所以AE =CM +10tan 45°, 所以CM -10tan 30° = CM +10tan 45°, 所以CM = 10(3+1)3-1=10(2+3)≈37.3(m). 题十一: C.详解:由正弦定理得a 2+b 2 < c 2,所以cos C = a 2+b 2-c 22ab < 0,所以C 是钝角,故△ABC 是钝角三角形. 题十二: A.详解:由余弦定理知cos C = a 2+b 2-c 22ab, 所以a =2b ·a 2+b 2-c 22ab = a 2+b 2-c 2a, 所以a 2=a 2+b 2-c 2,所以b 2=c 2,所以b =c .。
解三角形(1)
1.在△ABC 中,A ∶B ∶C=3∶1∶2,则a ∶b ∶c =
2.在△ABC 中,若BC=5,CA=7,AB=8,则△ABC 的最大角与最小角之和是
3.在△ABC 中,若30A =,8a =,b =ABC S ∆等于
4.若三条线段的长分别为7、8、9,则用这三条线段构成 三角形
5.根据下列条件,判断三角形解的情况,其中正确的是
(1).8a =,16b =,30A =,有两解
(2).18a =,20b =,60A =,有一解
(3).5a =,2b =,90A =,无解
(4).30a =,25b =,150A =,有一解
6.在△ABC 中,在下列表达式中恒为定值的是 .
① sin()sin A B C +-
② cos()cos B C A ++
③ sin
cos 22
A B C +- ④ tan tan 22A B C +⋅ 7.在平行四边形ABCD 中,已知AB=1,AD=2,1AB AD ⋅=,则||AC = .
8.在△ABC 中,已知AB=2,∠C=50°,当∠B= 时,BC 的长取得最大值.
9.在△ABC 中,已知2a b c =+,2
sin sin sin A B C =,则△ABC 的形状是 .
10.在△ABC 中,若3a =2b sin A ,则B 为
11.△ABC 中,∠A 、∠B 的对边分别为a 、b ,5,4a b ==,且∠A=60°,那么满足条件的△ABC 有 个解
12. 在锐角三角形中,边a 、b 是方程x2-2 3 x+2=0的两根,角A 、B 满足2sin(A+B)- 3 =0,求角C 的度数,边c 的长度及△ABC 的面积.。
高一数学必修5《解三角形》测试题(含答案)work Information Technology Company.2020YEAR《解三角形》测试题一、选择题(本大题共6小题,每小题6分,共36分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150°C .60°D .60°或120°2.在△ABC 中,若BA sin sin >,则A 与B 的大小关系为( ) A. BA > B.B A < C. A ≥B D. A 、B 的大小关系不能确定 3.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18C .93D .1834.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为( )A .23 B .-23 C .14 D .-145.△ABC 中,1c o s 1c o s A aB b-=-,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形6. 已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为( )A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C )B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C )C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sinC cos(A +B ) 二、填空题(本大题共4小题,每小题6分,共24分)7.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .8.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 9、ABC ∆中,若b=2a , B=A+60°,则A= .10.在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、.C 的对边,则ca bc b a +++=________.三、解答题(本大题共3小题,共40分)11.(本小题共12分)已知a =33,c =2,B =150°,求边b 的长及S △.12. (本小题共14分) 一缉私艇发现在北偏东 45方向,距离12 nmile 的海面上有一走私船正以10 nmile/h 的速度沿东偏南 15方向逃窜.缉私艇的速度为14nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+45的方向去追,.求追及所需的时间和α角的正弦值.13. (本小题共14分)在∆ABC 中,设,2tan tan bbc B A -=,求A 的值。
解三角形一、选择题(共12小题,每小题5分,只有一个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23AC =( ) A .3 B .22 C 332.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形3.在△ABC 中,已知a =11,b =20,A =130°,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定 4. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60ο的视角,从B 岛望C 岛和A 岛成75ο视角,则B 、C 两岛的距离是( )海里 A. 65 B. 35 C. 25 D. 55.边长为3、7、8的三角形中,最大角与最小角之和为 ( )A .90°B .120°C .135°D .150°6.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定的一点C ,测出AC 的距离为2m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 2mD. 200m 7.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则△ABC 的面积为( )A .1B .2 C. 2 D. 38.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3 B .5 3 C .6 3D .7 3 9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C的值为( ) A.85 B.58 C.53 D.3510.某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向航行,进行海面巡逻,当行驶半小时到达B 处时,发现北偏西45°方向有一艘船C ,若C 船位于A 处北偏东30°方向上,则缉私艇B 与船C 的距离是( )A .5(6+2) kmB .5(6-2) kmC .10(6+2) kmD .10(6-2) km11.△ABC 的周长为20,面积为3A =60°,则BC 的长等于( )A .5 B.6 C .7 D .812.在ABC △中,角A B C 、、所对的边分别为,,a b c ,若120,2C c a ∠=︒=,则( ) A .a b > B .a b <C .a b =D .a 与b 的大小关系不能确定二、填空题(共4小题,每小题5分):13.三角形的两边分别是5和3,它们夹角的余弦值是方程06752=--x x 的根,则此三角形的面积是 。
(时间:120分钟,满分:160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中横线上) 1.在△ABC 中,a =1,A =30°,B =60°,则b 等于________.解析:由正弦定理知a sin A =b sin B =2R ,故1sin 30°=bsin 60°,解之得b = 3.答案: 32.在三角形中,60°角的两边长分别是16和55,则其对边a 的长是________. 解析:由余弦定理得a 2=162+552-2×16×55cos 60°=492,∴a =49. 答案:493.在△ABC 中,若a cos A 2=b cos B 2=ccos C 2,则△ABC 的形状是________三角形.解析:由正弦定理得sin A cos A 2=sin B cos B 2=sin Ccos C 2,即sin A 2=sin B 2=sin C 2.由于A 2,C 2均为锐角,故有A 2=B 2=C 2,所以△ABC 为等边三角形. 答案:等边4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+c 2-ac =b 2,则角B 的大小为________.解析:∵a 2+c 2-ac =b 2, ∴a 2+c 2-b 2=ac ,∴cos B =a 2+c 2-b 22ac =12.∴B =60°. 答案:60°5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1+tan A tan B =2cb,则角A 的大小为________.解析:∵1+tan A tan B =2c b ,∴1+sin A cos B cos A sin B =2sin Csin B,即得sin (A +B )cos A sin B =2sin C sin B ,∴1cos A=2,即得cos A =12,解得A =π3.答案:π36.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B=________.解析:由正弦定理,得sin A a =sin Bb,又∵a =52b ,A =2B ,∴sin 2B 52b =sin Bb ,b ≠0,sin B ≠0,∴2cos B 52=1,∴cos B =54.答案:547.在△ABC 中,a =1,b =2,则角A 的取值范围是________.解析:由a sin A =b sin B ,可得sin A =12sin B ,又因为0<sin B ≤1,所以0<sin A ≤12.所以0°<A ≤30°或150°≤A <180°. 又因为a <b ,所以只有0°<A ≤30°. 答案:0°<A ≤30°8.在锐角△ABC 中,BC =1,B =2A ,则ACcos A的值等于__________,AC 的取值范围为________.解析:如图,AC sin B =1sin A.又B =2A ,∴1sin A =AC sin 2A =AC 2sin A cos A . ∴AC cos A=2, ∵在锐角△ABC 中,B =2A ,∴0<A <π4.又C =π-A -B =π-3A ,∴0<π-3A <π2,即π6〈A <π3.∴π6<A <π4,22<cos A <32. ∴AC =2cos A ∈(2,3). 答案:2 (2,3)9.△ABC 中,已知a ,b ,c 分别为角A 、B 、C 所对的边,S 为△ABC 的面积.若向量p =(4,a 2+b 2-c 2),q =(3,S )满足p ∥q ,则C =________.解析:由p ∥q ,得3(a 2+b 2-c 2)=4S =2ab sin C , 即a 2+b 2-c 22ab =33sin C ,由余弦定理的变式,得cos C =33sin C ,即tan C =3,因为0<C <π,所以C =π3.故填π3. 答案:π310.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为________.解析:由余弦定理知:bc cos A =12(b 2+c 2-a 2)①ca cos B =12(c 2+a 2-b 2)②ab cos C =12(a 2+b 2-c 2)③①+②+③得:bc cos A +ca cos B +ab cos C =12(a 2+b 2+c 2)=12(32+42+62)=612. 答案:61211.在△ABC 中,若AB =2,AC =2BC ,则S △ABC 的最大值是________.解析:设BC =x ,则AC =2x ,根据面积公式,得S △ABC =12AB ·BC sin B =12×2x 1-cos 2B ,根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC=4+x 2-(2x )24x =4-x 24x ,将其代入上式,得S △ABC =x 1-(4-x 24x )2=128-(x 2-12)216,由三角形三边关系有⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值2 2. 答案:2 212.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.解析:法一:由余弦定理c 2=a 2+b 2-2ab cos C得c 2=1+4-2×1×2×14=4,∴c =2,故△ABC 为等腰三角形.如图所示,过点A 作BC 的高线AE , 在Rt △ABE 中,AE =AB 2-BE 2= 22-(12)2=152,∴sin B =AE AB =1522=154.法二:由余弦定理c 2=a 2+b 2-2ab cos C 得c 2=1+4-2×1×2×14=4,∴c =2.∵cos C =14,∴sin C = 1-cos 2C =154.又由正弦定理c sin C =b sin B 得sin B =b sin C c =sin C =154.答案:15413.已知△ABC 的三边a ,b ,c 满足b 2=ac ,P =sin B +cos B ,则P 的取值范围为________.解析:由余弦定理知:b 2=a 2+c 2-2ac cos B . 又b 2=ac ,∴ac =a 2+c 2-2ac cos B , ∴(1+2cos B )ac =a 2+c 2, ∵(a -c )2≥0, 故a 2+c 2≥2ac ,即(1+2cos B )ac ≥2ac ,∴cos B ≥12,∴0<B ≤π3,∴P =sin B +cos B =2sin(B +π4),∵0<B ≤π3,∴π4<π4+B ≤π3+π4, ∴sin π4<sin(B +π4)≤1,∴22<sin(B +π4)≤1, ∴P 的取值范围为(1, 2 . 答案:1, 2 14.如图,在斜度一定的山坡上一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为α,向山顶前进a m 到达点B ,从B 点测得斜度为β,设建筑物的高为h m ,山坡对于地平面的倾斜角为θ,则cos θ=________.解析:在△ABC 中,AB =a ,∠CAB =α,∠ACB =β-α,由正弦定理,得AB sin (β-α)=BCsin α,∴BC =a sin αsin (β-α).在△BDC 中,由正弦定理得 CD sin β=BCsin ∠BDC, ∴sin ∠BDC =BC sin βCD =a sin αsin βh sin (β-α).又∠BDC =90°+θ,∴sin ∠BDC =sin(90°+θ)=cos θ.∴cos θ=a sin αsin βh sin (β-α).答案:a sin αsin βh sin (β-α)二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且A =60°,sin B ∶sin C =2∶3.(1)求bc的值;(2)若AB 边上的高为33,求a 的值.解:(1)在△ABC 中,由正弦定理b sin B =csin C,得b ∶c =sin B ∶sin C .又∵sin B ∶sin C =2∶3,∴b ∶c =2∶3,即b c =23.(2)∵AB 边上的高为33,A =60°,由面积相等可求得b =6, 又b c =23,∴c =9. 又根据余弦定理a 2=b 2+c 2-2bc cos A ,将b =6,c =9,A =60°代入上式,得a 2=63, ∴a =37. 16.(本小题满分14分)在△ABC 中,a =3,b =26,∠B =2∠A , (1)求cos A 的值; (2)求c 的值.解:(1)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理得3sin A =26sin 2A.所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2A =33.又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin Csin A=5.17.(本小题满分14分)在△ABC 中,a =4,A =60°,当b 满足下列条件时,解三角形:(1)b =433;(2)b =22+263;(3)b =833;(4)b =8.解:(1)∵a >b ,∴B 为锐角,由正弦定理,得sin B =b a sin A =12,∴B =30°,C =90°,由正弦定理,得c =a sin A ·sin C =833.(2)由正弦定理,得sin B =b a ·sin A =22+2634×32=6+24,当B 为锐角时,B =75°,C =45°.由正弦定理,得c =a sin A ·sin C =463,当B 为钝角时,B =105°,C =15°,由正弦定理,得c =a sin A ·sin C =22-263.(3)法一:由正弦定理,得sin B =ba·sin A =1,∴B =90°,C =30°,由正弦定理,得c =a sin A ·sin C =433.法二:由余弦定理a 2=b 2+c 2-2bc cos A ,得16=643+c 2-833c ,即c 2-833c +163=0.∴(c -433)2=0.∴c =433,由正弦定理,得sin C =c a ·sin A =12.∵a >c ,∴C 为锐角,∴C =30°,B =90°.(4)由正弦定理,得sin B =ba·sin A =3>1,三角形无解.18. (本小题满分16分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于点E ,AB =2.求:(1)cos ∠CBE 的值; (2)AE 的长.解:(1)因为∠BCD =90°+60°=150°,CB =AC =CD , 所以∠CBE =15°.所以cos ∠CBE =cos(45°-30°)=6+24.(2)在△ABE 中,AB =2,由正弦定理知AE sin 30°=2sin 105°,故AE =2sin 30°cos 15°=6- 2.19.(本小题满分16分) 如图所示的四边形ABCD 中,已知AD ⊥CD ,AD =10,AB =14,∠BAD =60°,∠BCD =135°.(1)求sin ∠ADB ; (2)求BC 的长.解:(1)不妨设∠ADB =x ,则∠ABD =180°-∠BAD -∠ADB =120°-x ,由正弦定理得,AB sin ∠ADB =ADsin ∠ABD,即14sin x =10sin (120°-x ),∴7sin(120°-x )=5sin x , 整理可得,73cos x =3sin x ,结合sin 2 x +cos 2 x =1及x ∈(0°,90°).可解得cos x =3926,sin x =71326.∴sin ∠ADB =71326.(2)在△ABD 中利用正弦定理得, AB sin ∠ADB =BDsin ∠BAD,即1471326=BD 32,解得BD =239. 在△BDC 中利用正弦定理得, BC sin ∠BDC =BDsin ∠BCD,即BC sin (90°-∠ADB )=239sin 135°, ∴BC =239×cos ∠ADBsin 135°=239×392622=3 2.20.(本小题满分16分)在△ABC 中,c =2+6,C =30°,求a +b 的取值范围.解:由正弦定理有c sin C =a sin A =bsin B =a +b sin A +sin B.又c =2+6,C =30°,∴a +b sin A +sin B =2+6sin 30°,A +B =180°-30°=150°. ∴a +b =2(2+6)[sin A +sin(150°-A )] =2(2+6)×2sin 75°cos(75°-A )=2(2+6)×2×6+24cos(75°-A )=(2+6)2cos(75°-A ).①当A =75°时,(a +b )max =8+4 3.②∵A +B =150°,∴0°<A <150°,-150°<-A <0°. ∴cos(75°-A )∈(cos 75°,1.又(2+6)2cos 75°=(2+6)2×6-24=2+6,∴2+6<a +b ≤8+4 3.综上,a +b ∈2+6,8+43.。
一、选择题1.在△ABC 中,若b =2,A =120°,三角形的面积S =AB .C .2D .42.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,(b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ).A .133,244⎡⎤⎢⎥⎣⎦ B .133,244⎛⎫⎪⎝⎭ C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫⎪⎝⎭6.在ABC 中,角A 、B 、C 对边分别为a 、b 、c ,若b =cos 20B B +-=,且sin 2sin C A =,则ABC 的周长是( )A .12+B .C .D .6+7.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8058.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形9.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb+的值为( ) A .24B .22C .1D .211.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m12.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m二、填空题13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.已知ABC 中,2,2BC AB AC ==,则ABC 面积的最大值为_____ 18.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 19.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在①()cos cos 3cos 0C A A B +-=,②()cos23cos 1B A C -+=,③cos sin 3b C B a +=这三个条件中任选一个,补充在下面问题中. 问题:在ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若1a c +=,___________,求角B 的值和b 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】12sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得a =,∴24sin 2a R A === , 解得R =2.本题选择C 选项. 2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R∴=所以ABC∆的外接圆面积为=3ππ.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D【分析】根据角A的平分线交BC于E,满足0AE BC⋅=,得到ABC是等腰三角形,再由2221sin24+-==ABCa b cS ab C,结合余弦定理求解.【详解】因为0AE BC⋅=,所以AE BC⊥,又因为AE是角A的平分线,所以ABC是等腰三角形,又2221sin24+-==ABCa b cS ab C,所以2221sin cos22a b cab C Cab+-==,因为()0,Cπ∈,所以4Cπ,所以ABC是等腰直角三角形,故选:D【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.4.D解析:D【分析】根据cos cosa Ab B=,利用正弦定理将边转化为角得到sin cos sin cosA AB B=,然后再利用二倍角的正弦公式化简求解.【详解】因为cos cosa Ab B=,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.5.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==.因为(b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B 【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .6.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =, 2a ∴=,24c a ==,因此,ABC 的周长是623a b c ++=+.故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.7.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得802BD =,在ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒,∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得802BD =,ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠2280(802)280802cos135=+-⨯⨯⨯︒2805=⨯,∴805AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.11.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.12.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin AM AMCAC ACM∠===∠在Rt ABC ∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.二、填空题13.【分析】利用余弦定理求出的值再利用三角形的面积公式可求得的面积【详解】由余弦定理可得可得则解得因此的面积是故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用正弦定理【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC 的面积. 【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++-,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 1222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦解析:【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围.【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<,cos 64A A ππ∴<<∴∈sin 2sin cos 2cos sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:12-【分析】由三角形的面积公式结合等式8cos 3ABC bc A S =△,可求得3tan 4A =,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值. 【详解】因为881cos sin 332ABC bc A S bc A ==⨯△,所以4cos sin 3A A =,则3tan 4A =,故()()22cos sin 1cos sin sin cos sin cos 22sin cos 2sin cos 2sin cos 2sin cos B CA B C A A A A A A A A A A A A A π++-+++--===---- tan 112tan 12A A -==--. 故答案为:12-.【点睛】 本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.【分析】设则根据面积公式得由余弦定理求得代入化简由三角形三边关系求得由二次函数的性质求得取得最大值【详解】解:设则根据面积公式得由余弦定理可得可得:由三角形三边关系有:且解得:故当时取得最大值故答案解析:43【分析】设AC x =,则2AB x =,根据面积公式得ABC S ∆=,由余弦定理求得cos C 代入化简ABC S ∆=223x <<,由二次函数的性质求得ABC S ∆取得最大值. 【详解】解:设AC x =,则2AB x =,根据面积公式得 1sin sin 12ABC S AC BC C x C x ∆=== 由余弦定理可得2224443cos 44x x x C x x+--==,可得:ABCS ∆==由三角形三边关系有:22x x +>,且22x x +>,解得:223x <<,故当x =时,ABC S ∆取得最大值43, 故答案为:43. 【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.18.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b aab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.19.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴sin 30︒=()sin 1801530CB ︒︒︒--, CB =30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =, 由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确.故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.条件选择见解析;最大值为3. 【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABCS ∆=,即可求解. 【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =, 根据正弦定理可得cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=,根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABCSbc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin A ===,1sin 22ABC S bc A b b∆==⨯=,所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin 2A b===,1sin 2ABCS bc A b ∆===, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.22.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 2224ABCSac B ==⨯=. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 23.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得; 【详解】 解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =,故2222cos sin cos2sin cos AA A A A+=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin A =,cos A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.24.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >.又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b C b C b C c B C C ====⎛⎫- ⎪⎝⎭. 方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-,所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =. 【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠ 所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.条件选择见解析;3B π=,b 最小值为12. 【分析】选①,利用三角形的内角和定理、诱导公式以及两角和的余弦公式化简得出tan B =结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选②,利用三角形的内角和定理、诱导公式以及二倍角的余弦公式求出cos B 的值,结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选③,利用正弦定理边角互化、三角形的内角和定理以及两角和的正弦公式化简可求得tan B =()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值.【详解】解:若选择①:在ABC 中,有A B C π++=,则由题可得:()()cos cos cos 0A B A A B π-++-=⎡⎤⎣⎦, ()cos cos cos cos 0A B A B A B -++=,sin sin cos cos cos cos cos 0A B A B A B A B -+-=,sin sin cos A B A B =,又sin 0A ≠,所以sin B B =,则tan B =又()0,B π∈,所以3B π=,因为1a c +=,所以1c a =-,()0,1a ∈.由余弦定理可得:2222cos b a c ac B =+-22a c ac =+-()()2211a a a a =+---2331a a =-+, ()0,1a ∈,又2211324b a ⎛⎫=-+ ⎪⎝⎭, 所以,当12a =时,()2min 14b =,即b 的最小值为12; 若选择②:在ABC 中,有A B C π++=, 则由题可得()222cos 13cos 2cos 3cos 11B B B B π---=+-=, 解得1cos 2B =或cos 2B =-(舍去), 又()0,πB ∈,所以3B π=.(剩下同①)若选择③:由正弦定理可将已知条件转化为sin cos sin sin 3B C C B A +=, ()()sin cos s s in cos in sin sin B C C B A B C B C π=+=-+=+⎡⎤⎣⎦,代入上式得sin sin cos 3C B C B =,又sin 0C ≠,所以sin B B =,tan B =又()0,B π∈,所以3B π=.(剩下同①) 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.。
解三角形测试题一、选择题:1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于〔〕A.60°B.60°或120°C.30°或150°D.120°2、符合以下条件的三角形有且只有一个的是〔〕A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45°3、在锐角三角形ABC中,有〔〕A.cosA>sinB且cosB>sinA B.cosA<sinB且cosB<sinAC.cosA>sinB且cosB<sinA D.cosA<sinB且cosB>sinA4、假设(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是〔〕A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5、设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根,那么角B 〔〕A.B>60°B.B≥60°C.B<60°D.B ≤60°6、满足A=45,c=6,a=2的△ABC的个数记为m,则a m的值为〔〕A.4 B.2 C.1 D.不定7、如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,ABα(α<β),则A 点离地面的高度AB 等于 〔 〕A .)sin(sin sin αββα-a B .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南 偏东60°,则A,B 之间的相距 〔 〕A .a (km)B .3a(km)C .2a(km)D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____.11、在ΔABC 中,假设S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.三、解答题:13、在ΔABC 中,求分别满足以下条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC=BA BA cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).D Cα β14、已知ΔABC 三个内角A 、B 、C 满足A+C=2B,A cos 1+ C cos 1 =-B cos 2 , 求2cosCA 的值.15、二次方程ax 2-2bx+c=0,其中a 、b 、c 是一钝角三角形的三边,且以b 为最长.①证明方程有两个不等实根; ②证明两个实根α,β都是正数; ③假设a=c,试求|α-β|的变化范围.16、海岛O 上有一座海拨1000米的山,山顶上设有一个观察站A,上午11时,测得一轮船在岛北60°东C 处,俯角30°,11时10分,又测得该船在岛的北60°西B 处,俯角60°.①这船的速度每小时多少千米?②如果船的航速不变,它何时到达岛的正西方向?此时所在点E离岛多少千米?一、BDBBD AAC 二、〔9〕钝角 〔10〕3314 〔11〕4π 〔12〕81三、〔13〕分析:化简已知条件,找到边角之间的关系,就可判断三角形的形状. ①由余弦定理ac ac c a ac b c a ac b c a =-+⇒=-+⇒-+=︒22222222212260cos 0)(2=-∴c a ,c a =∴. 由a=c 及B=60°可知△ABC 为等边三角形. ②由AAb B a A b cos sin tan tan 222⇒=,2sin 2sin ,cos sin cos sin sin sin cos sin cos sin cos sin 22222B A B B A A AB a b B A A B B B a =∴=∴==⇒=∴A=B 或A+B=90°,∴△ABC 为等腰△或Rt △. ③BA B A C cos cos sin sin sin ++= ,由正弦定理:,)cos (cos b a B A c +=+再由余弦定理:b a acb c a c bc c b a c +=-+⨯+-+⨯22222222∆∆∴+=∴=--+∴Rt ABC b a c b a c b a 为,,0))((222222. ④由条件变形为2222)sin()sin(ba b a B A B A +-=+-︒=+=∴=∴=⇒=--+-++∴90,2sin 2sin sin sin sin cos cos sin ,)sin()sin()sin()sin(2222B A B A B A BA B A B A b a B A B A B A B A 或. ∴△ABC 是等腰△或Rt △. 点评:这类判定三角形形状的问题的一般解法是:由正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简考察边或角的关系,从而确定三角形的形状. 有时一个条件既可用正弦定理也可用余弦定理甚至可以混用. 如本例的②④也可用余弦定理,请同学们试试看.〔14〕分析:︒=+︒=∴=+120,60,2C A B B C A 再代入三角式解得A 或 C. 解:︒=+︒=∴=-︒∴=+120.60,2180,2C A B B B B C A .∴由已知条件化为:22cos )120cos(.22)120cos(1cos 1-=+-︒∴-=-︒+A A A A),120cos(cos A A -︒设ααα-︒=+︒==-60,60,2C A CA 则.代入上式得:)60cos(α-︒ )60cos()60cos(22)60cos(ααα-︒+︒-=+︒+.化简整理得023cos 2cos 242=-+αα222cos ,22cos ,0)3cos 22)(2cos 2(=+=∴=+-⇒C A 即ααα. 注:此题有多种解法. 即可以从上式中消去B 、C 求出cosA ,也可以象本例的解法.还可以用和、差化积的公式,同学们可以试一试.〔15〕分析:证明方程有两个不等实根,即只要验证△>0即可.要证α,β为正数,只要证明αβ>0,α+β>0即可. 解:①在钝角△ABC 中,b 边最长.ac b ac b B ac c a b B 424)2(,cos 20cos 122222-=--=∆-+=<<-∴且.0cos 4)(24)cos 2(2222>--=--+=B ac c a ac B ac c a 〔其中0cos 40)(22>-≥-B ac c a 且∴方程有两个不相等的实根. ②,0,02>=>=+aca b αββα ∴两实根α、β都是正数. ③a=c 时,=-=-+=-+=-∴⎪⎪⎩⎪⎪⎨⎧===+424)(2)(,12222222a b a a c a bαββααβββααββα2||0,4cos 40,0cos 1,cos 44)cos 2(22222<-<<-<∴<<--=--+βα因此B B B aa B ac c a . 〔16〕分析:这是一个立体的图形,要注意画图和空间的简单感觉.解:①如图:所示. OB=OA 3330tan =(千米),3=OC 〔千米〕 则313120cos 222=︒⋅-+=OC OB OC OB BC 〔千米〕3926010313=÷=∴v 船速〔千米/小时〕 ②由余弦定理得:=∠=∠∴=⨯-+=∠OBC EBO BC OB OC BC OB OBC sin sin ,261352cos 222 =︒+∠-︒=∠-=∠=-)]30(180sin[sin ,26135cos ,26393)26135(12EBO OEB EBO .131330sin cos 30cos sin )30sin(=︒⨯∠+︒⨯∠=︒+∠EBO EBO EBO 再由正弦定理,得OE=1.5〔千米〕,5),(639==vBEBE 千米〔分钟〕. 答:船的速度为392千米/小时;如果船的航速不变,它5分钟到达岛的正西方向,此时所在点E 离岛1.5千米.。
高中数学必修五解三角形测试题及答案1.在三角形ABC中,如果C=90度,a=6,B=30度,那么c-b的值是多少?选项:A。
1 B。
-1 C。
2/3 D。
-2/32.如果A是三角形ABC的内角,那么下列函数中一定取正值的是什么?选项:A。
XXX3.在三角形ABC中,角A和角B都是锐角,并且cosA>sinB,那么三角形ABC的形状是什么?选项:A。
直角三角形 B。
锐角三角形 C。
钝角三角形 D。
等腰三角形4.在等腰三角形中,一条腰上的高为3,这条高与底边的夹角为60度,那么底边的长度是多少?选项:A。
2 B。
3 C。
3/2 D。
2/35.在三角形ABC中,如果b=2sinB,那么角A等于多少?选项:A。
30度或60度 B。
45度或60度 C。
120度或60度 D。
30度或150度6.边长为5、7、8的三角形的最大角与最小角的和是多少?选项:A。
90度 B。
120度 C。
135度 D。
150度填空题:1.在直角三角形ABC中,如果C=90度,那么sinAsinB 的最大值是1/4.2.在三角形ABC中,如果a=b+bc+c,那么角A的大小是60度。
3.在三角形ABC中,如果b=2,B=30度,C=135度,那么a的大小是2.4.在三角形ABC中,如果5.在三角形ABC中,如果AB=2(6-2),C=30度,那么AC+BC的最大值是5.解答题:1.在三角形ABC中,如果acosA+bcosB=ccosC,那么三角形ABC是等腰三角形。
2.在三角形ABC中,证明:b-a/c = c-b/a。
3.在锐角三角形ABC中,证明:XXX>XXX。
4.在三角形ABC中,如果a+c=2b,A-C=π/3,那么sinB 的值是1/2.1.在△ABC中,若 $\log(\sin A) - \log(\cos B) - \log(\sin C) = \log 2$,则△ABC的形状是()A。
直角三角形 B。
第九章解三角形测评(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,角A,B,C的对边分别是a,b,c,若a∶b∶c=4∶3∶2,则2sin A-sin Asin2A=()A.37B.57C.97D.107解析由题意2sin A-sin Asin2A =2sin A-sin A2sin A cos A=2A-A2A cos A,因为a∶b∶c=4∶3∶2,设a=4k,b=3k,c=2k,由余弦定理可得cos C=(16+9-4)A22×4×3A2=78,则2sin A-sin Asin2A=(8-3)A4×78A=107.故选D.2.如图,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=100米,点C位于BD上,则山高AB等于()A.100米B.50√3米C.50(√3+1)米D.50√2米AB=h,△ABC中,∠ACB=45°,BC=h,在△ADB中,tan∠ADB=AA+100=√33,解得h=50(√3+1)米.故选C.3.若sin AA =cos AA=cos AA,则△ABC是()A.等边三角形B.有一内角是30°的直角三角形C.等腰直角三角形D .有一内角是30°的等腰三角形 解析因为sin AA=cos AA,所以a cos B=b sin A ,所以由正弦定理得2R sin A cos B=2R sin B sin A ,2R sin A ≠0.所以cos B=sin B ,所以B=45°.同理C=45°,故A=90°.4.在直角梯形ABCD 中,AB ∥CD ,∠ABC=90°,AB=2BC=2CD ,则cos ∠DAC=() A.2√55B.√55C.3√1010D.√1010,不妨设BC=CD=1,则AB=2,过点D 作DE ⊥AB ,垂足为点D.易知四边形BCDE 是正方形,则BE=CD=1, 所以AE=AB-BE=1.在Rt △ADE 中,AD=√AA 2+AA 2=√2,同理可得AC=√AA 2+AA 2=√5, 在△ACD 中,由余弦定理得 cos ∠DAC=AC 2+AA 2-AA 22AA ·AA=22×√5×√2=3√1010.故选C .5.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为()海里/小时. A.2√6B.4√6C.8√6D.16√6PM=64,∠MPN=120°,在△PMN中,由正弦定理得AAsin∠AAA =AAsin∠AAA,即64sin45°=AAsin120°,得MN=32√6,所以船的航行速度为AA14-10=8√6(海里/小时).故选C.6.在△ABC中,角A,B,C的对边分别是a,b,c,若b sin 2A+√2a sin B=0,b=√2c,则AA的值为()A.1B.√33C.√55D.√77b sin2A+√2a sin B=0,所以由正弦定理可得sin B sin2A+√2sin A sin B=0, 即2sin B sin A cos A+√2sin A sin B=0.由于sin B sin A≠0,所以cos A=-√22,因为0<A<π,所以A=3π4,又b=√2c,由余弦定理可得a2=b2+c2-2b cos A=2c2+c2+2c2=5c2,所以AA =√55.故选C.7.一游客在A处望见在正北方向有一塔B,在北偏西45°方向的C处有一寺庙,此游客骑车向西行1 km后到达D处,这时塔和寺庙分别在北偏东30°和北偏西15°,则塔B与寺庙C的距离为()A.2 kmB.√3 kmC.√2 kmD.1 km,先求出AC,AB的长,然后在△ABC中利用余弦定理可求解.在△ABD中,AD=1,可得AB=√3.在△ACD中,AD=1,∠ADC=105°,∠DCA=30°,所以由正弦定理得AA sin∠AAA =AAsin∠AAA , 所以AC=AA ·sin∠AAA sin∠AAA=√6+√22. 在△ABC 中,由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos45°=8+4√34+3-2×√6+√22·√3·√22=2,所以BC=√2.故选C .8.如图,某建筑物的高度BC=300 m,一架无人机Q 上的仪器观测到建筑物顶部C 的仰角为15°,地面某处A 的俯角为45°,且∠BAC=60°,则此无人机距离地面的高度PQ 为()A.100 mB.200 mC.300 mD.100 m,可得Rt △ABC 中,∠BAC=60°,BC=300,所以AC=AAsin60°=√32=200√3;在△ACQ 中,∠AQC=45°+15°=60°,∠QAC=180°-45°-60°=75°,所以∠QCA=180°-∠AQC-∠QAC=45°.由正弦定理,得AAsin45°=AAsin60°,解得AQ=200√3×√22√32=200√2,在Rt △APQ 中,PQ=AQ sin45°=200√2×√22=200m .故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在△ABC 中,a ,b 分别是角A ,B 的对边,a=1,b=√2,A=30°,则角B 为() A .45°B.90°C .135°D .60°或135°,可得sin B=A sin AA =√2sin30°=√22,又由a<b,且B∈(0°,180°),所以B=45°或135°.故选AC.10.在△ABC中,根据下列条件解三角形,其中有两解的是()A.b=10,A=45°,C=70°B.b=45,c=48,B=60°C.a=14,b=16,A=45°D.a=7,b=5,A=80°B满足c sin60°<b<c,选项C满足b sin45°<a<b,所以B,C有两解;对于选项A,可求B=180°-A-C=65°,三角形有一解;对于选项D,由sin B=A·sin AA,且b<a,可得B为锐角,只有一解,所以三角形只有一解.故选BC.11.在△ABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是()A.a2=b2+c2-2bc cos AB.a sin B=b sin AC.a=b cos C+c cos BD.a cos B+b cos A=sin CABC中,角A,B,C所对的边分别为a,b,c,知:在A中,由余弦定理得:a2=b2+c2-2bc cos A,故A正确;在B中,由正弦定理得:Asin A =Asin A,∴a sin B=b sin A,故B正确;在C中,∵a=b cos C+c cos B,∴由余弦定理得:a=b×A2+A2-A22AA +c×A2+A2-A22AA,整理,得2a2=2a2,故C正确;在D中,由余弦定理得a cos B+b cos A=a×A2+A2-A22AA +b×A2+A2-A22AA=c≠sin C,故D错误.故选ABC.12.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是()A.sin A ∶sin B ∶sin C=4∶5∶6 B .△ABC 是钝角三角形C .△ABC 的最大内角是最小内角的2倍D .若c=6,则△ABC 外接圆半径为8√77a+b )∶(a+c )∶(b+c )=9∶10∶11,可设a+b=9t ,a+c=10t ,b+c=11t ,解得a=4t ,b=5t ,c=6t ,t>0,可得sin A ∶sin B ∶sin C=a ∶b ∶c=4∶5∶6,故A 正确;由c 为最大边,可得cos C=A 2+A 2-A 22AA=16A 2+25A 2-36A 22·4A ·5A=18>0,即C 为锐角,故B 错误;由cos A=A 2+A 2-A 22AA=25A 2+36A 2-16A 22·5A ·6A=34,cos2A=2cos 2A-1=2×916-1=18=cos C ,由2A ,C ∈(0,π),可得2A=C ,故C 正确;若c=6,可得2R=Asin A =√1-64=√7,△ABC外接圆半径为8√77,故D 正确.故选ACD.三、填空题:本题共4小题,每小题5分,共20分.13.在△ABC 中,A ,B ,C 的对边的长分别为a ,b ,c ,已知a=1,sin A=√210,sin C=35,则c=.解析由正弦定理Asin A=Asin A ,得c=A sin A sin A=1×35√210=35×√2=3√2.√214.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值是.cos A=A 2+A 2-A 22AA,所以bc cos A=12(b 2+c 2-a 2).同理,ac cos B=12(a 2+c 2-b 2),ab cos C=12(a 2+b 2-c 2).所以bc cos A+ac cos B+ab cos C=12(a 2+b 2+c 2)=612.15.为了研究问题方便,有时将余弦定理写成:a 2-2ab cos C+b 2=c 2,利用这个结构解决如下问题:若三个正实数x ,y ,z ,满足x 2+xy+y 2=9,y 2+yz+z 2=16,z 2+zx+x 2=25,则xy+yz+zx=.ABC 的角A ,B ,C 的对边分别为a ,b ,c ,在△ABC 内取点O ,使得∠AOB=∠BOC=∠AOC=2π3,设OA=x ,OB=y ,OC=z ,利用余弦定理得出△ABC 的三边长,由此计算出△ABC 的面积,再利用S △ABC =S △AOB +S △BOC +S △AOC 可得出xy+yz+zx 的值.设△ABC 的角A ,B ,C 的对边分别为a ,b ,c , 在△ABC 内取点O ,使得∠AOB=∠BOC=∠AOC=2π3,设OA=x ,OB=y ,OC=z ,由余弦定理得c 2=x 2-2xy ·cos ∠AOB+y 2=x 2+xy+y 2=9,∴c=3. 同理可得a=4,b=5,∴a 2+c 2=b 2,则∠ABC=90°, △ABC 的面积为S △ABC =12ac=6, 另一方面S △ABC =S △AOB +S △AOC +S △BOC=12xy sin2A 3+12yz sin2A 3+12zx sin2A 3=√34(xy+yz+zx )=6,解得xy+yz+zx=8√3.√316.如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距3√2海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处,此时乙船与灯塔A 之间的距离为海里,两艘轮船之间的距离为海里.ABC 为等边三角形,所以AC=5.∠DAC=180°-75°-60°=45°,在△ADC 中,根据余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos ∠DAC =18+25-2×3√2×5×(√22)=13,解得CD=√13.√13四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B+1=b sin A+2cos C. (1)求角C 的大小;(2)若a=2,a 2+b 2=2c 2,求△ABC 的面积.因为由正弦定理得Asin A =Asin A ,所以a sin B=b sin A ,∴2cos C=1,cos C=12.又0<C<π,∴C=π3.(2)由余弦定理得c 2=a 2+b 2-ab ,∴4+b 2=2(4+b 2-2b ),解得b=2. ∴S △ABC =12ab sin C=12×2×2×sin π3=√3.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B+sin 2C=sin 2A+sin B sin C. (1)求角A 的大小;(2)若cos B=13,a=3,求c 的值.由正弦定理可得b 2+c 2=a 2+bc ,则cos A=A 2+A 2-A 22AA=12,因为A ∈(0,π),所以A=π3.(2)由(1)可知,sin A=√32,因为cos B=13,B为三角形的内角,所以sin B=2√23,故sin C=sin(A+B)=sin A cos B+cos A sin B=√32×13+12×2√23=√3+2√26,由正弦定理Asin A =Asin A,得c=A sin Asin A=√32×√3+2√26=1+2√63.19.(12分)要测量对岸两点A,B之间的距离,选取相距200 m的C,D两点,并测得∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,求A,B两点之间的距离.ACD中,因为∠ACD=30°,∠ADC=105°,所以∠DAC=180°-30°-105°=45°.由正弦定理得AAsin45°=AAsin30°,且CD=200,所以AD=100√2.同理,在△BCD中,可得∠CBD=45°,由正弦定理得AAsin120°=AAsin45°,所以BD=100√6.在△ABD中,∠BDA=105°-15°=90°,由勾股定理得AB=√AA2+AA2=200√2,即A,B两点间的距离为200√2.20.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3c sin B=4a sin C.(1)求cos B的值;(2)求sin (2A +π4)的值.由正弦定理A sin A =Asin A ,则3cb=4ac ,所以b=43a.而b+c=2a ,则c=23a. 故由余弦定理得cos B=A 2+A 2-A 22AA=A 2+49A 2-169A 22A ·23A =-14.(2)因为cos B=-14, 所以sin B=√154. 所以sin2B=2sin B cos B=-√158, cos2B=2cos 2B-1=-78. 所以sin (2A +π4)=√22(sin2B+cos2B ) =√22×(-√158-78)=-7√2+√3016.21.(12分)如图,A ,B 是海面上位于东西方向相距4(3+√3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距16√3海里的C 点的救援船立即前往营救,其航行速度为24海里/小时. (1)求BD 的长;(2)该救援船到达D 点所需的时间.由题意可知:在△ADB 中,∠DAB=45°,∠DBA=30°,则∠ADB=105°.由正弦定理AAsin∠AAA =AA sin∠AAA ,得4(3+√3)sin105°=AA sin45°.由sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=√6+√24,代入上式得DB=8√3.(2)在△BCD 中,BC=16√3,DB=8√3,∠CBD=60°, 由余弦定理得CD 2=BC 2+BD 2-2BC ·BD ·cos60° =(16√3)2+(8√3)2-2×16√3×8√3×12=242,∴CD=24,∴t=A A =2424=1.即该救援船到达D 点所需的时间为1小时.22.(12分)如图,在△ABC 中,C=π4,角B 的平分线BD 交AC 于点D ,设∠CBD=θ,其中tanθ=12.(1)求sin A ;(2)若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =28,求AB 的长.由∠CBD=θ,且tan θ=12,∵θ∈(0,π2),∴sin θ=12cos θ,sin 2θ+cos 2θ=14cos 2θ+cos 2θ =54cos 2θ=1,∴cos θ=√5,sin θ=√5.则sin ∠ABC=sin2θ=2sin θcos θ=2×√5×√5=45,∴cos ∠ABC=2cos 2θ-1=2×45-1=35, sin A=sin [π-(π4+2A )]=sin (π4+2A ) =√22sin2θ+√22cos2θ=√22×(35+45)=7√210. (2)由正弦定理,得AA sin A =AA sin∠AAA ,即7√210=AA 45, 所以BC=7√28AC.又AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =√22|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=28,所以|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=28√2, 由上两式解得AC=4√2,又由AA sin A =AA sin∠AAA ,得√22=AA 45,解得AB=5.。
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
高中数学解三角形(有答案)解三角形一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.172.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.183.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B 的大小()A.30°B.60°C.120°D.150°4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..27.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.79.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.320.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B()A.B.C.D.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos 2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos 2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.参考答案与试题解析一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.17考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把a,c,cosB的值代入求出b的值,即可确定出三角形ABC周长.解答:解:∵△ABC中,a=3,c=8,B=60°,∴b2=a2+c2﹣2accosB=9+64﹣24=49,即b=7,则△ABC周长为3+8+7=18,故选:A.点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.2.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.18考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,b及cosB的值代入,得到关于c的方程,求出方程的解即可得到c的值.解答:解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2﹣2accosB,即:b2=9+64﹣24,即b=7,则a+b+c=18故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.3.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B 的大小()A.30°B.60°C.120°D.150°考点:余弦定理.专题:解三角形.分利用余弦定理表示出cosB,把已知等式变形后代入计算析:求出cosB的值,即可确定出B的度数.解答:解:∵在△ABC 中,b2﹣a2﹣c2=ac,即a2+c2﹣b2=﹣ac,∴cosB==﹣,则∠B=150°,故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC 的形状.解答:解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得sinBcosC+sinCcosB=sinAsinA,即sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.点评:本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A 等于()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理可求得sinA ,结合题意可求得角A.解答:解:∵在△ABC中,2asinB=b ,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.点评:本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..2考点:正弦定理.专题:解三角形.分析:由已知可先求C,然后结合正弦定理可求解答:解:∵A=30°,B=105°,∴C=45°∵a=1.由正弦定理可得,则c===故选B点评:本题主要考查了正弦定理在求解三角形中的简单应用,属于基础试题7.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.专题:解三角形.分析:利用余弦定理列出关系式,把c,b,以及cosB的值代入求出a的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:∵在钝角△ABC中,已知AB=c=,AC=b=1,∠B=30°,∴由余弦定理得:b2=a2+c2﹣2accosB,即1=a2+3﹣3a,解得:a=1或a=2,当a=1时,a=b,即∠A=∠B=30°,此时∠C=120°,满足题意,△ABC的面积S=acsinB=;当a=2时,满足a2=c2+b 2,即△ABC为直角三角形,不合题意,舍去,则△ABC面积是.故选:B .点评:此题考查了正弦定理,余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.7专题:解三角形.分析:由△ABC的面积S△ABC=,求出AC=1,由余弦定理可得BC,计算可得答案.解答:解:∵S △ABC ==×AB×ACsin60°=×2×AC×,∴AC=1,△ABC 中,由余弦定理可得BC==,故选A.点评:本题考查三角形的面积公式,余弦定理的应用,求出AC ,是解题的关键.9.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.考点:余弦定理.专题:解三角形.分析:知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样解答:解:利用余弦定理得:4=c2+8﹣4ccosA,即c2﹣4cosAc+4=0,∴△=32cos2A﹣16≥0,∵A为锐角∴A∈(0,],故选:C.点评:此题属于解三角形题型,解题思路为:利用余弦定理解答三角形有解问题,知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围,有一定难度.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:计算题.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°考点:正弦定理的应用.专题:计算题.分析:先根据正弦定理将题中所给数值代入求出sinB的值,进而求出B,再由角B的范围确定最终答案.解答:解:由正弦定理得,∴B=45°或135°∵AC<BC,∴B=45°,故选B.点评:本题主要考查了正弦定理的应用.属基础题.正弦定理在解三角形中有着广泛的应用,要熟练掌握.12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.考点:正弦定理.分析:根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.解答:解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.点评:正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)专题:解三角形.分析:设==q,则由任意两边之和大于第三边求得q的范围,可得的取值范围解答:解:设==q,则==q+q2,则由,求得<q <,∴<q2<,∴1<q+q2<2+,故选:D.点评:本题考查数列与三角函数的综合应用,是基础题.解题时要认真审题,仔细解答,注意三角形三边关系的灵活运用14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b ,c,若3a=2b ,则的值为()A.﹣B.C.1D.考点:余弦定理;正弦定理.专题:解三角形.解答:解:∵3a=2b ,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°考点:正弦定理.专题:计算题.分析:根据所给的等式和正弦定理,得到要求角的正弦和余弦相等,由根据这是一个三角形的内角得到角的度数只能是45°.解答:解:∵,又由正弦定理知,∴sinB=cosB,∵B是三角形的一个内角,故选B.点评:本题考查正弦定理,是一个基础题,解题时注意当两个角的正弦值和余弦值相等时,一定要说清楚这个角的范围,这样好确定角度.16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.考点:正弦定理;函数的值域.专题:计算题.分析:由正弦定理得,再根据△ABC是锐角三角形,求出B ,cosB的取值范围即可.解答:解:由正弦定理得,∵△ABC是锐角三角形,∴三个内角均为锐角,即有,0<π﹣C﹣B=π﹣3B<解得,又余弦函数在此范围内是减函数.故<cosB<.∴<<故选A点本题考查了二倍角公式、正弦定理的应用、三角函数的17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°考点:正弦定理;余弦定理.分析:本题考查的知识点是正弦定理和余弦定理,由在△ABC 中,如果,我们根据正弦定理边角互化可以得到a=c,又由B=30°,结合余弦定理,我们易求出b 与c的关系,进而得到B 与C的关系,然后根据三角形内角和为180°,即可求出A角的大小.解答:解:∵在△ABC 中,如果∴a= c又∵B=30°由余弦定理,可得:cosB=cos30°===解得:b=c则B=C=30°A=120°.故选D.点评:余弦定理:a2=b2+c2﹣2bccosA,b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.余弦定理可以变形为:cosA=(b2+c2﹣a2)÷2bc,cosB=(a2+c2﹣b2)÷2ac,cosC=(a2+b2﹣c2)÷2ab18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.考点:正弦定理;二倍角的余弦.分析:根据正弦定理得到sinA:sinB,因为∠A:∠B=1:2,利用二倍角的三角函数公式得到A和B的角度,代入求出cos2B即可.解答:解:依题意,因为a:b=1:,所以sinA:sinB=1:,又∠A :∠B=1:2,则cosA=,所以A=30°,B=60°,cos2B=﹣故选A点评:考查学生灵活运用正弦定理解决数学问题的能力,以及灵活运用二倍角的三角函数公式化简求值的能力.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.3考点:正弦定理.专题:解三角形.分析:根据正弦定理的面积公式,结合题中数据算出边c=4,再由余弦定理a2=b2+c2﹣2bccosA的式子算出a2=13,即可算出边a的长度.解答:解:∵△ABC中,∠A=60°,b=1,∴可得△ABC的面积为S=bcsinA=×1×c×sin60°=解之得c=4根据余弦定理,得a2=b2+c2﹣2bccosA=1+16﹣2×1×4×cos60°=13,所以a=(舍负)故选C点评:本题给出三角形一边、一角和面积,求边a的长度.着重考查了正弦定理的面积公式和利用余弦定理解三角形等知识,属于基础题.20.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B()A.B.C.D.考正弦定理.专题:计算题;解三角形.分析:由已知结合正弦定理可得,,然后利用余弦定理可得,cosB==﹣,可求B解答:解:∵asinA+csinC+asinC=bsinB,∴由正弦定理可得,由余弦定理可得,cosB==﹣∵0<B<π∴B=.故选:D.点评:本题主要考查了正弦定理、余弦定理在求解三角形中的应用,属于基础题.二.解答题(共10小题)21.(2014•山东)△ABC 中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.考点:正弦定理.专解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB 的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答:解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin (A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅱ)求tan(A﹣B)的最大值.考点:正弦定理;两角和与差的正切函数.分析:本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A ﹣B)的最大值.解答:解:(Ⅰ)在△ABC 中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,点评:在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.23.(2014•浙江)在△ABC中,内角A,B ,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.考点:正弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得﹣2sin (A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B ).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由sinA=求得cosA的值.再由正弦定理求得a,再求得sinB=sin[(A+B)﹣A ]的值,从而求得△ABC 的面积为的值.解答:解:(Ⅰ)∵△ABC中,a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB,∴﹣=sin2A﹣sin2B,即cos2A﹣cos2B=sin2A﹣sin2B,即﹣2sin (A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).∵a≠b,∴A≠B,sin(A﹣B)≠0,∴tan(A+B)=﹣,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A <,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)﹣A]=sin (A+B )cosA ﹣cos(A+B)sinA=﹣(﹣)×=,∴△ABC的面积为=×=.点评:本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A 为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.25.(2014•兴安盟一模)在△ABC 中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:利用正弦定理化简已知条件,根据三角形的内角和定理及诱导公式化简,由sinC不为0,得到cosB的值,由B 的范围,利用特殊角的三角函数值即可得到B的度数,(Ⅰ)根据余弦定理,由b,cosB和a+c的值,求出ac 的值,然后利用三角形的面积公式,由ac的值和sinB 的值即可求出三角形ABC的面积;(Ⅱ)由求出的B的度数,根据三角形的内角和定理得到A+C的度数,用A表示出C,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围.解答:解:由已知及正弦定理得:(2sinC﹣sinA)cosB﹣sinBcosA=0,即2sinCcosB﹣sin(A+B)=0,在△ABC中,由sin(A+B)=sinC故sinC(2cosB﹣1)=0,∵C∈(0,π),∴sinC≠0,∴2cosB﹣1=0,所以B=60°(3分)(Ⅰ)由b2=a2+c2﹣2accos60°=(a+c)2﹣3ac,即72=132﹣3ac,得ac=40(5分)所以△ABC 的面积;(6分)(Ⅱ)因为==,(10分)又A ∈(0,),∴,则sinA+sin (C﹣)=2sin(A+)∈(1,2].点评:此题考查学生灵活运用正弦定理及诱导公式化简求值,灵活运用三角形的面积公式及两角和的正弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.考点:正弦定理.专题:计算题.分析:(I )由可求sinB=且B 为锐角,由b=2,a=考虑利用正弦定理可求sinA,结合三角形的大边对大角且a<b可知A<B,从而可求A,(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB,把已知代入,结合a2+c2≥2ac可求ac的范围,在代入三角形的面积公式可求△ABC面积的最大值.解答:解:∵∴sinB=且B 为锐角(I)∵b=2,a=由正弦定理可得,∴∵a<b∴A<B∴A=30°(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB ∴从而有ac≤10∴∴△ABC面积的最大值为3点评:本题(I)主要考查了利用正弦定理及三角形的大边对大角解三角形(II)利用余弦定理及基本不等式、三角形的面积公式综合求解三角形的面积.考查的是对知识综合运用.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)三角形ABC中,由条件化简可得sinA=2sinC,故有a=2c.再由b2=ac=2c2,求得cosB=的值.(Ⅱ)根据b=,b2=ac=2c2,求得c和a的值,求得sinB=的值,再根据△ABC的面积S=ac•sinB,计算求得结果.解答:解:(Ⅰ)三角形ABC中,∵sinB+sin(A﹣C)=2sin2C ,∴sin(A+C)+sin(A﹣C)=4sinCcosC,sinA=2sinC,∴a=2c .又因为b2=ac=2c 2,∴cosB==.(Ⅱ)∵b=,b2=ac=2c2,∴c=,∴a=.又∵sinB==∴△ABC的面积S=ac•sinB=.点评:本题主要考查两角和差的三角公式、正弦定理、余弦定理的应用,属于中档题.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.解答:解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.点评:此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a 与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos 2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.考点:正弦定理;余弦定理.专计算题;解三角形.题:分析:(1)先利用正弦定理把题设等式中的边转化成角的正弦,利用二倍角公式和两角和公式整理求得sinB=sin2C,进而根据B,C的范围,求得B+2C=π,判断出A=C,即三角形为等腰三角形.(2)利用平面向量的性质,依据已知条件求得a2+c2+2ac•cosB=4,根据a的值求得cosB的值.解答:解:(1)由及正弦定理,得,即sinBsinA﹣sinBsin2C=sinAsin2C﹣sinBsin2C ,即sinBsinA=sinAsin2C,因为A是三角形内角,所以sinA≠0,可得sinB=sin2C,∵,∴,∴B+2C=π,∵A+B+C=π,∴A=C,△ABC为等腰三角形.(2)∵∴B∈(0,),∴cosB∈(,1)由(1)可知a=c,由,得a2+c2+2ac•cosB=4,∴a2=,∴=cosB=a2•cosB==2﹣∈(,1)(12分).点评:本题主要考查了正弦定理的应用.解题的关键是利用正弦定理进行了边角问题的转化.。
一、选择题1.在ABC 中,2sin 22C a b a-=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形D .直角三角形2.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B C .3 D .3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且c =3C π=,则a =( )A .1B C .1 D4.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c △ABC 的面积Scos A ,则a =( )A .1B .C .D .5.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 16.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( )A .63B .3C .3D .137.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知a =cos sin b A B =,则A =( )A .12πB .6πC .4πD .3π 8.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若3013C c a =︒==,,,则ABC ∆的面积为A .3 B .3 C .34D .329.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭10.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan 7C =52cos 8A =,32b =ABC 的面积为( ) A .37B 37C 37D 37二、填空题13.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.14.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若223a b bc -=,sin 23C B =,则A =____.15.甲船正离开岛A 沿北偏西10︒的方向以每小时1海里的速度航行,乙船在岛A 处南偏西50︒的B 处,且AB 的距离为2海里,若乙船要用2小时追上甲船,则乙船速度大小为每小时________海里.16.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且a x =,3b =,60B =,若ABC ∆有两解,则x 的取值范围是__________.17.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.18.在ABC 中,60,12,183ABCA b S=︒==,则sin sin sin a b cA B C____________.19.如图,要计算某湖泊岸边两景点B 与C 的距离,由于受地形的限制,需要在岸上选取A 和D 两点,现测得5km AB =,7km AD =,60ABD ∠=︒,15CBD ∠=︒,120BCD ∠=︒,则两景点B 与C 的距离为________km.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,5b c =,sin 1c A =.点D 是AC的中点,BD AB ⊥,求c 和ABC ∠. 22.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 23.在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 2b c +=,______,求A 和C .注:若选择多个条件作答,按第一个解答计分.24.在ABC 中,,,a b c 分别是角,,A B C 的对边.若2,cos b c C -==,再从条件①与②中选择一个作为已知条件,完成以下问题: (1)求,b c 的值;(2)求角A 的值及ABC 的面积.条件①:cos cos a B b A +=;条件②:2cos 2b C a =-. 25.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.26.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若a =4b c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式、正弦定理可得出sin sin cos B A C =,利用两角和的正弦公式可得出cos sin 0A C =,求出A 的值,即可得出结论.【详解】21cos sin 222C C a b a--==,cos b a C ∴=,由正弦定理可得sin sin cos B A C =, 所以,()sin cos sin sin cos cos sin A C A C A C A C =+=+,则cos sin 0A C =,0C π<<,则sin 0C >,cos 0A ∴=,0A π<<,2A π∴=,因此,ABC 为直角三角形.故选:D. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.B解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴3sin3a π==.②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.A解析:A由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cos A =25,运用余弦定理可求得边a . 【详解】因为b =2,c =5,S =5cos A =12bc sin A =5sin A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A =25. 所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×25=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()22sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,32AB =3BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos 3BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性7.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,1cos A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=,由正弦定理有sin sin a b A B=, 又a =即1sin cos A A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.8.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,,由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去). ∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.10.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.B解析:B 【分析】结合同角三角函数的基本关系可求出14sin 4C =,2cos 4C =,14sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】 因为sin tan 7cos C C C ==,且22sin cos 1C C +=,解得14sin C =,2cos C =, 又52cos A =,所以214sin 1cos A A =-=,故37sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=. 因为sin sin a bA B =,32b =,故sin 2sin b A a B==, 故111437sin 2322242ABC S ab C =⨯=⨯⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.二、填空题13.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角 解析:6【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=,∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的,可得6x x=,解得x =BC,. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.14.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解 解析:6π【分析】由sinC B =,根据正弦定理“边化角”,可得c =,根据余弦定理2222cos a b c bc A=+-,结合已知联立方程组,即可求得角A .【详解】sin C B =根据正弦定理:sin sin b cB C= ∴可得c =根据余弦定理:2222cos ab c bc A =+- 由已知可得:22a b-=故可联立方程:222222cos c a b c bc A a b ⎧=⎪=+-⎨⎪-=⎩解得:cos 2A =. 由0A π<<∴6A π=故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.15.【分析】由题意画出示意图三角形(假设在处追上)然后设乙船速度为由此表示出的长度求出的长度在借助于余弦定理求出的长则速度可求【详解】解:由题意设乙船的速度为且在处乙船与甲船相遇做出图形如右:所以由题意 解析:3【分析】由题意画出示意图三角形ABC (假设在C 处追上),然后设乙船速度为x ,由此表示出BC 的长度,求出AC 的长度,在借助于余弦定理求出BC 的长,则速度可求. 【详解】解:由题意,设乙船的速度为x ,且在C 处乙船与甲船相遇, 做出图形如右:所以1801050120BAC ∠=︒-︒-︒=︒.由题意知2AB =,122AC =⨯=,2BC x =,120BAC ∠=︒.在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-∠. 即2444222cos12012x =+-⨯⨯︒=, 所以23x =,3x =/小时). 3 【点睛】本题考查解三角形的应用举例问题,根据题意建立合适的解三角形模型,运用正余弦定理构造方程求解,属于中档题.16.【分析】利用正弦定理得到再根据有两解得到计算得到答案【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理有两解意在考查学生的计算能力 解析:(3,23)【分析】利用正弦定理得到sin 23A =,再根据ABC ∆有两解得到sin sin 123B A <=<,计算得到答案.【详解】由正弦定理得:sinsin sin sin a b x A A B A =⇒== 若ABC ∆有两解:sin sin 13B A x <=<⇒<<故答案为(3, 【点睛】本题考查了正弦定理,ABC ∆有两解,意在考查学生的计算能力.17.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值. 【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BDCBD BCD=∠∠,所以()3sin sin 60x x θθ=-,所以()13sin sin 60cos sin 22θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.18.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.19.【分析】在中根据由余弦定理解得然后在中利用正弦定理求解【详解】在中因为由余弦定理得整理得解得或(舍去)在中因为所以由正弦定理得:所以故答案为:【点睛】本题主要考查余弦定理和正弦定理的应用还考查了运算【分析】在ABD △中,根据5km AB =,7km AD =,60ABD ∠=︒,由余弦定理解得8BD =,然后在BCD △中,利用正弦定理sin sin BD BCBCD BDC=∠∠求解.【详解】在ABD △中,因为5km AB =,7km AD =,60ABD ∠=︒, 由余弦定理得2222cos AD AB BD AB BD ABD =+-⋅⋅∠, 整理得249255BD BD =+-, 解得8BD =或3BD =-(舍去),在BCD △中,因为15CBD ∠=︒,120BCD ∠=︒, 所以45BDC ∠=︒, 由正弦定理得: sin sin BD BCBCD BDC=∠∠,所以sin 45sin120BD BC ⋅︒==︒.故答案为:3【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 452CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.c =34ABC π∠=. 【分析】由勾股定理求出BD ,再由sin BDA AD=,sin 1cA =,b =求出c =5b =,再由余弦定理求出a ,最后由正弦定理求出ABC ∠. 【详解】解:在直角三角形ABD 中,22222224b c BD AD AB c ⎛⎫=-=-= ⎪⎝⎭,所以2c BD =.所以5sin BD A AD ==. 又因为sin 1c A =,所以5c =由5b c =得,5b =.因为5sin A =,0,2A π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin A A =-=. 在ABC 中,由余弦定理,得22255(5)255105a =+-⨯⨯⨯= 由正弦定理,得sin sin a b A ABC =∠,即510sin 5ABC =∠2sin ABC ∠=. 又因为,2ABC ππ⎛⎫∠∈ ⎪⎝⎭,所以34ABC π∠=. 【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c 和ABC ∠.22.B =30°,90C =,3b =23c =.【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可. 【详解】 由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒, 由正弦定理sin sin sin b c aB C A==, ∴sin 3sin 303sin sin 60a B b A ︒===︒sin 3sin 9023sin sin 60a C c A ︒===︒23.选择见解析;3A π=,512C π=. 【分析】若选择条件①,先由正弦定理和余弦定理求出角A ,再利用正弦定理化简22a b c +=,把23B C π=-代入,化简求值即可;若选择条件②,利用正弦定理和二倍角公式解出sin2A的值,进而得出角A ; 若选择条件③,由正弦定理结合两角和与差的正弦公式可求出tan A ,进而得出角A 和C .【详解】(1)选择条件①,由()22sin sin sin sin sin B C A B C -=-及正弦定理知,()22b c a bc -=-,整理得,222b c a bc +-=;由余弦定理可得,2221cos 222b c a bc A bc bc +-===;又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=(2)选择条件②,因为A B C π++=,所以222B C Aπ+=-; 由sinsin 2B C b a B +=得,cos sin 2Ab a B =由正弦定理知,sin cos sin sin 2sin cos sin 222A A AB A B B ==; 又sin 0B >,sin02A >,可得1sin 22A =;又因为()0,A π∈,所以,26A π=,故3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=. (3)选择条件③,由sin cos 6a B b A π⎛⎫=-⎪⎝⎭及正弦定理知, sin sin sin cos 6A B B A π⎛⎫=- ⎪⎝⎭又sin 0B >,从而1sin cos sin 62A A A A π⎛⎫=-=+ ⎪⎝⎭,解得tan A =又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. 【点睛】方法点睛:本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,解三角形问题中可以应用正余弦定理的题型有: 1.已知一边和两角;2.已知两边和其中一边的对角;3.已知两边和它们所夹的角;4.已知三边.24.(1)6,4b c ==; (2)3A π=,S =【分析】(1)选用条件①:由正弦定理求得a =2b c -=,即可求解;选用条件②:由正弦定理求得cos 14B =,得出sin 14B =,再由cos 7C =,求得得sin C =(2)由余弦定理求得A 的值,结合面积公式,即可求解. 【详解】(1)选用条件①:因为cos cos 14a Bb A ac +=,由正弦定理得sin cos sin cos sin A B B A C +=,可得sin sin C C =,又因为(0,)C π∈,所以sin 0C ≠,可得a =又由cos C =,由余弦定理得2222a b c ab +-=, 将2b c -=代入上式,解得6,4b c ==.选用条件②:因为2cos 27b C a =-,由正弦定理得2sin cos 2sin 7B C A C =-2sin()7B C C =+-2(sin cos cos sin )B C B C C =+即2cos sin sin 07B C C -=,又因为(0,)C π∈,所以sin 0C ≠,可得cos B =,则sin B =,又由cos C =,可得221sin 1cos C C由正弦定理sin sin b cB C =,得sin 3sin 2b Bc C ==, 又由2b c -=,可得6,4b c ==.(2)由余弦定理得2221cos 22b c a A bc +-==, 因为0A π<<,所以3A π=.所以ABC 的面积为11sin 64222S bc A ==⨯⨯⨯= 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 25.(1)23π;(2)1. 【分析】(1)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小;(2)由题意结合(1)的结论和三角函数的性质可得sin sin B C +的最大值.【详解】(1)由己知,根据正弦定理得()()2222a b c b c b c =+++ 即222a b c bc =++由余弦定理得2222cos a b c bc A =+- 故1cos 2A =-,所以23A π=. (2)由(1)得:1sin sin sin sin sin sin 3223B C B B B B B ππ⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭故当6B π=时,sin sin B C +取得最大值1.【点睛】方法点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.26.(1)23π;(2 【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解.【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=,整理得sin cos sin cos 2sin cos 0A C C A B A ++=,即:()sin 2sin cos 0A C B A ++=,所以sin 2sin cos 0B B A +=,∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=.(2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-,∴4bc =,∴ABC 的面积为112sin 4sin 223S bc A π==⨯⨯= 【点评】 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.。
一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C 3 kmD 2 km2.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12π C .12π D .3π3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则23a c -的最小值为( )A .4-B .3-C .2-D .3-5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2aB c=,21sin sin (2cos )sin 22A B C A -=+,则A =( )A .6π B .3π C .2π D .23π 6.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 17.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A .4B .2C .1D .29.在ABC 中,60A ∠=︒,1b =,ABCS =2sin 2sin sin a b cA B C++=++( )A .3B C D .10.正三棱锥P ABC -中,若6PA =,40APB ∠=︒,点E 、F 分别在侧棱PB 、PC 上运动,则AEF 的周长的最小值为( )A .36sin 20︒B .C .12D .11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .B .2C .32D 二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若AM =,则BC =___________.14.在ABC 中,3B π=,2AC =,则4AB BC +的最大值为_______. 15.若A ,B ,C 为ABC 的内角,满足sin A ,sin C ,sin B 成等差数列,则cos C 的最小值是________.16.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC 面积的最大值为____________.17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.19.在钝角ABC 中,已知2a =,4b =,则最大边c 的取值范围是__________. 20.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 三、解答题21.如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC 22CD .22.在ABC 中,,,a b c 分别是角,,A B C 的对边.若272,cos b c C -==,再从条件①与②中选择一个作为已知条件,完成以下问题: (1)求,b c 的值;(2)求角A 的值及ABC 的面积. 条件①:7cos cos 14a B b A ac +=;条件②:72cos 27b C ac =-. 23.如图所示,某镇有一块空地OAB ,其中3km,60,90OA OAM AOB =∠=∠=.当地政府计划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖OMN ,其中,M N 都在边AB 上,且30MON ∠=,挖出的泥土堆放在OAM △地带上形成假山,剩下的OBN△地带开设儿童游乐场.为安全起见,需在OAN 的周围安装防护网.设AOM θ∠=.(1)当3km 2AM =时,求θ的值,并求此时防护网的总长度;(2)若=15θ,问此时人工湖用地OMN 的面积是堆假山用地OAM △的面积的多少倍?(3)为节省投入资金,人工湖OMN 的面积要尽可能小,问如何设计施工方案,可使OMN 的面积最小?最小面积是多少?24.请从下面三个条件中任选一个,补充在下面的横线上,并解答. ()3cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan 3tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,10a b c =+=ABC 的面积. 25.已知ABC 中,632AB BC ==225AC AB +=. (1)求ABC ∠的值;(2)若P 是ABC 内一点,且53,64APB CPB ππ∠=∠=,求tan PBA ∠. 26.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.5323338h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-,所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,2R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴22222a cb ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =.∵212cos sin sin (2cos )sin 222A ABC A --=+=,易知2cos 0A -≠, ∴1sin sin 2B C =,又sin sin B C =,∴2sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.7.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.8.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin 3cos 0b A a B =,由正弦定理边角互化的思想得sin sin 3cos 0A B A B =,sin 0A >,sin 30B B ∴=,tan 3B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.9.B解析:B 【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果. 【详解】11c sin60=424︒=⋅⋅⋅=∴=ABCSc c由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin 3++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目. 10.D解析:D 【分析】画出正三棱锥P ABC -侧面展开图,将问题转化为求平面上两点间的距离最小值问题,不难求得结果. 【详解】将三棱锥由PA 展开,如图,正三棱锥P ABC -中,40APB ∠=︒,则图中1120APA ∠=︒, 当点A 、E 、F 、1A 位于同一条直线上时,AEF ∆的周长最小, 故1AA 为AEF ∆的周长的最小值, 又1PA PA =,1PAA ∴∆为等腰三角形,6PA =,16PA ∴=,1AA ∴==,AEF ∴∆的最小周长为:63.故选:D . 【点睛】本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点之间的距离问题,是解答本题的关键.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点解析:4 【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值. 【详解】2tan 3B =,得:sin B =,cos B =11sin 42213ABCSac B ac ==⋅=,解得:ac =① ABM中,利用余弦定理222252cos 542413a a a c c B c ac =+-⋅⋅=+-= ②由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==. 故答案为:4 【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根.14.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得21sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()14sin 4sin sin 4sin sin 4sin 2AB BC C A A B A A A A+=+=++=++()9sin 2A A A ϕ=+=+, 其中ϕ为锐角,且tan ϕ=,23A πϕϕϕ∴<+<+, 所以,当2A πϕ+=时,4AB BC +取【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.15.【分析】根据成等差数列利用等差中项结合正弦定理得到然后由利用基本不等式求解【详解】因为成等差数列所以由正弦定理得所以当且仅当时取等号所以的最小值是故答案为:【点睛】本题主要考查正弦定理和余弦定理的应 解析:12【分析】根据sin A ,sin C ,sin B 成等差数列,利用等差中项结合正弦定理得到2c a b =+,然后由()22222cos 122a b c a b c C ab ab+-+-==-,利用基本不等式求解.【详解】因为sin A ,sin C ,sin B 成等差数列, 所以2sin sin sin C A B =+, 由正弦定理得2c a b =+,所以()22222cos 122a b c a b c C ab ab+-+-==-,()2222231112222a b c c c a b +-≥-=-=+⎛⎫⎪⎝⎭,当且仅当a b =时取等号,所以cos C 的最小值是12. 故答案为:12【点睛】本题主要考查正弦定理和余弦定理的应用以及等差数列和基本不等式的应用,还考查了运算求解的能力,属于中档题.16.【分析】先利用正弦定理将条件中的角转化为边的关系再利用余弦定理求解出角A 的值再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值【详解】因为所以根据正弦定理得:化简可得:即(A 为【分析】先利用正弦定理将条件()(sin sin )()sin a b A B c b C +-=-中的角转化为边的关系,再利用余弦定理求解出角A 的值,再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值. 【详解】因为()(sin sin )()sin a b A B c b C +-=-, 所以根据正弦定理得:(a b)()(c b)a b c +-=-, 化简可得:222b c a bc +-=,即2221cos 22b c a A bc +-==,(A 为三角形内角) 解得:60A ︒=,又224b c bc bc +-=≥,(b =c 时等号成立)故1sin 2ABC S bc A ∆=≤【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用,属于中档题目,解题的关键有两点,首先是利用正余弦定理实现边角之间的互化,其次是利用余弦定理和均值不等式求出三角形边的乘积的最大值.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正解析:3【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可. 【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.19.【分析】利用三角形三边大小关系余弦定理即可得出【详解】因为三角形两边之和大于第三边故解得故答案为:【点睛】本题考查了三角形三边大小关系余弦定理考查了推理能力与计算能力属于中档题解析:【分析】利用三角形三边大小关系、余弦定理即可得出. 【详解】因为三角形两边之和大于第三边,故6c a b <+=.22224cos 0224c C +-=<⨯⨯,解得c >c ∴∈.故答案为:. 【点睛】本题考查了三角形三边大小关系、余弦定理,考查了推理能力与计算能力,属于中档题.20.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,⎡⎣【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC c S ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值2由基本不等式可得2b a b a a b a b+≥⋅=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,22⎡⎤⎣⎦. 故答案为:2,22⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.三、解答题21.(1)14cos 4ADB ∠=;(2)32CD =【分析】(1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案; (2)BCD △中,利用余弦定理可得CD . 【详解】(1)ABD △中,sin sin AB BDADB BAD=∠∠,即2sin 2ADB =∠,解得sin 4ADB ∠=,故cos 4ADB ∠=; (2)sin cos ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅,即2224424CD CD+-=⋅⋅,化简得(0CD CD -+=,解得CD =22.(1)6,4b c ==; (2)3A π=,S =【分析】(1)选用条件①:由正弦定理求得a =2b c -=,即可求解; 选用条件②:由正弦定理求得cos 14B =,得出sin 14B =,再由cos 7C =,求得得sin 7C =,结合正弦定理,即可求解; (2)由余弦定理求得A 的值,结合面积公式,即可求解. 【详解】(1)选用条件①:因为cos cos a B b A +=,由正弦定理得sin cos sin cos sin A B B A C +=,可得sin sin C C =, 又因为(0,)C π∈,所以sin 0C ≠,可得a =又由cos C =,由余弦定理得2222a b c ab +-=, 将2b c -=代入上式,解得6,4b c ==. 选用条件②:因为2cos 27b C a =-,由正弦定理得2sin cos 2sin B C A C =2sin()B C C =+-2(sin cos cos sin )B C B C C =+即2cos sin 0B C C =, 又因为(0,)C π∈,所以sin 0C ≠,可得cos B =,则sin 14B =,又由cos 7C =,可得221sin 1cos 7C C由正弦定理sin sin b cB C =,得sin 3sin 2b Bc C ==, 又由2b c -=,可得6,4b c ==.(2)由余弦定理得2221cos 22b c a A bc +-==, 因为0A π<<,所以3A π=.所以ABC的面积为11sin 6422S bc A ==⨯⨯= 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.23.(1)9km ;(23)15θ=︒时,OMN 的面积最小,最小面积为(2272km 4.【分析】(1)利用余弦定理求得 OM ,结合勾股定理求得θ,判断出OAN 是等边三角形,由此求得防护网的总长度. (2)结合正弦定理求得MNAM,由此求得人工湖用地OMN 的面积是堆假山用地OAM △的面积的倍数.(3)求得,OM ON ,由此求得三角形OMN 面积的表达式,结合三角函数最值的求法,求得当15θ=︒时,OMN 的面积最小为(2272km 4.【详解】(1)在三角形OAM中,由余弦定理得OM ==所以222279944OM AM OA +=+==,所以三角形OAM 是直角三角形,所以90,30OMA θ∠=︒=︒.由于30MON ∠=,所以60AON A ∠=∠=︒,所以OAN 是等边三角形,周长为339⨯=,也即防护网的总长度为9km . (2)15θ=︒时,在三角形OAM 中,由正弦定理得sin 60sin 60sin15sin15OM AM AM OM ⋅︒=⇒=︒︒︒,在三角形OMN 中,180********ONA ∠=︒-︒-︒-︒=︒,由正弦定理得sin 30sin 60sin 30sin 30sin 75sin 75sin 75sin15MN OM OM AM MN ⋅︒⋅︒⋅︒=⇒==︒︒︒︒︒.所以sin 60sin 30sin 60sin 30sin 60sin 302sin 601sin 75sin15cos15sin15sin 302MN AM ︒⋅︒︒⋅︒︒⋅︒====︒=︒︒︒︒︒以O 为顶点时,OMN 和OAM △的高相同,所以3OMN OMNOAMOAMS MNS SSAM===,即人工湖用地OMN 的面积是堆假山用地OAM △.(3)在三角形OAN 中,180603090ONA θθ∠=︒-︒-︒-=︒-,由正弦定理得()333sin 60sin 60sin 90cos cos ON ON θθθ⋅︒==⇒==︒︒-.在三角形OAM 中,18060OMA θ∠=︒-︒-,由正弦定理得()()()()333sin 60sin 60sin 18060sin 60sin 602sin 60OM OM θθθθ⋅︒==⇒==︒︒-︒-+︒+︒+︒.所以()()11271sin 30242cos 2sin 6016sin 60cos OMNSOM ON θθθθ=⋅⋅⋅︒=⋅⋅=⋅+︒+︒⋅ ()27116sin cos 60cos sin 60cos θθθ=⋅︒+︒⋅27271616==2727168==272784==.由于()0,60AOM θ∠=∈︒︒,所以当26090,15θθ+︒=︒=︒时,OMN S △最小值为(22722727km 444-==.【点睛】求面积最值的实际问题,可转化为三角函数求最值来求解.24.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=;方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c 的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A = 又()0,A π∈, 所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C =-=+-=+-所以2cos sin sin 0,A C C -= 即2cos sin sin ,A C C = 又()0,C π∈, 所以sin 0,C ≠ 所以1cos 2A = 所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅-()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 2ABC S bc A ==【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.25.(1)4ABC π∠=;(2)tan PBA ∠=. 【分析】(1)由已知求得25AC =-cos 2ABC ∠=,即可求得ABC ∠;(2)由题可得PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭,化简即可求出. 【详解】解:(1)由AB BC ==,知AB BC ==,由225AC AB +=,知2525AC AB =-=-在ABC 中,由余弦定理得:222cos22BC AB AC ABC AB BC +-∠===⨯,0ABC π<∠<,4ABC π∴∠=; (2),44PBA PBC PCB PBC BPC πππ∠+∠=∠+∠=-∠=, PBA PCB ∴∠=∠,设PBA α∠=,则在PBC 中,由正弦定理得,2sin 3sin sin 4PB BC PB απα=∴=, 在APB △中,由正弦定理得:,56sin sin 66PBAB PB παππα⎛⎫=∴=- ⎪⎛⎫⎝⎭- ⎪⎝⎭,sin sin cos cos sin 666πππαααα⎛⎫⎫∴=-=- ⎪⎪⎝⎭⎭,化简可得:tan α=,故tan PBA ∠=. 【点睛】本题考查正余弦定理的应用,解题的关键是先得出PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭. 26.2S AB == 【分析】 利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得.【详解】,a b是方程220x -+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b cC abab -⨯-+--+-====⨯,解得c =所以AB =ABC的面积11sin 222S ab C ==⨯=。
单元综合测试一(第九章)时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知在△ABC 中,a =1,b =2,B =45°,则角A 等于( D )A .150°B .90°C .60°D .30°解析:由正弦定理得sin A =a sin B b =1×222=12. ∵a <b ,∴A 为锐角.∴A =30°.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =2,B =45°,则A =( A )A .30°B .60°C .150°D .30°或150°解析:由正弦定理a sin A =b sin B 得sin A =a sin B b =sin45°2=12.∵a <b ,∴A <B ,∴a =30°.3.三角形两边分别为5和3,它们夹角的余弦是方程5x 2-7x -6=0的根,则三角形的面积是( B )A .12B .6C .24D .4解析:∵方程5x 2-7x -6=0的根为-35或2. ∴两边夹角的余弦值为-35,则正弦值为45.故三角形的面积为12×5×3×45=6.4.在△ABC 中,若cos A cos B =b a ,且cos B cos C =c b ,则△ABC 是( D )A .直角三角形B .等腰三角形C .等腰三角形或直角三角形D .正三角形解析:由cos A cos B =b a 得∠A =∠B 或∠A +∠B =π2,由cos B cos C =c b 得∠B =∠C 或∠B +∠C =π2.∴∠A =∠B =∠C ,即△ABC 为正三角形.5.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为( B ) A.322 B.332C.32D .3 3解析:由余弦定理,得cos A =9+16-132×3×4=1224=12, ∴sin A =32,∴AC 边上的高为AB ·sin A =332.6.在△ABC 中,a +b +10c =2(sin A +sin B +10sin C ),A =60°,则a 等于( A )A. 3 B .2 3C .4D .不确定解析:由已知及正弦定理,令a =k sin A ,b =k sin B ,c =k sin C ,代入有k (sin A +sin B +10sin C )=2(sin A +sin B +10sin C ),∴k =2.∴a sin A =2.a =2sin A =2sin60°=3,选A.7.某小区的绿化地有一个三角形的花圃区,若该三角形的三个顶点分别用A ,B ,C 表示,其对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0,则在A 处望B ,C 所成的角的大小为( B )A.π2B.π3C.π6D.2π3解析:在△ABC 中,(2b -c )cos A -a cos C =0,结合正弦定理得2sin B cos A -sin C cos A -sin A cos C =0,即2sin B cos A -sin(A +C )=0,即2sin B cos A -sin B =0.又因为A ,B ∈(0,π),所以sin B ≠0,所以cos A =12,所以A =π3,即在A 处望B ,C 所成的角的大小为π3.8.已知锐角△ABC中,a=x,b=2,∠B=45°,若三角形有两解,则x的取值X围是(C)A.x>2 B.x<2C.2<x<22D.2<x<2 3解析:∵三角形有两解,如图,∴a>b>CD=a sin45°.∴2<x<222=2 2.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在△ABC中,给出下列4个命题,其中正确的命题是(ABD) A.若A<B,则sin A<sin BB.若sin A<sin B,则A<BC.若A>B,则1tan2A>1tan2BD.A<B,则cos2A>cos2B解析:A.若A<B,则a<b,2R sin A<2R sin B,所以sin A<sin B,所以该选项是正确的;B .若sin A <sin B ,∴a 2R <b 2R ,∴a <b ,则A <B ,所以该选项是正确的;C .若A >B ,设A =π3,B =π6,∴1tan2A <0,1tan2B >0,所以该选项错误;D .A <B ,则sin A <sin B ,sin 2A <sin 2B ,∴-sin 2A >-sin 2B ,∴1-sin 2A >1-sin 2B ,∴cos 2A >cos 2B ,故该选项正确.故选ABD.10.在△ABC 中,根据下列条件解三角形,其中有两解的是( BC )A .b =10,A =45°,C =70°B .b =45,c =48,B =60°C .a =14,b =16,A =45°D .a =7,b =5,A =80°解析:选项A :因为A =45°,C =70°,所以B =65°,三角形的三个角是确定的值,故只有一解;选项B :由正弦定理可知b sin B =c sin C ,即sin B <sin C <1,所以角C有两解;选项C :由正弦定理可知b sin B =a sin A ,即sin A <sin B <1,所以角B有两解;选项D:由正弦定理可知bsin B=asin A,即sin A>sin B,所以角B仅有一解,综上所述,故选BC.11.已知△ABC的内角A,B,C所对的边分别为a,b,c,则下列四个命题中正确的命题是(AC)A.若acos A=bcos B=ccos C,则△ABC一定是等边三角形B.若a cos A=b cos B,则△ABC一定是等腰三角形C.若b cos C+c cos B=b,则△ABC一定是等腰三角形D.若a2+b2-c2>0,则△ABC一定是锐角三角形解析:由acos A=bcos B=ccos C,利用正弦定理可得sin Acos A=sin Bcos B=sin Ccos C,即tan A=tan B=tan C,A=B=C,△ABC是等边三角形,A正确;由正弦定理可得sin A cos A=sin B cos B⇒sin2A=sin2B,2A=2B或2A+2B=π,△ABC是等腰或直角三角形,B不正确;由正弦定理可得sin B cos C+sin C cos B=sin B,即sin(B+C)=sin B,sin A=sin B,则A=B,△ABC等腰三角形,C正确;由余弦定理可得cos C =a 2+b 2-c 22ab >0,角C 为锐角,角A ,B 不一定是锐角,D 不正确,故选AC.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(a +b )(a +c )(b +c )=91011,则下列结论正确的是( ACD ) A .sin A sin B sin C =45 6 B .△ABC 是钝角三角形C .△ABC 的最大内角是最小内角的2倍D .若c =6,则△ABC 外接圆半径为877解析:因为(a +b )(a +c )(b +c )=91011. 所以可设:⎩⎪⎨⎪⎧ a +b =9x a +c =10xb +c =11x (其中x >0),解得:a =4x ,b =5x ,c =6x .所以sin A sin B sin C =a b c =456,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,又cos C =a 2+b 2-c 22ab =(4x )2+(5x )2-(6x )22×4x ×5x=18>0, 所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又cos A =c 2+b 2-a 22cb =(6x )2+(5x )2-(4x )22×6x ×5x=34. 所以cos2A =2cos 2A -1=18,所以cos2A =cos C , 由三角形中C 角最大且C 角为锐角可得:2A ∈(0,π),C ∈(0,π2).所以2A =C ,所以C 正确;由正弦定理得:2R =c sin C ,又sin C =1-cos 2C =378. 所以2R =6378,解得:R =877,所以D 正确;故选ACD. 第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.△ABC 为钝角三角形,且∠C 为钝角,则a 2+b 2与c 2的大小关系为a 2+b 2<c 2.解析:cos C =a 2+b 2-c 22ab ,∵∠C 为钝角,∴cos C <0,∴a 2+b 2-c 2<0,故a 2+b 2<c 2.14.在△ABC 中,tan B =1,tan C =2,b =100,则c =4010.解析:由tan B =1,tan C =2,得sin B =22,sin C =255,由b sin B =csin C得c15.在锐角三角形ABC中,BC=1,B=2A,则ACcos A的值等于2,AC的取值X解析:设A=θ⇒B=2θ.由正弦定理得ACsin2θ=BC sinθ,又0°<θ<90°,所以sinθ≠0,所以AC2cosθ=1⇒ACcosθ=2. 由锐角三角形ABC得0°<2θ<90°⇒0°<θ<45°.又0°<180°-3θ<90°⇒30°<θ<60°,故30°<θ<45°⇒22<cosθ<32,所以AC=2cosθ∈(2,3).16.一船以每小时15 km的速度向东航行,船在A处看到一灯塔B在北偏东60°,行驶4 h后,船到达C处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为解析:如图所示,由已知条件,得AC=60 km,∠BAC=30°,∠ACB=105°,故∠ABC=45°.由正弦定理得:BC=AC sin∠BACsin B=30 2 km.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数;(2)求AB 的长.解:(1)cos C =cos[180°-(A +B )]=-cos(A +B )=-12.又因为C ∈(0°,180°),所以C =120°.(2)因为a ,b 是方程x 2-23x +2=0的两根,所以⎩⎨⎧ a +b =23,ab =2.所以AB 2=a 2+b 2-2ab cos120°=(a +b )2-ab =10, 所以AB =10.18.(12分)在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求B ;(2)若b =3,sin C =2sin A ,求a ,c 的值.解:(1)由b sin A =3a cos B 及正弦定理得sin B =3cos B ,即tan B =3,因为B 是三角形的内角,所以B =π3.(2)由sin C =2sin A 及正弦定理得c =2a .由余弦定理及b =3,得9=a 2+c 2-2ac cos π3, 即9=a 2+4a 2-2a 2,所以a =3,c =2 3.19.(12分)如图所示,已知在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解:在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2·AD ·BD cos ∠ADB .设BD =x ,有142=102+x 2-2×10x cos60°,x 2-10x -96=0.∴x 1=16,x 2=-6(舍去),即BD =16.在△BCD 中,由正弦定理BC sin ∠CDB =BDsin ∠BCD, 可得BC =16sin135°·sin30°=8 2.20.(12分)已知△ABC 中,A =120°,a =7,b +c =8,求b ,c ,sin B 及△ABC 的面积.解:在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =-12.将a =7,b +c =8代入得bc =15,又b +c =8.∴⎩⎨⎧ b =3,c =5或⎩⎨⎧ b =5,c =3.当b =3,c =5时,由正弦定理得3sin B =7sin120°,∴sin B =3314. S △ABC =12bc sin A =12×3×5×32=1534.当b =5,c =3时,同理可得sin B =5314,S △ABC =1534.21.(12分)在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2A =sin 2B +cos 2C +sin A sin B .(1)求角C 的大小;(2)若c =3,求△ABC 周长的取值X 围.解:(1)由题意知1-sin 2A =sin 2B +1-sin 2C +sin A sin B ,即sin 2A +sin 2B -sin 2C =-sin A sin B ,由正弦定理得a 2+b 2-c 2=-ab ,由余弦定理得cos C =a 2+b 2-c 22ab =-ab 2ab =-12,又∵0<C <π,∴C =2π3.(2)∵a sin A =b sin B =c sin C =3sin 2π3=2,∴a =2sin A ,b =2sin B ,则△ABC 的周长L =a +b +c =2(sin A +sin B )+ 3=2⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=2sin ⎝ ⎛⎭⎪⎫A +π3+ 3. ∵0<A <π3,∴π3<A +π3<2π3,∴32<sin ⎝ ⎛⎭⎪⎫A +π3≤1, ∴23<2sin ⎝ ⎛⎭⎪⎫A +π3+3≤2+3, ∴△ABC 周长的取值X 围是(23,2+3].22.(12分)如图所示,直线a 是海面上一条南北方向的海防警戒线,在a 上点A 处有一个水声监测点,另两个监测点B ,C 分别在A 的正东方20 km 处和54 km 处.某时刻,监测点B 收到发自静止目标P 的一个声波,8 s 后监测点A,20 s 后监测点C 相继收到这一个信号.在当时气象条件下,声波在水中的传播速度是1.5 km/s.(1)设A 到P 的距离为x km ,先用x 表示B ,C 到P 的距离,并求x 的值及PB ,PC 的长度;(2)求静止目标P 到海防警戒线a 的距离(精确到0.01 km).解:(1)P A ,PB ,PC 的长度关系可以由收到信号的先后时间建立. 由题意P A -PB =1.5×8=12(km),PC -PB =1.5×20=30(km).所以PB =(x -12) km ,PC =(18+x ) km.在△P AB 中,AB =20 km ,由余弦定理,得cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=3x +325x . 同理,在△P AC 中,AC =54 km ,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC=72-x 3x . 由cos ∠P AB =cos ∠P AC ,解得x =1327.因此PB =x -12=1327-12=487(km),PC =18+x =18+1327=2587(km).(2)过P 作PD ⊥a ,垂足为D .在△PDA 中,PD =P A cos ∠APD =P A cos ∠P AB=x ·3x +325x =3×1327+325≈17.71(km). 即静止目标P 到海防警戒线a 的距离约为17.71 km.。
(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (a A b B c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
单元素养检测(一)(第九章)(120分钟150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.在△ABC中,a=,A=60°,B=45°.则b= ( )A. B.2 C. D.2【解析】选B.由正弦定理=,得b===2.2.设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C= ( )A. B. C. D.【解析】选A.由3sin A=5sin B,得3a=5b.又因为b+c=2a,所以a=b,c=b,所以cos C===-.因为C∈(0,π),所以C=.3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b=40,c=20,C=60°,则此三角形解的情况是( ) A.有一解 B.有两解C.无解D.有解但个数不能确定【解析】选C.在△ABC中,b=40,c=20,C=60°,则由正弦定理=,得sin B===>1,所以此三角形无解.4.在△AB C中,AB=,AC=1,B=30°,△ABC的面积为,则C= ( )A.30°B.45°C.60°D.75°【解析】选C.由三角形面积公式得,×·|BC|·sin 30°=,所以|BC|=2.显然由勾股定理的逆定理得三角形为直角三角形,且A=90°,所以C=60°.5.在△ABC中,若AB=,BC=3,C=120°,则AC等于( )A.1B.2C.3D.4【解析】选A.方法一:在△ABC中,若AB=,BC=3,C=120°,则由余弦定理AB2=AC2+BC2-2AC·BCcos C,得13=AC2+9-2AC×3×(-),即AC2+3AC-4=0,解得AC=1或AC=-4(舍去).方法二:在△ABC中,若AB=,BC=3,C=120°,则由正弦定理==,得==,得sin A==,cos A=.sin B=sin(60°-A)=sin 60°cos A-cos 60°sin A=×-×=.AC==××=1.6.在△ABC中,A=45°,a=,b=2,则c= ( )A.2B.-1或2C.+1D.+1或-1【解析】选D.方法一:在△ABC中,A=45°,a=,b=2,则由余弦定理,得a2=b2+c2-2bccos A,即3=4+c2-2×2ccos45°,得c2-2c+1=0,解得c=±1,经验证都满足题意.方法二:在△ABC中,A=45°,a=,b=2,则由正弦定理=,得sin B=sin A=,所以cos B=±=±,sin C=sin(135°-B)=sin135°cos B-cos135°sin B=.由正弦定理=,得c==×=±1.【补偿训练】在△ABC中,内角A,B,C的对边分别为a,b,c,若c=2a,b=4,cos B=,则c= ( ) A.1 B.2 C.3 D.4【解析】选D.因为cos B=,由余弦定理得42=a2+(2a)2-2a×2a×,解得a=2(负值舍去),所以c=4.7.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,虽与著名的海伦公式形式上有所不同,但实质完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字用数学公式表示,即S= (S,a,b,c分别表示三角形的面积及三边长).现有周长为4+2的△ABC 满足sin A∶sin B∶sin C=(+1)∶∶(-1),试用以上给出的公式求得△ABC的面积为( ) A. B.2 C. D.2【解析】选A.因为三角形中sin A∶sin B∶sin C=(+1)∶∶(-1),所以a∶b∶c=(+1)∶∶(-1),又三角形的周长为4+2,所以a=2(+1),b=2,c=2(-1),得ac=4,c2+a2-b2=4,所以△ABC的面积为S==.8.如果满足∠ABC=60°,AC=12,BC=k的△ABC恰有一个,那么k的取值范围是( )A.k=8B.0<k≤12C.k≥12D.0<k≤12或k=8【解析】选D.如图,作∠CBM=60°,BC=k,AC=12,CH⊥BM,垂足为H,则CH=h=k,若三角形唯一确定,则以点C为圆心,以12为半径作圆弧,与射线BM有一个交点,则k=12或12≥k>0.即k=8或0<k≤12.二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.在△ABC中,若a=2,b=2,A=30°,则B的值可以为( )A.30°B.60°C.120°D.150°【解析】选BC.由正弦定理=,得=,所以sin B=,且0°<B<180°,所以B=60°或120°.10.已知锐角△ABC,内角A,B,C的对边分别为a,b,c,若c=4,B=60°,则边b的可能取值为( )A.2B.3C.4D.5【解析】选CD.方法一:因为锐角△ABC中,c=4,B=60°,所以0°<A =120°-C<90°,得30°< C<90°,<sin C<1,由正弦定理=,得b==,所以2<b<4,结合选项,得b=4,5满足题意.方法二:如图,在Rt△ABC1中,AC1=b1=2,在Rt△ABC2中,AC2=b2=4,要得到锐角△ABC,则2<b<4,结合选项,得b=4,5满足题意.11.在△ABC中,sin Asin Bsin C=,且△ABC的面积为1,则下列结论正确的是( )A.ab<8B.ab>8C.a<16D.a+b+c>6【解题指南】根据三角形面积公式列式,求得abc=8,再根据基本不等式判断各个选项.【解析】选ABD.根据三角形面积为1,得三个式子相乘,得到a2b2c2sin Asin Bsin C=1,由于sin Asin Bsin C=,所以abc=8.由a+b>c⇔ab>abc=8,故B正确;由<c⇔ab<abc=8,故A正确;由a≥a·2bc=2abc=16,故C错误.a+b+c≥3=6,当且仅当a=b=c=2时,等号成立.此时S△ABC=absin C=×2×2sin60°=>1,不满足题意,故a+b+c>3=6,故D正确.12.点G为△ABC的重心,AB=2,BC=1,∠ABC=60°,则下列等式成立的是( )A.∠ACB=90°B.BG=C.·=D.·=-【解析】选ACD.因为点G为△ABC的重心,AB=2,BC=1,∠ABC=60°,由余弦定理,得AC2=AB2+BC2-2AB·BCcos60°=3,即AC=,由勾股定理逆定理,得∠ACB=90°,所以∠BAC=30°.延长BG交AC于点D,则D为AC的中点,CD=,在△BCD中,BD2=BC2+CD2=,得BD=,所以BG=BD=,则·=(-)·(-)=-·(+)+·=-·2+·=-·2×+·=-2+2×1×=-2×+1=-.延长CG交AB于点E,则E为AB的中点,CE=1,CG=CE=,则·=(-)·=-·=-·=-·×(+)=-·(+)=-(·+)=-(0+1)=.【拓展延伸】三角形的四心与性质向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,三角形的“四心”与向量有着密切的联系.一、三角形“四心”的意义重心:三角形三边中线的交点.垂心: 三角形三边高线的交点.外心:三角形三边中垂线的交点.内心:三角形三条内角平分线的交点.二、三角形“四心”的向量表示结论1:若点O为△ABC所在的平面内一点,满足·=·=·,则点O为△ABC的垂心.证明:由·=·,得·-·=0,即·(-)=0,⊥.同理可证⊥,⊥,故O为△ABC的垂心.结论2:若点O为△ABC所在的平面内一点,满足+=+=+,则点O为△ABC 的垂心.证明:由+=+,得+(-)2=+(-)2,所以·=·,同理可证·=·,容易得到·=·=·,由结论1知O为△ABC的垂心.结论3:若点G为△ABC所在的平面内一点,满足++=0,则点G为△ABC的重心.证明:由++=0,得-=+.设BC边中点为M,则2=+,所以-=2,即点G在中线AM上.设AB边中点为N,同理可证G在中线CN上,故点G为△ABC的重心.结论4:若点G为△ABC所在的平面内一点,满足=(++),则点G为△ABC的重心. 证明:由=(++),得(-)+(-)+(-)=0,得++=0.由结论3知点G为△ABC的重心.结论5:若点P为△ABC所在的平面内一点,并且满足=+λ,则点P为△ABC的内心.证明:由于=+λ,可得=λ.设与同方向的单位向量为e1,与同方向的单位向量为e2,则=λ(e1+e2),因为e1,e2为单位向量,所以向量e1+e2在∠A的平分线上.由λ>0,知点P在∠A的平分线上.同理可证点P在∠B的平分线上.故点G为△ABC的内心.结论6:若点O为△ABC所在的平面内一点,满足(+)·=(+)·=(+)·=0,则点O为△ABC的外心.证明:因为=-,所以(+)·=||2-||2,同理得(+)·=||2-||2,(+)·=||2-||2,由题意得||2-||2=||2-||2=||2-||2,所以||2=||2=||2,得||=||=||.故点O为△ABC的外心.注意:||=||=||⇔||2=||2=||2⇔(+)·=(+)·=(+)·=0.以上几个结论不仅展示了三角形的“四心”的向量表示,而且是向量加减法应用的典范,值得关注.三、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.在△ABC中,a=,b=2,c=3,则A=________.【解析】在△ABC中,a=,b=2,c=3,则由余弦定理,得cos A==,又A∈(0,π),则A=.答案:14.在△ABC中,角A,B,C所对的边分别是a,b,c,若b2+c2=2a2,则cos A的最小值为________. 【解析】因为b2+c2=2a2,则由余弦定理可知a2=2bccos A,所以cos A==×≥×=(当且仅当b=c时等号成立),即cos A的最小值为.答案:15.设△ABC的内角A,B,C所对的边分别为a,b,c.已知b=1,c=,C=,则角A的大小为________.【解题指南】利用余弦定理求出a=1,再利用正弦定理求出sin A=,从而可得结果.【解析】由余弦定理cos C=,得-=,即a2+a-2=0,解得a=1或a=-2(舍).由正弦定理=,解得sin A=,由C=,可得A=.答案:16.在△ABC中,角A,B,C的对边分别为a,b,c,∠ABC=90°,∠ABC的平分线交AC于点D,且BD=2,则a+4c的最小值为________.【解题指南】由正弦定理,得到a=ctan A,c=ACsin C =(AD+DC)cos A=cos A,利用基本不等式求最小值.【解析】如图,在△ABC中,∠ABC=90°,∠ABC的平分线交AC于点D,设∠ADB=θ,AD=x,DC=y,在△ADB与△BDC中,由正弦定理,得=,=,即=,=,两式相比,得=tan A,即a=ctan A,tan A>0.同理,由正弦定理得x=,y=,在Rt△ABC中,c=(x+y)sin C=(x+y)cos A=cos A,所以a+4c=ctan A+4c=cos Atan A+4cos A=10+2tan A+≥10+8=18.当且仅当tan A =2,即sin A=,cos A=,b=3,a=2c=6时,a+4c的最小值为18.答案:18【补偿训练】已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,若c-a=2acos B,则的取值范围是________.【解析】由正弦定理,得sin C-sin A=2sin Acos B,即sin(A+B)-sin A=2sin Acos B,sinA=sin(B-A),由锐角三角形ABC,得A=B-A⇒B=2A,且由0<A<,0<B<,0<C<得,0<2A<,0<C=π-3A<,得<A<,因为=sin A,<sin A<,所以的取值范围是.答案:【误区警示】若不能将c-a=2acos B进行边化角,则无法得到B=2A,从而无法将问题化简;若不能利用锐角三角形的内角取值范围得到A的取值范围,则导致扩大sin A的取值范围.四、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020·新高考全国Ⅰ卷)在①ac=,②csin A=3,③c=b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=sin B,C=,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由C=和余弦定理得=.由sin A=sin B及正弦定理得a= b.于是=,由此可得b=c.由①ac=,解得a=,b=c=1.因此,选条件①时问题中的三角形存在,此时c=1.方案二:选条件②.由C=和余弦定理得=.由sin A=sin B及正弦定理得a= b.于是=,由此可得b=c,B=C=,A=.由②csin A=3,所以c=b=2,a=6.因此,选条件②时问题中的三角形存在,此时c=2.方案三:选条件③.由C=和余弦定理得=.由sin A=sin B及正弦定理得a= b.于是=,由此可得b=c.由③c=b与b=c矛盾.因此,选条件③时问题中的三角形不存在.18.(12分)如图,在四边形ABCD中,已知∠BDC=45°,∠BAD=60°,AD=2,BD=.(1)求∠ADC的大小;(2)若AC=2,求△BCD的面积.【解题指南】(1)在△ABD中,由正弦定理得:sin ∠ABD==,求得∠ ABD=45°,再根据四边形的内角和,即可得到答案;(2)在△ACD中,由余弦定理得AC2=AD2+DC2-2AD·DC·cos ∠ADC,得DC=2,再由三角形的面积公式,即可求解.【解析】(1)在△ABD中,由正弦定理得:=,所以sin ∠ABD==,因为AD<BD,∠ABD<∠BAD=60°,所以∠ABD=45°,又∠BAD+∠ABD+∠ADB=180°,所以∠ADB=75°,因为∠BDC=45°,故∠ADC=∠ADB+∠BDC=120°.(2)在△ACD中,由余弦定理得AC2=AD2+DC2-2AD·DC·cos ∠ADC,化简得DC2+2DC-8=0,所以DC=2或DC=-4(舍),所以S△BCD=BD·DCsin ∠BDC=.【拓展延伸】余弦定理的拓展公式在三角形中,当问题中出现a+c,ac等信息时,常常运用下列公式:b2=a2+c2-2accosB=(a+c)2-2ac(1+cos B).19.(12分)(2020·北京高考)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)a的值;(2)sin C和△ABC的面积.条件①:c=7,cos A=-;条件②:cos A=,cos B=.注:如果选择条件①和条件②分别解答,按第一个解答计分.【命题意图】考查正弦定理、余弦定理,三角恒等变换等.【解析】方案一:选①.(1)由已知及余弦定理,cos A=,即-=,又a+b=11,解得a=8;(2)由(1)知,b=3,又sin2 A+cos2 A=1,0<A<π,所以sin A=,由正弦定理得=,即=,所以sin C=,S△ABC=absin C=6.方案二:选②.(1)因为cos A=,所以A∈,所以sin A=,因为cos B=,所以B∈,所以sin B=,由正弦定理:=,又由a+b=11,得a=6.(2)sin C=sin(A+B)=sin Acos B+cos Asin B=,因为a+b=11,所以b=5,所以S△ABC=absin C=.【补偿训练】在△ABC中,a,b,c分别是内角A,B,C所对的边,且满足+=0.(1)求角B的值.(2)若c=2,AC边上的中线BD=,求△ABC的面积.【解析】(1)+=0⇔+=0,⇒cos B(2sin A+sin C)+sin Bcos C=0,⇒2sin Acos B+cos Bsin C+sin Bcos C=0,⇒2sin Acos B+sin(B+C)=0,⇒sin A(2cos B+1)=0,因为sin A≠0,所以cos B=-.所以B=,(2)延长BD到E,使BD=DE,连接AE,EC,易知四边形AECB为平行四边形,在△BCE中,CE=2,BE=2BD=,因为∠ABC=,所以∠BCE=,由余弦定理得,BE2=CE2+BC2-2CE·BC·cos∠BCE,即3=4+a2-4acos,解得a=1,S△ABC=acsin∠ABC=×1×2×=.20.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acos B=c.(1)求证:B=2A;(2)若△ABC为锐角三角形,且c=2,求a的取值范围.【解析】(1)a+2acos B=c由正弦定理知sin A+2sin Acos B=sin C=sin(A+B)=sin Acos B+cos Asin B,即sin A=cos Asin B-sin Acos B=sin(B-A).因为A,B∈(0,π),所以B-A∈(-π,π),且A+(B-A)=B∈(0,π),所以A+(B-A)≠π,所以A=B-A,B=2A.(2)由(1)知A=,C=π-A-B=π-,由△ABC为锐角三角形得得<B<.由a+2acos B=2得a=∈(1,2).21.(12分)在△ABC中,A,B,C所对的边分别为a,b,c已知cos C+cos Acos B=sin Acos B.(1)求cos B的值;(2)若a+c=1,求b的取值范围.【解析】(1)由已知得-cos+cos Acos B-sin Acos B=0,即有sin Asin B-sin Acos B=0,因为sin A≠0,所以sin B-cos B=0.又cos B≠0,所以tan B=.又0<B<π,所以B=,所以cos B=.(2)由余弦定理,得b2=a2+c2-2accos B.因为a+c=1,cos B=,所以b2=3+,又因为0<a<1,所以≤b2<1,所以≤b<1.22.(12分)在△ABC中,角A,B,C所对的边为a,b,c,c=2b.(1)若a=,b=1,求△ABC的面积;(2)若a=2,求△ABC的面积的最大值.【解题指导】(1)利用余弦定理得cos A=求出cos A,进而得到sin A,再利用S△ABC=bcsin A求值即可.(2)由S△ABC=b·2b·sin A=b2sin A可得=b4sin2A=-+,转求二次函数的最值即可.【解析】(1)因为a=,b=1,c=2b=2,所以cos A===.所以sin A==.所以S△ABC=bcsin A=×1×2×=.(2)因为S△ABC=b·2b·sin A=b2sin A,又4b2+b2-4=2·2b·b·cos A,所以cos A=-.所以=b4sin2 A=b4(1-cos2A)=b4=b4-2020-2021学年新教材高中数学第九章解三角形单元素养检测(含解析)新人教B版必修第四册-2020_2021学年新教材高中数学第九章解三角形单元素养检测含解析新人教B版必修第四册=-+≤.所以S ≤(当且仅当b=时取等号).所以面积的最大值为.- 21 - / 21。
高中数学《解三角形》单元测试题(基础题)一、选择题(本大题共12小题,每小题5分,共60分)1.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B 等于( )A.53B.54C.55D.562.在△ABC 中,AB=3,AC=2,BC= 10,则BA ·AC →等于( )A .-32B .-23 C.23 D.323.在△ABC 中,已知a =5,b =15,A =30°,则c 等于( ) A .2 5 B. 5C .25或 5D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 26.在△ABC 中,cos 2 A 2=b +c2c (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a =c =6+2,且A =75°,则b 等于( )A .2 B.6- 2 C .4-2 3 D .4+2 38.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152B.15C.8155 D .6 39.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.15410.若sin A a =cos B b =cos Cc ,则△ABC 是( ) A .等边三角形B .有一内角是30°的直角三角形C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π312.△ABC 中,A =π3,BC =3,则△ABC 的周长为( )A .43sin ⎝ ⎛⎭⎪⎫B +π3+3 B .43sin ⎝ ⎛⎭⎪⎫B +π6+3C .6sin ⎝ ⎛⎭⎪⎫B +π3+3D .6sin ⎝ ⎛⎭⎪⎫B +π6+3二、填空题(本大题共4小题,每小题4分,共16分) 13.在△ABC 中,2a sin A -b sin B -csin C =________.14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________. 三、解答题(本大题共6小题,共74分)17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45. (1)求sin 2B +C2+cos 2A 的值;(2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.(1)求cos∠CBE的值;(2)求AE.20.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=3 5.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.21.(12分)(2010·辽宁)在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b+c)sin B+(2c+b)sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.22.(14分)已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,角C=π3,求△ABC的面积.高中数学《解三角形》单元测试题(基础题)参考答案一、选择题(本大题共12小题,每小题5分,共60分)1.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B 等于( )A.53B.54C.55D.56 答案 B解析 由正弦定理得a b =sin Asin B , ∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54.2.在△ABC 中,AB=3,AC=2,BC= 10,则BA ·AC →等于( )A .-32B .-23 C.23 D.32 答案 A解析 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =9+4-1012=14.∴AB ·AC →=|AB →|·|AC →|·cos A =3×2×14=32. ∴BA ·AC →=-AB →·AC →=-32.3.在△ABC 中,已知a =5,b =15,A =30°,则c 等于( ) A .2 5 B. 5C .25或 5D .以上都不对 答案 C解析 ∵a 2=b 2+c 2-2bc cos A ,∴5=15+c2-215×c×3 2.化简得:c2-35c+10=0,即(c-25)(c-5)=0,∴c=25或c= 5.4.根据下列情况,判断三角形解的情况,其中正确的是() A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解答案 D解析A中,因asin A=bsin B,所以sin B=16×sin 30°8=1,∴B=90°,即只有一解;B中,sin C=20sin 60°18=539,且c>b,∴C>B,故有两解;C中,∵A=90°,a=5,c=2,∴b=a2-c2=25-4=21,即有解,故A、B、C都不正确.5.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为()A.922 B.924C.928D.9 2答案 C解析设另一条边为x,则x2=22+32-2×2×3×1 3,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.6.在△ABC 中,cos 2A 2=b +c2c (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 由cos 2A2=b +c 2c ⇒cos A =b c ,又cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A.7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a =c =6+2,且A =75°,则b 等于( )A .2 B.6- 2 C .4-2 3 D .4+2 3 答案 A解析 sin A =sin 75°=sin(30°+45°)=6+24, 由a =c 知,C =75°,B =30°.sin B =12. 由正弦定理:b sin B =a sin A =6+26+24=4.∴b =4sin B =2.8.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( ) A.152 B.15 C.8155 D .6 3 答案 A解析 由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A , 即6=4c 2+c 2-4c 2·78.∴c =2,从而b =4.∴S △ABC =12bc sin A =12×2×4×1-⎝ ⎛⎭⎪⎫782=152. 9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.154 答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即72=14a 2+42-2×a2×4·cos ∠AMB ① 在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC 即62=42+14a 2+2×4×a 2·cos ∠AMB ② ①+②得:72+62=42+42+12a 2,∴a =106. 10.若sin A a =cos B b =cos Cc ,则△ABC 是( ) A .等边三角形B .有一内角是30°的直角三角形C .等腰直角三角形D .有一内角是30°的等腰三角形答案 C解析 ∵sin A a =cos Bb ,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 答案 D解析 ∵(a 2+c 2-b 2)tan B =3ac , ∴a 2+c 2-b 22ac ·tan B =32, 即cos B ·tan B =sin B =32. ∵0<B <π,∴角B 的值为π3或2π3.12.△ABC 中,A =π3,BC =3,则△ABC 的周长为( ) A .43sin ⎝ ⎛⎭⎪⎫B +π3+3 B .43sin ⎝ ⎛⎭⎪⎫B +π6+3C .6sin ⎝ ⎛⎭⎪⎫B +π3+3D .6sin ⎝ ⎛⎭⎪⎫B +π6+3答案 D解析 A =π3,BC =3,设周长为x ,由正弦定理知BC sin A =AC sin B =ABsin C =2R , 由合分比定理知BCsin A =AB +BC +AC sin A +sin B +sin C ,即332=x 32+sin B +sin C.∴23⎣⎢⎡⎦⎥⎤32+sin B +sin (A +B )=x , 即x =3+23⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫B +π3 =3+23⎝ ⎛⎭⎪⎫sin B +sin B cos π3+cos B sin π3 =3+23⎝ ⎛⎭⎪⎫sin B +12sin B +32cos B =3+23⎝ ⎛⎭⎪⎫32sin B +32cos B =3+6⎝ ⎛⎭⎪⎫32 sin B +12cos B =3+6sin ⎝ ⎛⎭⎪⎫B +π6. 二、填空题(本大题共4小题,每小题4分,共16分)13.在△ABC 中,2a sin A -b sin B -c sin C =________.答案 014.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________.答案 π6解析 ∵a 2+c 2-b 2=3ac ,∴cos B =a 2+c 2-b 22ac =3ac 2ac =32,∴B =π6.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3, A +C =2B ,则sin C =________.答案 1解析 在△ABC 中,A +B +C =π,A +C =2B .∴B =π3.由正弦定理知,sin A =a sin B b =12.又a <b .∴A =π6,C =π2.∴sin C =1. 16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.答案 32≤a <3解析 由⎩⎪⎨⎪⎧ a +(a +1)>a +2a 2+(a +1)2-(a +2)2<0a 2+(a +1)2-(a +2)22a (a +1)≥-12.解得32≤a <3.三、解答题(本大题共6小题,共74分)17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.解 设我艇追上走私船所需时间为t 小时,则BC =10t ,AC =14t ,在△ABC 中,由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴t =2.答 我艇追上走私船所需的时间为2小时.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45. (1)求sin 2 B +C 2+cos 2A 的值;(2)若b =2,△ABC 的面积S =3,求a .解 (1)sin 2B +C 2+cos 2A =1-cos (B +C )2+cos 2A =1+cos A 2+2cos 2 A -1=5950. (2)∵cos A =45,∴sin A =35.由S △ABC =12bc sin A ,得3=12×2c ×35,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得a 2=4+25-2×2×5×45=13,∴a =13.19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值;(2)求AE .解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD ,∴∠CBE =15°.∴cos ∠CBE =cos(45°-30°)=6+24.(2)在△ABE 中,AB =2,由正弦定理得AE sin ∠ABE =AB sin ∠AEB,即AE sin (45°-15°)=2sin (90°+15°), 故AE =2sin 30°cos 15°=2×126+24=6- 2. 20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π, ∴sin B =1-cos 2B =45.由正弦定理得a sin A =b sin B ,sin A =a sin Bb =2×454=25. (2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.21.(12分)(2010·辽宁)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解 (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C ,又A =120°,∴sin 2B +sin 2C +sin B sin C =34,∵sin B +sin C =1,∴sin C =1-sin B .∴sin 2B +(1-sin B )2+sin B (1-sin B )=34, 即sin 2B -sin B +14=0.解得sin B =12.故sin C =12.∴B =C =30°.所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B ,∴sin B +sin C =sin B +sin(60°-B )=sin B +32cos B -12sin B =12sin B +32cos B=sin(B +60°)=1,∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.(14分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ), n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b 2R ,其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形.(2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.。