拟南芥TDNA插入突变体的鉴定
- 格式:doc
- 大小:388.00 KB
- 文档页数:3
T-DNA插入突变体的鉴定时明辉同组者:薛敏学号:201000220069摘要 Ti质粒是上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。
所以Ti质粒上的这一段能转移的DNA被叫做T-DNA。
将感兴趣的基因改造插入到T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化,得到含有突变的植株。
通过本实验,我们将学习如何用PCR的方法检测所得植株是否为T-DNA的插入突变体。
1.引言T-DNA作为一种实验常用的遗传转化方法,在插入突变过程中,插入到植物染色体上的位置是随机的。
如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。
所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。
农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA 插入的纯合突变体,杂合突变体,和野生型。
在突变体研究中,需要的材料是纯合突变体,所以必须从分离群体中将纯合突变体鉴定出来。
本次实验中,采用液CTAB(或者TSP法)提取拟南芥植株的DNA,然后PCR将所获DNA扩增,在之后采用琼脂糖凝胶电泳技术,分离处长度不一的DNA带,以确定样品是否为T-DNA插入突变纯和体。
PCR(Polymerase ChainReaction),即聚合酶链式反应是体外核算扩增技术,具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断。
(PCR基本原理如右图)DNA含有PO43-基团,在pH8.0 Buffer(本实验中为TAE)中带负电, 在电场中向正极移动。
自由电泳时,由于不同大小的DNA片段的电荷密度大致相同,各核酸分子难以分开;选用适当浓度的琼脂糖凝胶作为支持物,使之具备一定的孔径,即可发挥分子筛效应,使大小不同的核酸片段迁移率出现较大差异,达到分离的目的;同样条件对Marker电泳;起到鉴定的作用。
拟南芥T-DNA插入突变体的鉴定09生工吴超 200900140129一、实验原理T-DNA插入法是反向遗传学研究的重要手段。
T-DNA是农杆菌的一个大质粒,长度在25kb左右。
野生型农杆菌的T-DNA上带有激素合成基因,感染植物后会导致植物细胞快速增殖形成愈伤组织,失去分化能力。
所以一般实验使用改造后的农杆菌——T-DNA中导入了卡那霉素抗性基因和抗除草剂基因。
因此在农杆菌感染植物后可用除草剂来筛选转化子。
在转化子培养到F2代出现分离后,就需要对其基因型进行鉴定。
T-DNA插入突变体鉴定方法主要有两种:三引物法和双引物法。
在本实验中使用三引物法。
三引物法的原理如图1所示,即采用三引物(LP、RP、BP)进行PCR扩增。
野生型植株目的基因的两条染色体上均未发生T-DNA插入,所以其PCR产物仅有1种,分子量约900bp(即从LP到RP);纯合突变体植株目的基因的两条染色体上均发生T-DNA插入,T-DNA本身的长度约为25kb,过长的模板会阻止目的基因特异性扩增产物的形成,所以也只能得到1种以BP与LP或RP为引物进行扩增的产物,分子量约为400-700bp;杂合突变体植株只在目的基因的一条染色体上发发生了T-DNA插入,所以PCR扩增后可同时得到两种产物。
上述3种情况的电泳结果差异明显,能有效区分不同基因型的植株。
此法优点是可同时鉴定出纯和突变体并确证T-DNA的插入情况。
图1 T-DNA插入示意图CATB,即十六烷基三甲基溴化铵,是一种离子型表面活性剂。
能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。
并且CATB可在高离子强度的溶液里与蛋白质和大多数多聚糖形成复合物进而形成沉淀,但不沉淀核酸。
本实验使用CATB抽提DNA。
聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外核酸扩增技术。
它具有特异性高、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至几万倍,使肉眼能直接观察和判断。
拟南芥T-DNA插入突变纯合体的鉴定余振洋(高山山、潘红芳)、09级生技1班、200900140156、2011/12/14摘要本实验通过CTAB法提取目的拟南芥的DNA,再用三引物法PCR扩增所需的目的基因后,用电泳检测该拟南芥是否为转基因的拟南芥,并判断其是纯合突变还是杂合突变。
关键词拟南芥;T-DNA;突变纯和体1.引言T-DNA是根癌农杆菌Ti质粒上的一段DNA序列,它能稳定地整合到植物基因组中并稳定地表达。
T—DNA在植物中一般都以低拷贝插入,多为单拷贝。
单拷贝T-DNA一旦整合到植物基因组中,就会表现出孟德尔遗传特性,在后代中长期稳定表达,且插入后不再移动,便于保存。
T—DNA插入突变在反向遗传学和功能基因组学研究中发挥着重要作用。
,T—DNA插入突变能方便地进行正向和反向遗传学研究,因而受到重视。
同时,基因组测序工作的完成使得从位点到表型的反向遗传学研究成为可能,从而使通过T—DNA插入技术构建突变体来研究功能的反向遗传学技术逐渐取代了传统的化学诱变、图位克隆等技术。
借助于农杆菌介导的遗传转化技术,T—DNA插入技术已被广泛应用于拟南芥等模式植物的突变体库构建中。
以T—DNA作为插入元件,不但能破坏插入位点基因的功能,而且能通过插入产生的功能缺失突变体的表型及生化特征的变化,为该基因的研究提供有用的线索。
由于插入的T—DNA序列是已知的,因此可以通过已知的外源基因序列,利用反向PCR、TAIL-PCR、质粒挽救等方法对突变基因进行克隆和序列分析,并对比突变的表型研究基因的功能。
还可以利用扩增出的插入位点的侧翼序列,建立侧翼序列数据库,对基因进行更全面的分析。
由此可见,T—DNA 插入标签技术已成为发现新基因、鉴定基因功能的一种重要手段。
CTAB法提取植物叶片中的DNA是我们常用的方法。
通常采用机械研磨的方法破碎植物的组织和细胞,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。
河南农业科学,2011,40(5):62 66Jour nal of H enan Ag ricultural Sciences拟南芥atcwinv1基因T DNA插入纯合突变体PCR鉴定及表型观察阮燕晔*,张 莹,王 波(沈阳农业大学生物科学技术学院,辽宁沈阳110866)摘要:以拟南芥atcw inv1基因T DNA插入纯合突变体和野生型植株为材料,比较研究了2种基因型植株在营养期和生殖期的形态差异。
结果表明:拟南芥atcw inv1基因T DNA插入纯合突变体(简称突变体)较野生型萌发率平均下降5 88个百分点;突变体在44d抽薹,较野生型延后4d;分支数平均4支,较野生型下降20 84%;果荚开裂时间6d左右,较野生型延长2d;单株果荚数平均62 27个,较野生型降低11 00%;单株果荚种粒数平均45 87粒,较野生型降低21 46%;突变体的单果荚长度平均14 52cm,较野生型降低10 24%;单株果质量平均50 83mg,较野生型降低23 70%。
拟南芥突变体在营养生长时期的株高平均10 44cm,较野生型下降21 03%;主根长平均7 62cm,较野生型下降14 96%;单株莲座叶面积平均3 16cm2,较野生型下降13 90%;单株地上部分鲜质量平均81 81m g,较野生型下降11 11%;单株根鲜质量平均6 21m g,较野生型下降17 64%;单株地上部分干质量平均6 17m g,较野生型下降15 60%;单株根干质量平均0 55mg,较野生型下降6 78%。
拟南芥突变体在生殖生长时期的株高平均18 78cm,较野生型增加4 22%;主根长平均16 48cm,较野生型下降5 88%;单株莲座叶面积平均6 80cm2,较野生型下降6 21%;单株地上部分鲜质量平均129 85mg,较野生型下降9 69%;单株根鲜质量平均9 97mg,较野生型下降13 23%;单株地上部分干质量平均9 22mg,较野生型下降4 16%;单株根干质量平均0 70mg,较野生型下降6 67%。
拟南芥突变体的功能鉴定及应用拟南芥是一种模式植物,因其具有小型、短周期、基因底子丰富等特点,成为了植物学和遗传学领域的研究工具。
通过突变体的筛选,拟南芥成为了研究植物生长发育和基因功能的重要模式植物之一。
在拟南芥突变体筛选中,以T-DNA插入技术为主,通过敲定不同基因,以观察植物的生长发育状态,挖掘新的生物学机制。
拟南芥突变体是利用突变体筛选技术,自然形成的或通过基因操作人工获得,产生了某些特殊表型的植物。
以T-DNA插入技术为例,将T-DNA随机插入到植物基因组中,导致部分基因的功能紊乱,从而产生了特殊的表型表现。
因此,拟南芥突变体不仅具有丰富的基因型资源,也是研究基因功能、分子生物学和植物生长发育的重要材料,其发现和应用有直接联系。
因此,如何鉴定拟南芥突变体的功能尤为重要。
目前鉴定方法主要包括:表型分析、基因克隆、启动子分析、蛋白质相互作用网络分析、分子标记等技术手段。
表型分析是首先考虑的鉴定方法,通过比较突变体与野生型在不同生长条件下的表型差异,筛选出表现异常的突变体。
对鉴定有难度的突变体,使用其他鉴定方法,如基因克隆,会有更好的效果。
其中,启动子元素克隆有助于探究基因表达特异性。
蛋白质相互作用网络分析有用于探究基因调控网络方式。
分子标记在表型特征不明显时,如果phentoype特征无法激活突变体,可以发现突变原因及搜索对应的遗传切口。
同时,拟南芥突变体在研究中的应用也非常广泛。
例如:研究花器官发育中的关键基因,通过拟南芥突变体突变鉴定方法,筛选出相关基因,进而探究开花的分子机制。
利用拟南芥突变体进行耐盐性、耐旱性等方面的研究。
在探究植物防御基因的调节网络时,拟南芥突变体也广泛地使用。
此外,还可用作药物和环境污染物筛选的生物传感材料,如zinc、生物染色体修复等方面的研究。
拟南芥突变体是全面了解植物生物学机理的重要材料,是揭示生长发育和基因功能的主要途径之一。
随着逆境应对、营养吸收、发育调控等方向的研究的深入,对拟南芥突变体的催生和应用必将愈加广泛。
姓名系年级学号日期科目遗传学实验题目模式植物拟南芥T-DNA插入突变体的鉴定模式植物拟南芥T-DNA插入突变体的鉴定摘要:农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA插入的纯合突变体,杂合突变体,和野生型。
在突变体研究中,需要的材料是纯合突变体。
本次实验意在对模式植物拟南芥T-DNA插入突变体进行鉴定。
实验中用到的主要实验方法有:CTAB法提取拟南芥基因组DNA、PCR扩增目的基因片段、琼脂糖凝胶电泳分离核酸。
PCR技术的基本原理类似于DNA的天然复制过程。
PCR由变性--退火--延伸三个基本反应步骤构成。
每完成一个循环需2~4分钟,2~3小时就能将待扩增目的基因扩增放大几百万倍。
琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。
它兼有“分子筛”和“电泳”的双重作用。
带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。
DNA经EB染色,EB可与核酸结合,在紫外光激发下产生荧光。
现广泛应用于核酸的研究中。
引言Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA 中。
所以Ti质粒上的这一段能转移的DNA被叫做T-DNA。
将Ti质粒进行改造,将感兴趣的基因放进T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化。
T-DNA插入基因内部导致基因突变:T-DNA插入到植物染色体上的位置是随机的。
如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。
所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。
农杆菌能在自然条件下感染双子叶植物和裸子植物,而对大多数单子叶植物没有感染能力。
这使农杆菌Ti 质粒转化系统的应用范围受到了一定的限制。
反向遗传学研究的首要条件是获得基因敲出突变体,建立可靠、有效、方便的T-DNA插入突变体的鉴定方法。
拟南芥T-DNA插入突变体的鉴定摘要:我们用CTAB法提取拟南芥的T-DNA插入突变体的DNA,然后用三引物法进行PCR和琼脂糖凝胶电泳来判断其为突变纯合体还是突变杂合体。
通过这次实验,我们掌握了如何来判断纯和突变和杂合突变。
关键字:拟南芥 T-DNA插入突变突变体的鉴定前言:拟南芥拟南芥是十字花科的植物,它是植物遗传学、发育生物学和分子生物学的模式植物,其具有以下这些特点:①植株形态个体小,高度只有30cm左右;②生长周期快,从播种到收获种子一般只需8周左右;③种子多,每株可产生数千粒种子;④形态特征简单,生命力强,用普通培养基就可作人工培养;⑤遗传转化简单,转化效率高;⑥基因组小,只有5对染色体,125MB;⑦在2000年,拟南芥成为第一个基因组被完整测序的植物。
突变体突变体在植物基因分离及遗传学研究的最重要材料,通过自然突变或者人工诱变同源重组、基因沉默以及插入突变等方法都可以用来构建突变体,人工诱变是指利用物理因素(X射线,Y射线,紫外线,激光等)或化学诱变(如亚硝酸,硫酸二乙酯)来处理生物,使生物发生基因突变,这种方法可提高突变率,创造人类需要的变异类型。
目前,人工诱变拟南芥常用的方法有EMS诱变、T-DNA 插入突变、激活标签等。
T-DNA插入突变Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移,插入植物染色体DNA中,Ti质粒上的这一段能转移的DNA被叫做T-DNA。
人们根据这一现象,将Ti质粒进行改造,将感兴趣的基因放进T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化。
T-DNA插入到植物染色体上的什么位置,是随机的。
如果T-DNA插入某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。
所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。
T—DNA插入突变最大的用处是构建突变体库,在此基础上构建侧翼序列库;目前在拟南芥中已经建立了接近饱和的T—DNA插入突变体库,该突变体库包含超过225 000个独立的T—DNA插入株系,在预测的29 454个基因中有21 700个基因发生了插入突变[6]。
拟南芥属植物分子遗传学和突变体筛选研究方法拟南芥(Arabidopsis thaliana)是目前广泛应用于分子遗传学和突变体筛选的模式植物。
它具有小型体积、短生命周期、易于培养和遗传变异等优点,使其成为研究植物基因功能的理想模型。
下面将介绍拟南芥属植物的分子遗传学和突变体筛选研究方法。
一、拟南芥分子遗传学研究方法2. 基因组学方法:包括全基因组测序(Whole Genome Sequencing, WGS)、基因芯片(Microarray)和下一代测序(Next Generation Sequencing, NGS)等技术,用于分析和比较拟南芥基因组的序列、结构和功能。
3.双杂交法:通过构建酵母杂交系统,研究和鉴定拟南芥基因间的物理和功能相互作用关系,进而揭示拟南芥基因调控网络和信号转导途径。
4. RNA干扰(RNA interference, RNAi)技术:利用沉默诱导的RNA (siRNA)或者镰刀状RNA(hairpin RNA)介导靶向基因的沉默,从而研究和验证拟南芥基因的功能。
二、拟南芥突变体筛选方法1. EMS化学诱变:使用化学诱变剂EMS(Ethyl methanesulfonate),处理拟南芥种子,让其发生突变,形成突变种子库。
进一步筛选和鉴定突变体,识别和研究拟南芥基因的突变功能。
2. 插入序列突变法:通过插入转座子(Transposon)或者T-DNA转座子,将外源序列插入拟南芥基因组,产生随机或特异性的基因突变,进行筛选和分析。
3.含有T-DNA插入的突变体库:使用含有T-DNA插入的突变体库,通过筛选和分离带有T-DNA插入的个体,鉴定和研究拟南芥基因的功能和表达调控。
4.突变体数据库查询:拟南芥基因突变体数据库中收集了大量已经鉴定和命名的突变体信息,可以通过数据库查询,寻找和鉴定具有特定表型的突变体。
遗传学实验报告
拟南芥T-DNA插入突变体的鉴定
一、实验目的:
1、学习和掌握基本的植物DNA的CTAB提取法,掌握PCR、琼脂糖凝胶电泳等基本实验操作技能
2、了解T-DNA插入突变体的鉴定原理,掌握其方法。
二、实验原理
1、拟南芥(Arabidopsis thaliana)
十字花科,植物遗传学、发育生物学和分子生物学的模式植物。
植株形态个体小,高度只有30cm左右;
生长周期快,从播种到收获种子一般只需8周左右;
种子多,每株可产生数千粒种子;
形态特征简单,生命力强,用普通培养基就可作人工培养;
遗传转化简单,转化效率高;
基因组小,只有5对染色体,125MB;
在2000年,拟南芥成为第一个基因组被完整测序的植物。
2、突变体
突变体是遗传学研究的最重要材料。
突变体可以通过自然突变和人工诱变的方法获得。
拟南芥诱变常用方法有EMS诱变、T-DNA插入突变、激活标签。
由于T-DNA插入突变体便于对突变基因进行追踪,目前拟南芥、水稻中已经有大量的T-DNA插入突变体;SALK中心提供的拟南芥T-DNA插入突变体超过十万种。
3、T-DNA插入突变原理
T-DNA,转移DNA(transferred DNA ),是根瘤农杆菌Ti质粒中的一段DNA序列,可以从农杆菌中转移并稳定整合到植物基因组。
人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,获得转基因植株。
除用于转基因以外,T-DNA插入到植物的基因中可引起基因的失活,从而产生基因敲除突变体,T-DNA大多为单拷贝插入,使其利于进行遗传分析。
4、T-DNA插入突变体PCR鉴定
图 1 结果鉴定图 2 PCR引物设计
三、实验材料
1、材料:T-DNA插入的突变拟南芥植株;
2、仪器:离心管,离心机,水浴锅,移液枪,PCR仪,电泳槽等;
3、试剂:液氮,CTAB提取液,氯仿/异戊醇(24:1),无水乙醇,70%乙醇,10xTaq buffer,MgCl2,引物,琼脂糖,溴化乙锭(EB)。
四、实验步骤
1、植物DNA提取方法(CTAB法)
1)水浴加热CTAB提取液至65℃;
2)取叶片100mg, 液氮研磨成粉末;
3)加入600µl CTAB提取液并混匀;
4)65 ℃水浴45min(至少30min);
5)12,000rpm 离心10min;
6)将上清转移到新离心管,加入等体积氯仿/异戊醇, 混匀;
7)12,000rpm离心5-10min, 将上清液转移到新管中;
8)向上清中加入1/10体积3M NaAc,再加入预冷的等体积异丙醇或2V无水乙醇, 混匀冰上
放置10min;
9)12,000rpm 离心10min,弃上清,加入500µl 70%乙醇洗涤2min;
10)12,000rpm 离心5min,弃上清,吸干残留并干燥;
11)加20-50 µl TE缓冲液溶解DNA。
2、PCR反应
1)引物设计
LP: 5’-TCA TCC ACC ATG GAA GAA AAG
RP: 5’-TTG GAT ACG ATG CGA GTA AAC
BP: 5’- TTG TTC ACG TAG TGG GCC ATC G
LP+RP:1107bp
BP+RP: 560-860bp
2)PCR 反应体系
H2O: 12.4 μl
10×Buffer: 2 μl
dNTP: 0.5 μl
MgCl2: 2 μl
LP/BP: 0.5 μl
RP: 0.5 μl
Taq: 0.1 μl
DNA: 2 μl
Total: 20 μl
3)PCR温度设定
94℃5min
33 cycle
⏹变性:94℃30s
⏹退火:53℃30s
⏹延伸:72℃1min30s
72℃7min
3、琼脂糖凝胶电泳分析
1)500-1000bp:1.2%,Agarose 0.5×TBE;
2)化胶时应注意不能沸出,冷却至约60℃制胶,凝胶充分冷却凝固后点样进行电泳;
3)PCR产物加3-4 μl 6×loading buffer;
4)120V稳压电泳;
5)EB染色10min,紫外观察。
五、结果分析
图 3 PCR产物电泳条带图
在图3,第7泳道为DL 2000 DNA marker,第5泳道是BP-RP引物体系,第六泳道是LP-RP 引物体系。
BP-RP体系的PCR产物产生一条略大于750bp的DNA条带,而LP-RP引物体系中没有在大致900bp的位置产生条带。
由此,可以断定此样品为纯和突变体。
六、思考与讨论
1、加液氮碾磨叶片时,最好保持离心管中始终有液体氮存在,如果碾磨一段时间后中途要加液氮继续碾磨,一定注意,液氮沸腾时极易将已经碾磨好的叶片吹走;另一点,碾磨时要迅速,避免空气中的水汽在离心管上凝结。
本次试验中,离心管出现了冰霜,可能对最后的结果有影响。
2、DNA有一定的物理脆性,所以在提取过程中混匀时一定要缓慢的摇晃,切忌剧烈震荡。
3、加液氮碾磨时,注意不要将叶片挤到离心管的底部,那样会导致碾磨不充分。
遇到这种情况,建议重做。
4、PCR中所需的各种试剂都应避免污染,而且尽量减少冻融的次数。