历年高考的奇偶性的奇偶性
- 格式:docx
- 大小:31.16 KB
- 文档页数:4
奇偶性高考试题及答案高考是一项非常重要的考试,对于每一位学生来说都至关重要。
在备考过程中,了解一些常见的高考试题及答案对于学生来说是非常有帮助的。
其中一个重要的考点就是奇偶性。
本文将介绍奇偶性在高考试题中的应用以及相应的解答方法。
一、奇偶性的概念及应用1.1 奇偶性的定义在数学中,我们可以通过一个数的奇偶性来判断它是奇数还是偶数。
一个整数可以被2整除的话,那么它就是偶数;如果不能被2整除,那么它就是奇数。
利用这个概念,我们可以在高考中应用奇偶性来解答一些数学题目。
1.2 奇偶性在高考试题中的应用奇偶性在高考试题中的应用非常广泛,尤其是在代数、方程、函数等数学题型中。
下面我们将分几个方面来介绍奇偶性的应用。
1.2.1 判断表达式的奇偶性在解答一些复杂的代数表达式时,我们可以通过判断表达式中各个因式的奇偶性来确定整个表达式的奇偶性。
一般来说,如果一个表达式中存在奇数个奇数因子,那么整个表达式就是奇数;如果存在偶数个奇数因子,那么整个表达式就是偶数。
例如,我们考虑下面这个代数表达式:\[f(x) = (2x + 1)(3x^2 - 2x)\]其中第一个因式为 $2x + 1$,显然是一个奇数因式;第二个因式为$3x^2 - 2x$,我们可以看出其中包含了参数 $x$ 的幂次。
根据幂次的奇偶性规律,$x$ 的奇偶性和 $x$ 的幂次的奇偶性是一致的。
由此可知,$3x^2 - 2x$当 $x$ 是奇数时,为奇数;当 $x$ 是偶数时,为偶数。
因此,整个表达式 $f(x)$ 的奇偶性由两个因式的奇偶性决定。
当$x$ 是奇数时,$f(x)$ 为奇数;当 $x$ 是偶数时,$f(x)$ 为偶数。
1.2.2 解题方法利用奇偶性解答题目时,我们需要注意一些解题方法。
首先,我们需要熟练掌握常见的数的奇偶性。
我们知道,所有的偶数一定可以被2整除,而奇数则不可以。
在解答题目时,我们可以先判断一些数字的奇偶性,从而推导出一些结论。
函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.16.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。
六、奇偶性问题例1 . (1)已知函数f(x)(x ≠0的实数)对任意不等于零的实数x 、y 都有f(x ﹒y)=f(x)+f(y),试判断函数f(x)的奇偶性。
解析:函数具备奇偶性的前提是定义域关于原点对称,再考虑f(-x)与f(x)的关系:取y=-1有f(-x)=f(x)+f(-1),取x=y=-1有f(1)=2f(-1),取x=y=1有f(1)=0.所以f(-x)=f(x),即f(x)为偶函数。
(2)已知y=f (2x +1)是偶函数,则函数y=f (2x )的图象的对称轴是( D ) A.x =1B.x =2C.x =-21D.x =21 解析:f(2x+1)关于x=0对称,则f(x)关于x=1对称,故f(2x)关于2x=1对称.注:若由奇偶性的定义看复合函数,一般用一个简单函数来表示复合函数,化繁为简。
F (x )=f(2x+1)为偶函数,则f(-2x+1)=f(2x+1)→f(x)关于x=1对称。
例2:已知函数f(x)的定义域关于原点对称且满足())()(1)()()(1x f y f y f x f y x f -+=-,(2)存在正常数a ,使f(a)=1.求证:f(x)是奇函数。
证明:设t=x-y,则)()()(1)()()()(1)()()()(t f x f y f x f y f y f x f x f y f x y f t f -=-+-=-+=-=-,所以f(x)为奇函数。
例3:设)(x f 是定义在R 上的偶函数,且在)0,(-∞上是增函数,又)123()12(22+-<++a a f a a f 。
求实数a 的取值范围。
解析:又偶函数的性质知道:)(x f 在),0(+∞上减,而0122>++a a ,01232>+-a a ,所以由)123()12(22+-<++a a f a a f 得1231222+->++a a a a ,解得30<<a 。
高考数学知识点汇总函数的奇偶性与周期性高考数学知识点汇总函数的奇偶性与周期性知识要点:一、函数的奇偶性1.定义:关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=f(x),那么f (x)为偶函数;2.性质:(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;(2) f(x),g(x)的定义域为D;(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;(5)任意一个定义域关于原点对称的函数f(x)总能够表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x) =-[f(x)-f(-x)]为奇函数;(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。
3.判定方法:(1)定义法(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;f(-x)-f(x)=0,f(x)为偶函数。
4.拓展延伸:(1)一样地,关于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2 b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;(2)一样地,关于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a -x),则它的图象关于x=a成轴对称。
二、周期性:1.定义:关于函数y=f(x),假如存在一个非零常数T,使得当自变量x 取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。
2.图象特点:将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。
高考必考知识点奇偶性在高考中,数学作为一门重要的科目,几乎是每个考生都不能避免要面对的挑战。
数学知识点繁多,其中一个重要的知识点就是奇偶性。
考生只有深入理解和掌握奇偶性的概念,才能在高考中取得优异的成绩。
一、奇数和偶数的定义与性质首先,我们来回顾一下奇数和偶数的定义。
奇数是不能被2整除的数字,而偶数则可以被2整除。
简单明了的定义也为我们提供了研究奇偶性的基础。
奇数和偶数在加减运算中有着不同的性质。
两个奇数相加,结果是偶数;而两个偶数相加,结果仍然是偶数。
而奇数与偶数相加,结果是奇数。
同样的性质在减法运算中也成立。
这些性质对于高考题目的解题方法起到了重要的指导作用。
奇数和偶数的乘法运算也有着自己的规律。
两个奇数相乘,结果仍然是奇数;两个偶数相乘,结果也是偶数。
而奇数与偶数相乘,结果则为偶数。
二、整数序列的奇偶性规律在高等数学中,考生还需要掌握整数序列的奇偶性规律。
在高考中,有很多与整数序列奇偶性相关的题目。
1. 数列中的奇数与偶数首先,考生需要掌握关于数列中奇数和偶数的一些规律。
在一个连续的整数数列中,奇数和偶数出现的频次是相等的。
例如,从1到100的整数数列中,1、3、5、...、99共有50个奇数,1、3、5、...、99共有50个偶数。
这样的规律在解题过程中经常会被考察到。
2. 数列之和与奇偶性其次,数列之和与奇偶性之间也存在着一定的联系。
如果一个数列中的项数是偶数个,那么数列之和的奇偶性与数列第一项和最后一项的奇偶性相同。
而如果一个数列中的项数是奇数个,那么数列之和的奇偶性与数列第一项与最后一项的奇偶性相反。
掌握了这个规律后,考生在解决数列求和的问题时就能事半功倍。
三、函数的奇偶性在数学学科中,函数的奇偶性也是一个重要的概念。
函数的奇偶性与其表达式中的变量幂指数有关,对于高考数学题目的解题方法起到了重要的指导作用。
1. 奇函数和偶函数的定义首先,我们来了解一下奇函数和偶函数的定义。
如果对于函数f(x)成立f(-x)=-f(x),那么这个函数就是奇函数。
1.4函数的奇偶性(一) 主要知识: 1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数;2.奇偶函数的性质:()1函数具有奇偶性的必要条件是其定义域关于原点对称;()2()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称;()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.3.若奇函数()f x 的定义域包含0,则(0)0f =. (二)主要方法:1.判断函数的奇偶性的方法:()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否定义域上的恒等式;()2图象法: 观察图像是否符合奇、偶函数的对称性()3性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;12()()()()()3()()()()()()f x f x f x f x f x f x f x f x f x f x f x ⎧⎪-⎪⎪-=⇒⎧⎪⎪⎪-=-⇒⎨⎪⎨⎪-≠≠--⇒⎪⎪⎪⎪-=-=⇒⎩⎪⎪⎩()判断函数定义域是否关于原点对称()求出的表达式偶函数函数奇偶性判断:判断步骤奇偶函数()判断关系非奇非偶函数即是奇函数又是函数注:判断奇偶性先求出定义域判断其是否关于原点对称例1 判断下列函数的奇偶性 1)()()21f x x x =+ 2)()f x =3)()f x = 4)()2211021102x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩例2 设()f x 是R 上是奇函数,且当[)0,x ∈+∞时()(1f x x =+,求()f x 在R 上的解析式例3 已知函数()538f x x ax bx =++-且()210f -=,求()2f 的值例4 设函数()f x 是定义域R 上的偶函数,且图像关于2x =对称,已知[2,2]x ∈-时,()21f x x =-+,求[]6,2x ∈--时()f x 的表达式。
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
函数的奇偶性●知识梳理1.奇函数:对于函数f(x)的定义域内随意一个x,都有f(- x)=-f(x)〔或f (x) + f(- x) =0〕,则称f( x)为奇函数.2.偶函数:对于函数f( x)的定义域内随意一个x,都有f(- x) =f( x)〔或f ( x)- f(- x)=0〕,则称f(x)为偶函数.3.奇、偶函数的性质(1)拥有奇偶性的函数,其定义域对于原点对称(也就是说,函数为奇函数或偶函数的必需条件是其定义域对于原点对称).(2)奇函数的图象对于原点对称,偶函数的图象对于y 轴对称 .(3)若奇函数的定义域包括数0,则 f(0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞, +∞)上的随意函数f(x)都能够独一表示成一个奇函数与一个偶函数之和 .●点击双基1.下边四个结论中,正确命题的个数是①偶函数的图象必定与y 轴订交②奇函数的图象必定经过原点③偶函数的图象对于 y 轴对称④既是奇函数,又是偶函数的函数必定是f( x)=0(x∈R)分析:①不对;②不对,由于奇函数的定义域可能不包括原点;③正确;④不对,既是奇函数又是偶函数的函数能够为f( x)=0〔x∈(- a, a)〕.答案: A2.已知函数 f(x)=ax2+bx+ c(a≠0)是偶函数,那么g(x) =ax3+bx2+cx 是A. 奇函数C.既奇且偶函数B.偶函数D.非奇非偶函数分析:由f(x)为偶函数,知b=0,有g(x)=ax3+cx( a≠0)为奇函数.答案: A3.若偶函数f(x)在区间[-1, 0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则以下不等式中正确的选项是(cosα)> f(cosβ)(sinα)> f( cosβ)(sinα)> f(sinβ)(cosα)>f(sinβ)分析:∵偶函数f(x)在区间[- 1, 0]上是减函数,∴ f(x)在区间[ 0, 1]上为增函数 .由α、β是锐角三角形的两个内角,∴α+β>90°,α>90°-β.1>sinα>cosβ> 0.∴f(sinα)> f( cosβ) .答案: B4.已知 f( x)= ax2+ bx+ 3a+ b 是偶函数,且其定义域为[a-1,2a],则 a=___________,b=___________.分析:定义域应对于原点对称,故有 a-1=- 2a,得 a=1 .3又对于所给分析式,要使f(- x)= f( x)恒建立,应 b=0.答案:131( x≠ 0);②y=x25.给定函数+1;③y=2x;④y=log2;⑤y=log2(x+x 2 1 ):①y=x.x在这五个函数中,奇函数是_________,偶函数是 _________,非奇非偶函数是__________.答案:①⑤② ③④●典例分析【例 1】已知函数 y=f(x)是偶函数, y=f(x- 2)在[ 0,2]上是单一减函数,则(0)< f(- 1)< f( 2)(-1)<f(0)<f(2)(- 1)< f( 2)< f( 0)(2)<f(-1)<f(0)分析:由 f(x-2)在[ 0,2]上单一递减,∴f(x)在[- 2,0]上单一递减 .∵y=f(x)是偶函数,∴f(x)在[ 0, 2]上单一递加 .又 f(- 1) =f(1),故应选 A.答案: A【例 2】判断以下函数的奇偶性:(1)f(x)=|x+1|- |x- 1|;1x(2)f(x)=(x-1)·;(3)f(x)=1x 2;| x 2 | 2(4)f(x)=x(1x)( x0),x(1x)( x0).分析:依据函数奇偶性的定义进行判断.解:(1)函数的定义域x∈(-∞, +∞),对称于原点 .∵f(- x)=|- x+1|- |- x- 1|=|x-1|- |x+1|=-( |x+1|-|x-1|) =- f( x),∴f(x)=|x+1|- |x- 1|是奇函数 .( 2)先确立函数的定义域 .由1x1 x≥0,得- 1≤x< 1,其定义域不对称于原点,所以 f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,依据定义判断.由1x20,1 x 1,得4. | x 2 | 2 0,x 0且x故 f(x)的定义域为[- 1,0)∪(0,1],对于原点对称,且有 x+2>0.进而有 f(x)221( x)22= 1 x= 1x=-1x =-f(x),故 f(x)为奇,这时有 f(- x)=xx22x x函数 .(4)∵函数 f(x)的定义域是(-∞, 0)∪(0,+∞),而且当 x> 0 时,- x<0,∴f(- x)=(- x)[1-(- x)]=-x(1+x) =- f(x)(x> 0) .当 x< 0 时,- x>0,∴ f(- x) =- x( 1- x)=-f(x)( x< 0) .故函数 f(x)为奇函数 .评论:( 1)分段函数的奇偶性应分段证明 .(2)判断函数的奇偶性应先求定义域再化简函数分析式 .【例 3】(2005 年北京东城区模拟试题)函数f( x)的定义域为 D={ x|x≠0} ,且满足对于随意 x 、 x ∈D,有 f( x ·x )=f( x )+f(x ) .121212(1)求 f( 1)的值;(2)判断 f(x)的奇偶性并证明;(3)假如 f(4)=1, f(3x+1)+f( 2x-6)≤ 3,且 f( x)在( 0,+∞)上是增函数,求 x 的取值范围 .(1)解:令 x1 =x2=1,有 f(1×1)=f( 1) +f(1),解得 f(1)=0.(2)证明:令 x1 =x2=- 1,有 f[(- 1)×(- 1)]=f(- 1)+f(- 1) .解得 f(-1)=0.令 x1 =-1,x2=x,有 f(- x)=f(- 1)+f( x),∴ f(- x)=f( x) .∴f(x)为偶函数.(3)解: f ( 4× 4) =f (4)+f (4)=2,f ( 16×4)=f ( 16)+f (4) =3.∴ f (3x+1)+f (2x -6)≤ 3 即 f [(3x+1)( 2x -6)]≤ f (64) .(* )∵f (x )在( 0, +∞)上是增函数,∴( * )等价于不等式组或 (3x 1)( 2x 6) 0,(3x 1)(2 x 6) 64,x 3或x1 , 1 3,或3 或x 375x R.x3∴3<x ≤5 或- 7≤x <- 1或- 1<x <3.333∴x 的取值范围为 { x|- 7≤x <- 1或- 1<x <3 或 3< x ≤5}.33 3评论:解答此题易出现以下思想阻碍:(1)无从下手,不知怎样脱掉“ f ” .解决方法 :利用函数的单一性 .(2)没法获得另一个不等式 .解决方法:对于原点对称的两个区间上,奇函数的单调性同样,偶函数的单一性相反 .深入拓展已知 f ( x )、g (x )都是奇函数, f ( x )> 0 的解集是( a 2,b ), g ( x )> 0 的解集2是(a, b ), b>a 2,那么 f (x )· g ( x )> 0 的解集是 2 2 2A. ( a 2 , b)2)2 2 B.(- b ,- aC.( a 2, b)∪(- b,- a 2)222 D.(a,b )∪(- b 2,- a 2)2提示: f ( x )·g (x )> 0f (x) 0, 或 f ( x) 0,g( x) 0g ( x)0.∴x ∈( a 2, b )∪(- b,- a 2) .2 2答案: C【例 4】 (2004 年天津模拟试题)已知函数 f (x )=x+ px+m ( p ≠ 0)是奇函数 .(1)求 m 的值 .(2)(理)当 x ∈[ 1, 2]时,求 f (x )的最大值和最小值 .(文)若 p > 1,当 x ∈[ 1,2]时,求 f (x )的最大值和最小值 .解:(1)∵ f (x )是奇函数,∴ f (- x )=-f (x ).∴- x - p +m=-x - p-m.xx∴ 2m=0.∴m=0.(2)(理)(ⅰ)当 p < 0 时,据定义可证明 f (x )在[ 1, 2]上为增函数 .∴ f (x )max =f (2)=2+ p,f ( x ) min =f (1)=1+p.2(ⅱ)当 p > 0 时,据定义可证明 f (x )在( 0, p ]上是减函数,在[p ,+∞)上是增函数 .①当 p <1,即 0< p < 1 时, f (x )在[ 1,2]上为增函数,∴ f (x )max =f (2)=2+ p, f (x )min =f (1)=1+p.2②当 p ∈[ 1,2]时, f ( x )在[ 1,p ]上是减函数 .在[ p , 2]上是增函数 .f ( x ) min =f ( p )=2 p .f ( x ) max =max{ f ( 1),f (2) }=max{1+ p ,2+ p}.2当 1≤p ≤2 时,1+p ≤2+ p,f (x )max =f ( 2);当 2<p ≤4 时,1+p ≥2+ p,f (x )max =f22(1).③当p > 2,即 p > 4 时,f ( x )在[1,2]上为减函数, ∴ f ( x )max =f (1)=1+p ,f (x )min =f (2)=2+ p.2(文)解答略 .评论: f( x) =x+ p( p>0)的单一性是一重要问题,利用单一性求最值是重要方x 法.深入拓展f( x) =x+ p的单一性也可依据导函数的符号来判断,此题怎样用导数来解?x●闯关训练夯实基础1.定义在区间(-∞,+∞)上的奇函数 f ( x)为增函数,偶函数g( x)在区间[ 0, +∞)上的图象与f(x)的图象重合,设a< b< 0,给出以下不等式,此中建立的是①f(b)- f(- a)> g( a)- g(- b)②f(b)- f(- a)< g( a)- g(- b)③f(a)- f(- b)> g( b)- g(- a)④f(a)- f(- b)< g( b)- g(- a)A. ①④B.②③C.①③D. ②④分析:不如取切合题意的函数f(x)=x 及 g(x) =|x|进行比较,或一般地g(x)f ( x)x0, =x f(0)=0, f(a)< f(b)< 0.f ( x)0,答案: D2.(2003 年北京海淀区二模题)函数f(x)是定义域为 R 的偶函数,又是以 2 为周期的周期函数 .若 f(x)在[- 1,0]上是减函数,那么 f( x)在[ 2,3]上是A. 增函数B.减函数C.先增后减的函数D.先减后增的函数分析:∵偶函数f(x)在[- 1,0]上是减函数,∴ f( x)在[ 0,1]上是增函数 .由周期为 2 知该函数在[ 2,3]上为增函数 .答案: A3.已知 f( x)是奇函数,当 x∈( 0,1)时, f(x)=lg1,那么当x∈(-1,0)1 x时, f( x)的表达式是 __________.分析:当 x∈(- 1,0)时,- x∈( 0,1),∴ f(x)=-f(- x)=-lg 1=lg(1 1 x-x) .答案: lg(1-x)x2x1,4.(2003 年北京)函数 f(x)=lg( 1+x2),g(x)= 0| x | 1, h(x)=tan2x中,x2x 1.______________是偶函数 .分析:∵ f(- x)=lg[1+(- x)2]=lg(1+x2) =f(x),∴f(x)为偶函数 .又∵ 1°当- 1≤x≤1 时,- 1≤- x≤1,∴g(- x) =0.又 g( x) =0,∴ g(- x)=g( x).2°当 x<- 1 时,- x> 1,∴g(- x) =-(- x)+2=x+2.又∵ g( x) =x+2,∴ g(- x)=g( x) .3°当 x> 1 时,-x<- 1,∴g(- x) =(- x)+2=-x+2.又∵ g( x) =- x+2,∴ g(- x)=g(x).综上,对随意 x∈ R 都有 g(- x) =g(x).∴g(x)为偶函数 .h(- x)=tan(- 2x) =-tan2x=- h( x),∴h(x)为奇函数 .答案: f( x)、g(x)5.若 f(x)= a 2x a 2为奇函数,务实数 a 的值 .2 x1解:∵x∈ R,∴要使 f(x)为奇函数,一定且只需 f( x)+f(- x)=0,即 a-2+2 x1 a-2=0,得 a=1.x216.(理)定义在[- 2, 2]上的偶函数 g(x),当 x≥0 时, g(x)单一递减,若 g (1- m)< g(m),求 m 的取值范围 .解:由 g(1-m)< g(m)及 g(x)为偶函数,可得g(|1- m|)< g( |m|).又 g(x)在(0,+∞)上单一递减,∴ |1-m|>|m|,且 |1-m|≤ 2,|m|≤2,解得- 1≤m<1 . 2说明:也能够作出g(x)的表示图,联合图形进行分析.(文)( 2005 年北京西城区模拟试题)定义在R 上的奇函数 f( x)在( 0,+∞)上是增函数,又 f(- 3)=0,则不等式 xf(x)< 0 的解集为A. (- 3,0)∪( 0, 3)B.(-∞,- 3)∪( 3,+∞)C.(- 3,0)∪( 3, +∞)D.(-∞,- 3)∪( 0,3)分析:由奇偶性和单一性的关系联合图象来解.答案: A培育能力已知()=(1+1).7.f xx2 x 1 2(1)判断 f(x)的奇偶性;(2)证明 f(x)> 0.(1)解:f(x)= x·2x1,其定义域为 x≠0 的实数 .又 f(- x)=- x·22( 2x1)2( 2xx11)=-x· 1 2x=x· 2 x 1=f(x),2(1 2 x )2(2 x1)∴f(x)为偶函数 .(2)证明:由分析式易见,当x>0 时,有 f(x)> 0.又 f(x)是偶函数,且当 x< 0 时- x>0,∴当 x<0 时 f(x)= f (- x)> 0,即对于 x≠0 的任何实数 x,均有 f( x)> 0.研究创新8.设 f(x)=log 1(1ax)为奇函数,a为常数,2x1(1)求 a 的值;(2)证明 f(x)在( 1, +∞)内单一递加;对于[ 3, 4]上的每一个x 的值,不等式 f( x)>(1)x+m 恒建立,求2实数 m 的取值范围 .(1)解: f( x)是奇函数,∴ f(- x)=-f(x).∴ log 11ax=- log 12x 12 a=1(舍),∴ a=-1.1 ax1 ax=x 1> 0 1- a2x2=1- x2a=± 1.查验x 1x 1 1 ax(2)证明:任取 x1> x2>1,∴ x1- 1> x2-1>0.220< 1+ x 21< 1+ x2x11x21x11∴0<x 1<x211210<x11<x21 log 1x11>12log 1x21,即 f(x1)> f( x2).∴f(x)在( 1, +∞)内单一递加 .2x21(3)解: f( x)-(1)x>m 恒建立 . 2令 g(x) =f(x)-(1)x.只需 g(x)min> m,用定义能够证 g( x)在[ 3, 4]2上是增函数,∴ g( x)min()-9∴<-9时原式恒建立 .=g 3 =. m88●思悟小结1.函数的奇偶性是函数的整体性质,即自变量x 在整个定义域内随意取值 .2.有时可直接依据图象的对称性来判断函数的奇偶性.●教师下载中心教课点睛1.函数的奇偶性常常与函数的其余性质,如单一性、周期性、对称性联合起来考察.所以,在复习过程中应增强知识横向间的联系.2.数形联合,以形助数是解决本节问题常用的思想方法.3.在教课过程中应重申函数的奇偶性是函数的整体性质,而单一性是其局部性质 .拓展题例2【例 1】 已知函数 f (x )=ax1(a 、b 、c ∈ Z )是奇函数,又 f ( 1)=2,f (2)bx c<3,求 a 、b 、c 的值 .解:由 f (- x )=-f (x ),得- bx+c=-( bx+c ).∴ c =0.由 f (1)=2,得 a+1=2b.由 f (2)< 3,得4a 1<3,a 1解得- 1<a <2.又 a ∈ Z ,∴a=0 或 a=1.若 a=0,则 b= 1,与 b ∈Z 矛盾 .∴a=1, b=1,c=0.2【例 2】 已知函数 y=f (x )的定义域为R ,对随意 x 、 x ′∈ R 均有 f (x+x ′) =f(x ) +f (x ′),且对随意 x >0,都有 f (x )< 0,f (3)=-3.(1)试证明:函数 y=f ( x )是 R 上的单一减函数;(2)试证明:函数 y=f ( x )是奇函数;(3)试求函数 y=f (x )在[ m , n ](m 、 n ∈ Z ,且 mn <0)上的值域 .分析:(1)可依据函数单一性的定义进行论证, 考虑证明过程中怎样利用题设条件 .(2)可依据函数奇偶性的定义进行证明,应由条件先获得f ( 0)=0 后,再利用条件 f (x 12)=f ( 1 ) +f ( 2)中 x 1、 2 的随意性,可使结论得证.+xx x x(3)由( 1)的结论可知 f ( m )、f (n )分别是函数 y=f (x )在[ m 、 n ]上的最大值与最小值,故求出 f (m )与 f (n )便可得所求值域 .(1)证明:任取 x 1、 x 2∈R ,且 x 1<x 2,f (x 2) =f [x 1+(x 2-x 1)],于是由条件f(x+x′) =f(x)+f( x′)可知 f(x2) =f(x1)+f(x2-x1) .∵x2> x1,∴ x2- x1>0.∴f(x2-x1)< 0.∴f(x2)=f(x1)+f( x2-x1)< f(x1) .故函数 y=f(x)是减函数 .(2)明:∵ 随意x、x′∈ R 均有 f(x+x′) =f(x) +f(x′),∴若令 x=x′ =0, f( 0) =f(0)+f(0).∴f(0)=0.再令 x′=-x,可得 f(0) =f(x)+f(- x) .∵f(0)=0,∴ f(- x)=-f( x) .故 y=f( x)是奇函数 .(3)解:由函数 y=f(x)是 R 上的减函数,∴y=f(x)在[ m,n]上也减函数 .∴y=f(x)在[ m,n]上的最大 f(m),最小 f(n).∴f(n)=f[1+(n-1)] =f(1)+f( n- 1) =2f( 1) +f(n-2)=⋯=nf(1).同理, f( m)=mf(1).∵f(3)=-3,∴ f(3)=3f(1)=-3.∴f(1)=-1.∴f(m)=-m, f(n)=-n.所以,函数 y=f(x)在[ m, n]上的域[- n,- m].述:( 1)足条件f( x+x′) =f(x)+f( x′)的函数,只需其定域是关于原点称的,它就奇函数.(2)若将条件中的x>0,均有 f( x)< 0 改成均有 f(x)> 0,函数 f(x)就是 R 上的增函数 .(3)若条件中的m、n∈Z 去掉,我就没法求出f(m)与 f(n)的,故 m、n∈Z 不行少 .。
函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.资料下载来源——高中数学优质资料群群号:114265753916.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。
高考数学知识考点精析3 函数的单调性、周期性、奇偶性、反函数一、函数的单调性:1、定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间上的增函数,当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间上的减函数。
如果函数y= f(x)在区间上是增函数或减函数,就说函数y= f(x)在区间D 上具有(严格的)单调性,区间D 称为函数f(x)的单调区间。
()()()()121200f x f x x x -><→-增减 任意x 1,x 2∈D 2、函数单调性的证明方法:通常根据定义,其步骤是:1)任取x 1,x 2∈D ,且x 1<x 2 2)作差f(x 1)- f(x 2)或作商()()()()0112≠x f x f x f ,并变形,(4)判定f(x 1)- f(x 2)的符号,或比较()()12x f x f 与1的大小, 4)根据定义作出结论。
有时也根据导数。
()()()()//,0D 0D x D f x f x f x f x ∈>⇒<⇒在上递增,在上递减。
(注:逆命题不成立)3、常见函数的单调性:(1) 一次函数y=kx+b (k ≠0) 1)当k>0时,f(x)在R 上是增函数。
2)当k<0时,f(x)在R 上是减函数。
(2) 二次函数y=ax 2+bx+c 1)当a>o 时,函数f(x)的图象开口向上,在(-∞,-a b 2)上是减函数,在[-ab 2,+∞)上是增函数,2) 当a<0时,函数f(x)的图象开口向下,在(-∞,-a b 2)上是增函数,在[-ab 2,+∞)是减函数。
(3) 反比例函数y=()0≠k xk 1) 当k>0时,f(x)在(-∞,0)与(0,+∞)上都是减函数,2) 当k<0时,f(x)在(-∞,0)与(0,+∞)上都是增函数但要注意在(-∞,0)∪(0,+∞)上f(x)没有单调性。
高考数学中的奇偶性与周期性知识点总结高考数学中,奇偶性与周期性是两个比较重要的知识点。
这两个知识点是数学中一些问题求解的基础,也是一些问题的关键所在。
在考试中,掌握好这两个知识点可以帮助我们更好地解决一些难题。
一、奇偶性奇偶性的概念是指数的性质,根据它是否为偶数或奇数来划分。
具体来说,若一个整数能被2整除,那么它就是偶数,否则就是奇数。
根据这个定义,我们可以得到以下几点结论:1. 奇数加奇数等于偶数,偶数加偶数也等于偶数2. 奇数加偶数等于奇数,偶数加奇数也等于奇数3. 奇数乘奇数等于奇数,偶数乘偶数等于偶数,奇数乘偶数等于偶数基于这些结论,我们可以在解决一些复杂的问题时,通过奇偶性来进行归纳或推理,从而简化问题的求解过程。
二、周期性周期性是指某个函数或者一段数据具有重复的特性,它将在一定的时间或空间范围内不断的变化,但是在一定的间隔内会出现相同的数值。
周期性的应用非常广泛,下面列出一些常见的周期数:1. 正弦曲线的周期是2π,即sin(x+2π)=sin(x)2. 余弦曲线的周期也是2π,即cos(x+2π)=cos(x)3. tan(x)的周期是π,即tan(x+π)=tan(x)4. 指数函数e的周期是2πi,即e^(x+2nπi)=e^x,其中n是任意整数通过这些周期数的关系,我们可以在求解复杂的数学问题时,通过对周期数的分析来推导答案。
例如,在求解正弦方程时,我们可以通过对周期2π的分析,将其转化为更加简单的问题,而得到更加简单的答案。
三、奇偶性与周期性的应用在解题时,常常会遇到一些既有奇偶性,又有周期性的问题,这时候我们就可以综合运用这两个知识点来解决。
以下是一些例题:1. 已知函数f(x)=sin(x),求函数f(x+a)与f(x+2a)的奇偶性。
解:显然,f(x+a)=sin(x+a),这个函数的奇偶性与sin(x)相同,即为奇函数。
而f(x+2a)=sin(x+2a),这个函数的周期为2π,因此根据周期性的知识,我们可以将其转化为f(x),即为偶函数。
高考数学奇偶性参数知识点数学是高考的一门重要科目,其中数学的奇偶性参数是一个非常重要的知识点。
奇偶性是数学中一个基本的性质,它与数的性质密切相关。
在高考中,掌握好奇偶性参数的相关知识点,能够帮助我们更好地解题,提高解题的准确性和速度。
一、奇数与偶数的基本性质首先,我们来看一下奇数和偶数的基本性质。
奇数是指不能被2整除的自然数,而偶数则是可以被2整除的自然数。
1. 奇数加奇数或偶数加偶数,结果为偶数。
例如,3+5=8,2+4=6。
2. 奇数加偶数,结果为奇数。
例如,3+4=7,5+6=11。
3. 奇数乘奇数,结果为奇数。
例如,3×3=9,5×5=25。
4. 奇数乘偶数,结果为偶数。
例如,3×2=6,5×4=20。
了解了奇数与偶数的基本性质,我们就能够更好地理解奇偶性参数的知识点。
二、奇偶性参数的运用奇偶性参数在数学中的运用非常广泛,它可以帮助我们简化问题,快速得出结论。
下面,我们来看一些常见的奇偶性参数的运用。
1. 奇偶性参数与加法运算在进行加法运算时,我们可以利用奇偶性参数来简化问题。
如果已知一个数是奇数,那么加上另一个数的奇偶性就能够确定结果的奇偶性。
例如,已知一个数是奇数,加上偶数,结果一定为奇数。
这个方法在解决一些复杂的加法运算时非常有用,能够节省大量的计算时间。
2. 奇偶性参数与乘法运算在进行乘法运算时,奇偶性参数也是非常有用的。
如果已知一个数是奇数,那么与另一个数相乘后,结果的奇偶性就能够确定。
例如,一个奇数与任何数相乘,结果都是奇数;两个偶数相乘,结果也是偶数。
3. 奇偶性参数与整除关系在判断一个数能否被另一个数整除时,奇偶性参数也能够发挥很大的作用。
例如,一个奇数不能被2整除,一个偶数能够被2整除。
三、奇偶性参数的应用案例接下来,我们通过一些具体的应用案例来进一步理解奇偶性参数的应用。
1. 案例一已知一个数加上9是一个偶数,那么这个数本身是奇数还是偶数?解析:设这个数为x,根据已知条件可得:x+9是偶数。
高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。
解法探究2023年5月上半月㊀㊀㊀函数奇偶性,高考妙考查◉江苏省苏州市吴江平望中学㊀丁莉萍㊀㊀㊀㊀函数奇偶性是历年高考数学对函数进行重点考查的一大基本性质,其以基本初等函数或抽象函数等为载体,多以小题(选择题或填空题)形式出现,很好地交汇与融合了函数的概念㊁图象与性质等相关知识,有时单独考查,有时综合应用.下面结合2021年高考数学真题,就高考数学试卷中函数奇偶性的常见考点类型与巧妙应用,抛砖引玉,对教师教学与学生学习提供此许帮助.1判定函数奇偶性判断函数奇偶性问题,或抓住 奇函数的图象关于坐标原点对称,偶函数的图象关于y轴对称 这一基本性质来数形结合处理,或结合函数奇偶性的定义等都可以用来判断相关函数的奇偶性问题.例1㊀[2021年高考数学全国乙卷(理)第4题(文)第9题]设函数f(x)=1-x1+x,则下列函数中为奇函数的是(㊀㊀).A.f(x-1)-1㊀㊀㊀㊀B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1分析:先根据函数f(x)的解析式进行变形与转化处理,确定函数f(x)的对称中心,然后通过函数图象的平移变换,使得变换后的函数图象的对称中心为(0,0),吻合奇函数的基本性质,从而得到答案.解析:由于函数f(x)=1-x1+x=-(1+x)+21+x=-1+21+x,因此其图象关于点(-1,-1)成中心对称.将函数f(x)的图象向右平移1个单位,再向上平移1个单位后,得到函数y-1=f(x-1)的图象关于坐标原点(0,0)成中心对称,所以函数y-1=f(x-1)为奇函数,即y=f(x-1)+1为奇函数.故选择答案:B.点评:对于抽象函数奇偶性的判断,往往利用基本性质来处理.利用平移变换法处理此类图象变换问题时,要注意平移的方向与符号的关系,关键是注意对称中心或对称轴的确定.2判断函数图象利用 奇函数的图象关于坐标原点对称,偶函数的图象关于y轴对称 这一基本性质,直观形象确定函数的图象与函数奇偶性之间的联系,有时还要结合函数图象的最高最低点㊁平衡点㊁特殊点等来分析㊁处理与判断.例2㊀(2022年高考数学全国甲卷理科 5文科7)如图1,函数y=(3x-3-x)c o s x在区间[-π2,π2]的图象大致为(㊀㊀).图1分析:结合函数奇偶性的定义,可以判断所求函数为奇函数,利用奇函数的图象关于原点对称可排除选项B D;再利用特殊值法加以排除相应的选项即可得到正确答案.解析:由函数y=f(x)=(3x-3-x)c o s x,可知f(-x)=(3-x-3x)c o s(-x)=-(3x-3-x)c o s x=-f(x),则函数y=f(x)是奇函数,其图象关于坐标原点对称,由此可以排除选项B D.选取特殊值x=1,可得f(1)=(31-3-1)c o s1>0,由此可以排除选项C.故选择答案:A.点评:通过函数图象识别对称性与函数解析式的关系来考查,借助函数图象的对称性所对应的函数奇偶性来排除与应用,很好地考查学生数学抽象㊁逻辑推理㊁直观想象以及数学运算等核心素养.3确定函数值在一些函数值的确定问题中,经常要合理利用函数奇偶性的定义与基本性质.如根据奇函数(或偶函数)关于坐标原点对称的自变量所对应的函数值互为27Copyright©博看网. All Rights Reserved.2023年5月上半月㊀解法探究㊀㊀㊀㊀相反数(或相等),建立相应的关系式来转化与求解.例3㊀(2021年高考数学全国甲卷理科第12题)设函数f(x)的定义域为R,f(x+1)为奇函数, f(x+2)为偶函数,当xɪ[1,2]时,f(x)=a x2+b.若f(0)+f(3)=6,则f(92)=(㊀㊀).A.-94㊀㊀㊀B.-32㊀㊀㊀C.74㊀㊀㊀D.52分析:根据f(x+1)为奇函数,f(x+2)为偶函数,利用抽象函数的转化与变形,确定函数f(x)的周期为4,并由f(x+1)为奇函数,确定f(1)=0,结合条件分别确定f(0)与f(3)的表达式;结合f(0)+f(3)=6,确定a,b的值,得到xɪ[1,2]时f(x)的解析式,进而通过周期性与奇偶性来求解对应的函数值问题.解析:由于f(x+1)为奇函数,因此f(1)=0,且f(x+1)=-f(-x+1).由f(x+2)为偶函数,有f(x+2)=f(-x+2).所以f[(x+1)+1]=-f[-(x+1)+1]=-f(-x),即f(x+2)=-f(-x).故f(-x+2)=f(x+2)=-f(-x).令t=-x,则f(t+2)=-f(t),可得f(t+4)=-f(t+2)=f(t),即f(x+4)=f(x).当xɪ[1,2]时,f(x)=a x2+b,可得f(0)=f(-1+1)=-f(1+1)=-f(2)=-4a-b, f(3)=f(1+2)=f(-1+2)=f(1)=a+b.由f(0)+f(3)=6,可得-4a-b+a+b=-3a=6,解得a=-2.结合f(1)=a+b=0,解得b=-a=2.所以当xɪ[1,2]时,f(x)=-2x2+2.故f(92)=f(12+4)=f(12)=f(-12+1)=-f(12+1)=-f(32)=-[-2ˑ(32)2+2]=52.故选择答案:D.点评:结合抽象函数的奇偶性定义以及对应条件下函数的解析式来进行合理转化与求解.破解的关键是利用抽象函数的奇偶性来判定对应函数的周期性,以及含参解析式的确定,综合利用函数的相关知识来分析与应用.4求解参数值对于含参函数的奇偶性问题,经常要通过合理转化,或利用定义域为R的奇函数满足f(0)=0,或利用奇函数(或偶函数)关于坐标原点对称的自变量所对应的函数值互为相反数(或相等)等,来建立关系式,进而得以求解相应的参数值.例4㊀(2021年高考数学新高考Ⅰ卷第13题)已知函数f(x)=x3(a 2x-2-x)是偶函数,则a=.分析:根据函数奇偶性的相互转化与应用,对题中所给的偶函数进行合理分析,转化为奇函数问题;利用定义在R上的奇函数满足f(0)=0的性质,代入变换,得以求解相应的参数值.解析:由于函数f(x)=x3(a 2x-2-x)是偶函数,且y=x3为R上的奇函数,因此y=a 2x-2-x 也为R上的奇函数.结合奇函数的性质,可得y|x=0=a 20-20=a-1=0,解得a=1.故填答案:1.点评:熟练掌握函数的基本性质,将条件中的偶函数与奇函数加以合理转化,巧妙拆分或组合,建立方便求解与应用的函数解析式;再利用函数的奇偶性来建立相应的关系式,得以巧妙求解对应参数值的问题.5破解开放题借助奇偶函数的定义㊁基本性质等,为开放性问题的设置提供一个全新的场景.破解的关键是抓住一些常见基本初等函数㊁抽象函数的奇偶性等来合理综合,融会贯通,巧妙应用.例5㊀(2021年高考数学新高考Ⅱ卷第14题)写出一个同时具有下列性质①②③的函数f(x):.①f(x1x2)=f(x1)f(x2);②当xɪ(0,+ɕ)时,fᶄ(x)>0;③fᶄ(x)是奇函数.分析:根据条件中给出的三个关系式对应并确定函数的基本性质,综合这三个基本性质,得以确定对应的函数解析式,解决开放性问题.解析:根据函数的基本性质知,满足性质①的函数可以选取幂函数,满足性质③的函数可以选取偶函数,而满足性质②的函数在(0,+ɕ)上单调递增.综合以上三个基本性质,可以选取函数f(x)=x2.故填答案:f(x)=x2(答案不唯一,如f(x)=x4或f(x)=x23等).点评:对于此类结论开放的数学题,主要借助条件中函数的基本性质与运算规则等加以 举例 即可.破解的方法就是通过题目中部分比较明显的条件来选取满足条件的结论,一般选取熟知且简单的.由于答案不唯一,满足条件的结论有很多,选取一个满足所有条件的结论即可.函数奇偶性是高考数学中的必考知识点之一,其反映了函数图象的对称性,合理联系起函数部分的知识,体现了函数中 数 与 形 的和谐统一,是进行数学分析㊁数学应用与数学研究的一大有力工具.熟练掌握并应用函数奇偶性来破解问题,能有效提升数学品质,提高数学能力,培养核心素养.Z37Copyright©博看网. All Rights Reserved.。
函数的奇偶性函数奇偶性的性质:(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)若奇函数()f x 定义域中含有0,则必有(0)0f =.故(0)0f =是()f x 为奇函数的既不充分也不必要条件。
(3)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”。
如设)(x f 是定义域为R 的任一函数,()()()2f x f x F x +-=,()()()2f x f x G x --=。
(4)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.(5)设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇.题型1:判断有解析式的函数的奇偶性【例1】直接写出下列函数的奇偶性:① ()0=x f :_____; ② ()1212+-=x x x f :_____; ③()xx x f +-=11lg :_____。
④()|1||1|++-=x x x f :_____;【例2】若函数f(x)= 3(x x)+g(x)是偶函数,且f (x)不恒为零,判断函数g(x)的奇偶性.课堂练习:1.下列函数中,在其定义域内既是奇函数又是增函数的是 ( )A .)R (3∈+=x x x yB .)R (3∈=x y xC .)R 0(log 2∈>-=x x x y ,D .)0,R (1≠∈=x x x y2.函数()y f x =与()y g x =有相同的定义域,对定义域中任何x ,有()()0f x f x +-=,()()1g x g x -=,若函数g(x)=1的解集是,则2()()()()1f x F x f xg x =+-是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数题型2:奇偶性求解析式和函数的值【例1】已知()f x 是定义域为R 的奇函数,当0x <时,2()2f x x x =+-,求()f x 的解析式.课堂练习:1.()y f x =图象关于1x =对称,当1x ≤时,2()1f x x =+,求当1x >时()f x 的表达式.2.已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例2】已知f (x ),.10)2(832=-+++=f bx ax x 且求f (2).课堂练习:1.广东卷12.设函数3()cos 1f x x x =+,若()11f a =,则f (-a )=_______2.安徽卷11.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x =22x x -,则(1)f = .3.湖南卷12.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .题型3:抽象函数的奇偶性【例1】定义在区间)1,1(-上的函数f (x )满足:对任意的)1,1(,-∈y x ,都有)1()()(xyy x f y f x f ++=+. 求证:f (x )为奇函数;【例2】已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。
函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。