最新人教版高中数学必修1第三章《函数的应用(Ⅰ)》
- 格式:doc
- 大小:3.73 MB
- 文档页数:4
人教版普通高中课程标准实验教科书数学必修一第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用必修二第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式必修三:第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2用样本估计总体阅读与思考生产过程中的质量控制图2.3变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1随机事件的概率阅读与思考天气变化的认识过程3.2古典概型3.3几何概型阅读与思考概率与密码必修四:第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换必修五:第一章解三角形1.1正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业第二章数列2.1数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2双曲线2.3抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1变化率与导数3.2导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3导数在研究函数中的应用信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业第二章推理与证明2.1合情推理与演绎证明阅读与思考科学发现中的推理2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图信息技术应用用Word2002绘制流程图选修2-1:第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3双曲线探究与发现2.4抛物线探究与发现阅读与思考第三章空间向量与立体几何3.1空间向量及其运算阅读与思考向量概念的推广与应用3.2立体几何中的向量方法选修2-2:第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3 第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业选修3-1:第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4:第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1:第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2:第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5:第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7:第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例。
数学人教A必修1第三章函数的应用知识建构综合应用专题一一次函数模型的应用一次函数模型比较简单,求解也较为容易,一般我们可以用“问什么,设什么,列什么”这一方法来处理.应用一家报刊的推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖250份,但每天从报社买进报纸的份数都相同,问该推销员每天从报社买多少份报纸才能使每月所获得的利润最大?并计算每月最多能赚多少钱?提示:本题所给条件较多,数量关系比较复杂,可以列表分析.设每天从报社买进x份报纸(250≤x≤400).专题二在函数模型中,二次函数模型占有重要的地位.根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最大、最省等问题.应用某租赁公司出租同一型号的设备40套,当每套月租金为270元时,恰好全部租出.在此基础上,每套月租金每增加10元,就少租出1套设备,而未租出的设备每月需支付各种费用每套20元.设每套设备实际月租金为x元(x≥270),月收益为y元(月收益=设备租金收入-未租出设备费用).(1)求y与x之间的函数关系式.(2)当x为何值时,月收益最大?最大值是多少?提示:(1)利用“月收益=设备租金收入-未租出设备费用”列出函数关系式;(2)转化为求二次函数的最大值. 专题三 指数函数模型的应用实际问题中,有关人口增长、银行利率、细胞分裂等问题常可以用指数函数模型来表示;在建立函数模型时注意用区分、列举、归纳等方法来探求其内在的规律.应用 某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质20%. (1)写出水中杂质含量y 与过滤的次数x 之间的函数关系式. (2)要使水中杂质减少到原来的5%以下,则至少需要过滤几次? 提示:(1)利用归纳猜想的方法得函数关系式; (2)利用(1)的结论转化为解不等式. 专题四 对数函数模型的应用直接以对数函数为模型的应用问题不是很多.此类问题一般是先给出对数函数模型,再利用对数运算性质求解.应用 燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2O10,单位是m/s ,其中O 表示燕子的耗氧量.(1)燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少? 提示:(1)转化为当v =0时,求O 的值; (2)转化为当O =80时,求v 的值. 专题五 分段函数模型的应用分段函数与日常生活联系紧密,已成为高考考查的热点.对于分段函数,一要注意规范书写格式;二要注意各段的定义域的表示方法,对于中间的各个分点,一般是“一边闭,一边开”,以保证在各分点的“不重不漏”.应用 夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量相关.某人到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元;大于等于6斤小于等于9斤时,每斤0.5元;9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧,可这位聪明的顾客马上说,你不仅没少要,反而多收了我的钱.当顾客讲出理由后,店主只好承认了错误,照实收了钱.你知道顾客是怎样判断店主坑人了吗?提示:将所购西瓜的重量与所付款之间的关系式列出来,则问题就会迎刃而解.答案:专题一应用:解:设每天从报社买进x 份报纸时,每月获得的利润为y 元,则y =[(6x +750)+(0.8x -200)]-6x =0.8x +550(250≤x ≤400).∵该函数在[250,400]上是增函数, ∴当x =400时,y 取得最大值870,即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为870元. 专题二应用:解:(1)每套设备实际月租金为x 元(x ≥270)时,未租出的设备为x -27010套,则未租出的设备费用为x -27010×20元;租出的设备为40-x -27010套,则月租金总额为⎝⎛⎭⎫40-x -27010x 元.所以y =⎝⎛⎭⎫40-x -27010x -x -27010×20=-0.1x 2+65x +540,x ≥270.(2)由(1)得y =-0.1x 2+65x +540=-0.1(x -325)2+11 102.5,则当x =325时,y 取最大值为11 102.5,但当x =325时,租出的设备套数不是整数,故当x =320或x =330时,月收益最大,最大值为11 100元.专题三应用:解:(1)设刚开始水中杂质含量为1, 第1次过滤后,y =1-20%;第2次过滤后,y =(1-20%)(1-20%)=(1-20%)2; 第3次过滤后,y =(1-20%)2(1-20%)=(1-20%)3; …第x 次过滤后,y =(1-20%)x .故y =(1-20%)x =0.8x ,x ≥1,x ∈N .(2)由(1)得0.8x <5%,则x >log 0.80.05=lg 2+11-3lg 2≈13.4.即至少需要过滤14次.专题四应用:解:(1)由题意知,当燕子静止时,v =0, 可得0=5log 2O10.解得O =10.所以燕子静止时的耗氧量是10个单位. (2)将耗氧量O =80代入所给公式,得 v =5log 28010=5log 28=15.所以当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s. 专题五应用:解:设这位顾客所购西瓜重x 斤,应付款y 元, 则y 与x 之间的函数关系为y =⎩⎪⎨⎪⎧0.4x ,0<x <6,0.5x ,6≤x ≤9,0.6x ,x >9.当0<x <6时,0<y <2.4;当6≤x ≤9时,3≤y ≤4.5;当x >9时,y >5.4.故所付款不可能是5.1元,所以店主坑人了. 真题放送1(2011·天津卷)对实数a 和b ,定义运算“”:ab =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)(x -1),x R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-1,1](2,+)B .(-2,-1](1,2]C .(-,-2)(1,2]D .[-2,-1] 2(2010·上海卷)若x 0是方程lg x +x =2的解,则x 0属于区间( ). A .(0,1) B .(1,1.25) C .(1.25,1.75) D .(1.75,2)3(2010·福建卷)函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为( ).A .3B .2C .1D .0 4(2010·浙江卷)已知x 0是函数f (x )=2x +11-x的一个零点.若x 1(1,x 0),x 2(x 0,+),则( ).A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 5(2010·湖北卷)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.答案:1.B 由题意得,f (x )=(x 2-2)⊗(x -1)=⎩⎪⎨⎪⎧x 2-2,(x 2-2)-(x -1)≤1,x -1,(x 2-2)-(x -1)>1, 即f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2,在同一坐标系内画出函数y =f (x )与y =c 的大致图象,如图所示,结合图象可知,当c ∈(-2,-1]∪(1,2]时,两个函数的图象有两个不同交点,从而方程f (x )-c =0有两个不同的根,也就是y =f (x )-c 与x 轴有两个不同交点.2.D 令f (x )=lg x +x -2,则 f (1)=lg 1+1-2=-1<0, f (2)=lg 2+2-2=lg 2>0,f (1.5)=lg 1.5+1.5-2=lg 1.5-0.5=lg 1.5-lg 100.5=lg 1.510<lg 1=0,f (1.75)=lg 1.75+1.75-2=lg 1.75-0.25 =lg1.75410<lg 1=0,∴f (1.75)·f (2)<0,∴x 0∈(1.75,2).3.B 由f (x )=0,得⎩⎪⎨⎪⎧ x ≤0,x 2+2x -3=0或⎩⎪⎨⎪⎧x >0,-2+ln x =0,解得x =-3或x =e 2,故零点个数为2. 4.B 设y 1=2x ,y 2=1x -1,在同一坐标系中作出其图象,如图,在(1,x 0)内y 2=1x -1的图象在y 1=2x 图象的上方,即1x 1-1>2x 1,所以2x 1+11-x 1<0,即f (x 1)<0,同理f (x 2)>0.5.解:(1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5.由C (0)=8,得k =40,因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10).(2)易证当0≤x <5时,f (x )为减函数,当5≤x ≤10时,f (x )为增函数.故当x =5时,f (x )取最小值,最小值为f (5)=6×5+80015+5=70.当隔热层修建5 cm 厚时,总费用达到最小值,最小值为70万元.。
§1.3 函数的综合问题及应用考点核心整合函数知识几乎渗透到中学数学的各个环节,与其他知识互相渗透、相互融合.函数这一章应用的广泛性、解法的多样性和思维的创造性构成了本课时的重点.(1)函数与不等式的综合.(2)函数与方程的综合.(3)函数与数列的综合.(4)利用导数研究函数的单调性、最值等.在解决函数综合问题时,要认真分析,处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是要注意数学思想方法的运用.这部分内容在高考中多以解答题形式出现,有一定的难度.链接·思考想一想:常用的数学思想方法有哪些?在解决函数的综合问题时要注意什么?考题名师诠释【例1】(2006湖北高考,4理)设f(x)=lg x x -+22,则f(2x )+f(x 2)的定义域为( ) A.(-4,0)∪(0,4) B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4) 解析:∵x x -+22>0,∴-2<x<2,∴-2<2x <2且-2<x 2<2.取x=1,则x2=2不合题意(舍去), 故排除A ,取x=2,满足题意,排除C 、D ,故选B.答案:B【例2】(2006福建高考,21文)已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在自然数m ,使得方程f(x)+x37=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出所有m 的值;若不存在,说明理由.解:(1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x-5)(a>0),∴f(x)在区间[-1,4]上的最大值是f(-1)=6a.由已知,得6a=12,∴a=2,∴f(x)=2x(x-5)=2x 2-10x(x ∈R ).(2)方程f(x)+x37=0等价于方程2x 3-10x 2+37=0. 设h(x)=2x 3-10x 2+37,则h ′(x)=6x 2-20x=2x(3x-10).当x ∈(0,310)时,h ′(x)<0,h(x)是减函数; 当x ∈(310,+∞)时,h ′(x)>0,h(x)是增函数. ∵h(3)=1>0,h(310)=-271<0,h(4)=5>0,∴方程h(x)=0在区间(3,310),(310,4)内分别有唯一实数根,而在区间(0,3),(4,+∞)内没有实数根,所以存在唯一的自然数m=3,使得方程f(x)+x 37=0在区间(m,m+1)内有且只有两个不同的实数根.评述:本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数的性质的方法,考查函数与方程、数形结合等数学思想方法和分析问题、解决问题的能力.【例3】 设平面内两向量a 与b 互相垂直,且|a |=2,|b |=1,又k 与t 是两个不同时为0的实数.(1)若x=a +(t 2-3)b 与y=-k a +t b 垂直,求k 关于t 的函数关系式k=f(t);(2)试确定k=f(t)的单调区间.解:(1)由题意,a ⊥b ,∴a ·b =0.又x ⊥y ,∴x ·y=0,即[a +(t 2-3)b ]·(-k a +t b )=0.∴-k a 2+[t-k(t 2-3)]a ·b +t(t 2-3)b 2=0.由于a 2=|a |2=4,b 2=|b |2=1,∴4k=t(t 2-3),即k=41t(t 2-3)=41(t 3-3t). (2)设t 1<t 2,则f(t 1)-f(t 2)=41[(t 13-t 23)-3(t 1-t 2)]=41(t 1-t 2)(t 12+t 22+t 1t 2-3). ①当t 1<t 2≤-1时,t 1t 2>1,t 12>1,t 22≥1,即t 12+t 22+t 1t 2-3>0,而t 1-t 2<0,故f(t 1)<f(t 2),即(-∞,-1]为k=f(t)的单调增区间.②当1≤t 1<t 2时,t 1t 2>1,t 12≥1,t 22>1,即t 12+t 22+t 1t 2-3>0,而t 1-t 2<0,故f(t 1)<f(t 2),即[1,+∞)为k=f(t)的单调增区间.③当-1<t 1<t 2<1时,t 12<1,t 22<1,t 1t 2<1,则t 12+t 22+t 1t 2-3<0,而t 1-t 2<0,∴f(t 1)>f(t 2),即(-1,1)为k=f(t)的单调减区间.综合①②③,知k=f(t)的单调减区间为(-1,1),单调增区间为(-∞,-1],[1,+∞). 链接·思考此题(2)若用导数解又怎样?你又得到如何启示?另解:(2)由(1)知k=f(t)=41(t 3-3t),则f ′(t)=43(t 2-1). 令f ′(t)=0,得t=±1.当t<-1时,f ′(t)>0;当-1<t<1时,f ′(t)<0;当t>1时,f ′(t)>0.故f(t)的增区间为(-∞,-1],[1,+∞),减区间为(-1,1).评述:(1)两向量x 、y 垂直的充要条件为x ·y =0,通过此式和已知条件求出函数的解析式,在函数和向量知识交汇处出题,设计新颖,此类问题应值得引起我们足够的重视.(2)求解和证明函数的单调区间(性),通常利用函数单调性的定义去解决.本题也可先求[0,+∞)内的单调区间,可利用函数是奇函数来解决.(3)如何找到分类的标准为±1,通常是令t 1=t 2=t ,由不等式3t 2-3≥0(或≤0)得到.(4)导数的应用之一是用来研究函数的单调性.此题用导数处理,显得轻松便捷.【例4】对于函数f(x),若存在x 0∈R ,使f(x 0)=x 0成立,则称x 0为f(x)的不动点,已知函数f(x)=ax 2+(b+1)x+(b-1)(a ≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若y=f(x)图象上A 、B 两点的横坐标是函数f(x)的不动点,且A 、B 两点关于直线y=kx+1212+a 对称,求b 的最小值.解:(1)当a=1,b=-2时,f(x)=x 2-x-3.由题意可知x=x 2-x-3,得x 1=-1,x 2=3.故当a=1,b=-2时,f(x)的两个不动点为-1、3.(2)因为f(x)=ax 2+(b+1)x+(b-1)(a ≠0)恒有两个不动点,所以x=ax 2+(b+1)x+(b-1),即ax 2+bx+(b-1)=0恒有两个相异的实数根,得Δ=b 2-4ab+4a>0(b ∈R )恒成立.于是Δ′=(4a)2-16a<0,解得 0<a<1.故当b ∈R ,f(x)恒有两个相异的不动点时,a 的取值范围为0<a<1.(3)由题意,A 、B 两点应在直线y=x 上,设A(x 1,x 1)、B(x 2,x 2),因为点A 、B 关于直线y=kx+1212+a 对称, 所以k=-1.设AB 的中点为M(x ′,y ′),因为x 1、x 2是方程ax 2+bx+(b-1)=0的两个根,所以,x ′=y ′=221x x +=-a b 2. 于是,由点M 在直线y=-x+1212+a 上,得-a b 2=a b 2+1212+a , 即b=-122+a a =-a a 121+.因为a>0,所以2a+a1≥22. 当且仅当2a=a 1,即a=22∈(0,1)时取等号. 故b ≥-221,得b 的最小值为-42. 评述:解决本题的关键是熟练掌握二次函数及其图象、一元二次方程和直线方程以及不等式的性质,同时要注意不变量思想的应用.【例5】(2006湖南高考,20理)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:(1-)(含污物物体质量污物质量)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为a(1≤a ≤3).设用x 单位质量的水初次清洗后的清洁度是18.0++x x (x>a-1),用y 单位质量的水第二次清洗后的清洁度是ay ac y ++,其中c(0.8<c<0.99)是该物体初次清洗后的清洁度.(1)分别求出方案甲以及c=0.95时方案乙的用水量,并比较哪一种方案用水量较少;(2)若采用方案乙,当a 为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论a 取不同数值时对最少总用水量多少的影响.解:(1)设方案甲与方案乙的用水量分别为x 与z,由题设有18.0++x x =0.99.解得x=19. 由c=0.95得方案乙初次用水量为3,第二次用水量y 满足方程ay a y ++95.0=0.99,解得y=4a ,故z=4a+3.即两种方案的用水量分别为19与4a+3.因为当1≤a ≤3时,x-z=4(4-a)>0,即x>z,故方案乙的用水量较少.(2)设初次与第二次清洗的用水量分别为x 与y ,类似(1)得 x=)1(545c c --,y=a(99-100c)(*). 于是x+y=)1(545c c --+a(99-100c) =)1(51c -+100a(1-c)-a-1. 当a 为定值时,x+y≥2)1(100)1(51c a c -⨯--a-1=-a+4a 5-1. 当且仅当)1(51c -=100a(1-c)时等号成立,此时c=1+a 5101(不合题意,舍去), 或c=1-a5101∈(0.8,0.99). 将c=1-a5101代入(*)式得x=2a 5-1>a-1,y=2a 5-a. 故c=1-a 5101时总用水量最少,此时第一次与第二次用水量分别为2a 5-1与2a 5-a ,最少总用水量T(a)=-a+4a 5-1.当1≤a ≤3时,T ′(a)=a 52-1>0,故T(a)是增函数(也可以用二次函数的单调性判断).这说明,随着a 的值的增加,最少总用水量增加.评述:主要考查函数的应用,函数的最值;考查分类讨论的思想,均值不等式,运算能力,逻辑思维能力,化归转化意识.。
高中数学目录必修一第一章1.1 会合与会合的表示方法1.1.1 会合的观点1.1.2 会合的表示方法第二章2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单一性2.1.4 函数的奇偶性2.1.5 用计算机作函数图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质与图像2.2.2 二次函数的性质与图像2.3 函数的应用( 1)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.4 函数的应用( 2)必修二第一章立体几何初步1.1 空间几何体1.1.1 组成空间几何体的基本元素1.1.2 棱柱棱锥棱台的构造特点1.1.3 圆柱圆锥圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱棱锥棱台和球的表面积1.1.7 柱锥台和球的体积1.2 点线面之间的地点关系1.2.1 平面的基天性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面分析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的观点与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的地点关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的地点关系2.3.4 圆与圆的地点关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点距离公式必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的观点1.1.2 程序框图1.1.3 算法的三种基本逻辑构造和框图表示1.2 基本算法语句1.2.1 赋值输入输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法事例第二章统计2.1 随机抽样2.1.1 简单的随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的采集2.2 用样本预计整体2.2.1 用样本的频次散布预计整体的散布2.2.2 用样本的数字特点预计整体的数字特点2.3 变量的有关性2.3.1 变量间的互相关系2.3.2 两个变量的线性有关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本领件空间3.1.3 频次与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用必修四第一章基本的初等函数(2)1.1 随意角的观点与弧度制1.1.1 角的观点的推行1.1.2 弧度制和弧度制与角度制的换算1.2 随意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 引诱公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的观点2.1.2 向量的加法2.1.3 向量的减法2.1.4 数乘向量2.1.5 向量共线的条件和轴上向量坐标运算2.2 向量的分解和向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数目积2.3.1 向量数目积的物理背景与定义2.3.2 向量数目积的运算律2.3.3 向量数目积的坐标运算与胸怀公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦余弦和正切3.3 三角函数的积化和差与和差化积必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n 项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实质应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面地区3.5.2 简单线性规划选修 2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联络词1.2.1 且与或1.2.2 非(否认)1.3 充足条件必需条件与命题的四种形式1.3.1 推出与充足条件必需条件1.3.2 命题的四种形式第二章圆锥曲线方程2.1 曲线方程2.1.1 曲线与方程的观点2.1.2 由曲线求它的方程由方程研究曲线性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与几何体3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数目积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其胸怀3.2.5 距离(选学)选修 2-2第一章导数及其应用1.1 导数1.1.1 函数的均匀变化率1.1.2 刹时速度与导数1.1.3 导数的几何1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法例1.3 导数的应用1.3.1 利用导数判断函数的单一性1.3.2 利用导数研究函数的极值1.3.3 导数的实质应用1.4 定积分与微积分的基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与剖析法2.2.2 反证法2.3 数学概括法2.3.1 数学概括法2.3.2 数学概括法应用举例第三章数系的扩大与复数3.1 数系的扩大与复数的观点3.1.1 实数系3.1.2 复数的观点3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法选修 2-3第一章计数原理1.1 基本计数原理1.2 摆列与组合1.2.1 摆列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 失散型随机变量及其散布列2.1.1 失散型随机变量2.1.2 失散型随机变量的散布列2.1.3 超几何散布2.2 条件概率与实践的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项散布2.3 随机变量的数字特点2.3.1 失散型随机变量的数学希望2.3.2 失散型随机变量的方差2.4 正态散布第三章统计事例3.1 独立性查验3.2 回归剖析选修 4-4第一章坐标系1.1 直角坐标系平面上的伸缩变换1.1.1 直角坐标系1.1.2 平面上的伸缩变换1.2 极坐标系1.2.1 平面上点的极坐标1.2.2 极坐标与直角坐标的关系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.4.1 圆心在极轴上且过极点的圆1.4.2 圆心在点( a,∏ /2 )处且过极点的圆1.5 柱坐标系和球坐标系1.5.1 柱坐标系1.5.2 球坐标系第二章参数方程2.1 曲线的参数方程2.1.1 抛射体的运动2.1.2 曲线的参数方程2.2 直线与圆的参数方程2.2.1 直线的参数方程2.2.2 圆的参数方程2.3 圆锥曲线的参数方程2.3.1 椭圆的参数方程2.3.2 双曲线的参数方程2.3.3 抛物线的参数方程2.4 一些常有曲线的参数方程2.4.1 摆线的参数方程2.4.2 圆的渐开线的参数方程。
3.4 函数的应用(一)必备知识基础练知识点一用一次函数模型解决实际问题1.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x 的函数关系式为( )A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000)D.y=0.1x+1 200(0≤x≤4 000)2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A.310元 B.300元C.390元 D.280元知识点二用二次函数模型解决实际问题3.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x 和L2=2x(其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( ) A.90万元 B.60万元C.120万元 D.120.25万元4.用长度为24 m的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为______m.知识点三用幂函数、分段函数模型解决实际问题5.一辆汽车在某段路程中的行驶速度v与时间t的关系图象如图所示,则当t=2时,汽车已行驶的路程为( )A .100 kmB .125 kmC .150 kmD .225 km6.某药厂研制出一种新型药剂,投放市场后其广告投入x (万元)与药品利润y (万元)存在的关系为y =x α(α为常数),其中x 不超过5万元,已知去年投入广告费用为3万元时,药品利润为27万元,若今年广告费用投入5万元,预计今年药品利润为________万元.关键能力综合练 一、选择题1.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.要使租赁公司的月收益最大,则每辆车的月租金应定为( )A .4 050元B .4 000元C .4 100元D .4 150元2.某厂生产中所需一些配件可以外购,也可以自己生产.如果外购,每个配件的价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点(即生产多少件以上自产合算)是( )A .1 000件B .1 200件C .1 400件D .1 600件3.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与费s (元)的函数关系如图所示,当通话150分钟时,这两种方式费相差( )A .10元B .20元C .30元 D.403元4.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m (件)与售价x (元)满足一次函数:m =162-3x ,若要每天获得最大的销售利润,每件商品的售价应定为( )A .30元B .42元C .54元D .越高越好5.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x ,1≤x ≤10,x ∈N ,2x +10,10<x <100,x ∈N ,1.5x ,x ≥100,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )A .15B .40C .25D .1306.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0时到6时,该水池的蓄水量如图丙所示.给出以下3个论断: ①0点到3点只进水不出水; ②3点到4点不进水只出水; ③4点到6点不进水不出水. 则一定正确的是( ) A .① B.①② C .①③ D.①②③ 二、填空题7.稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4 000元,定额减除费用800元;每次收入在4 000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4 000元的:应纳税额=(每次收入额-800)×20%×(1-30%); (2)每次收入在4 000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%). 已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为________元. 8.某市出租车收费标准如下:起步价为8元,起步里程为3千米(不超过3千米按起步价付费);超过3千米但不超过8千米时,超过部分按每千米2.15元收费;超过8千米时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.若某人乘坐出租车行驶了5.6千米,则需付车费________元,若某人乘坐一次出租车付费22.6元,则此出租车行驶了________千米.9.(探究题)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是______(单位:元).三、解答题10.某种商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为:P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30.(t ∈N *)设该商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大是第几天?学科素养升级练1.(多选题)生活经验告诉我们,当把水注进容器(设单位时间内进水量相同),水的高度会随着时间的变化而变化,则下列选项中容器与图象匹配正确的是( )A .(A)—(3)B .(B)—(1)C .(C)—(4)D .(D)—(2)2.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-303.(学科素养—数据分析)医院通过撒某种药物对病房进行消毒.已知开始撒放这种药物时,浓度激增,中间有一段时间,药物的浓度保持在一个理想状态,随后药物浓度开始下降.若撒放药物后3小时内的浓度变化可用下面的函数表示,其中x 表示时间(单位:小时),f (x )表示药物的浓度:f (x )=⎩⎪⎨⎪⎧-x 2+4x +400<x ≤1,431<x ≤2,-3x +482<x ≤3.(1)撒放药物多少小时后,药物的浓度最高?能维持多长时间?(2)若需要药物浓度在41.75以上消毒1.5小时,那么在撒放药物后,能否达到消毒要求?并简要说明理由.3.4 函数的应用(一)必备知识基础练1.解析:由题意得y =0.3(4 000-x )+0.2x =-0.1x +1 200.(0≤x ≤4 000) 答案:C2.解析:由图象知,该一次函数过(1,800),(2,1 300),可求得解析式y =500x +300(x ≥0),当x =0时,y =300.答案:B3.解析:设公司在甲地销售x 台,则在乙地销售(15-x )台,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎪⎫x -1922+30+1924,∴当x =9或10时,L 最大为120万元.答案:C4.解析:设隔墙的长为x m ,矩形面积为S m 2,则S =x ·24-4x 2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,0<x <6,所以当x =3时,S 有最大值为18. 答案:35.解析:t =2时,汽车行驶的路为s =50×0.5+75×1+100×0.5=25+75+50=150(km).答案:C6.解析:由已知投入广告费用为3万元时,药品利润为27万元,代入y =x α中,即3α=27,解得α=3,故函数解析式为y =x 3,所以当x =5时,y =125.答案:125关键能力综合练1.解析:设每辆车的月租金为x (x >3 000)元, 则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -3 00050(x -150)-x -3 00050×50, 整理得y =-x 250+162x -21 000=-150(x -4 050)2+307 050.∴当x =4 050时,y 取最大值为307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大为307 050元. 答案:A2.解析:设生产x 件时自产合算,由题意得1.1x ≥800+0.6x ,解得x ≥1600,故选D. 答案:D3.解析:设A 种方式对应的函数解析式为s =k 1t +20.B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15.t =150时,150k 2-150k 1-20=150×15-20=10.∴A 正确. 答案:A4.解析:设当每件商品的售价为x 元时,每天获得的销售利润为y 元. 由题意得,y =m (x -30)=(x -30)(162-3x )(30≤x ≤54). 上式配方得y =-3(x -42)2+432. 所以当x =42时,利润最大. 答案:B5.解析:若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.答案:C6.解析:由甲乙两图知,出水的速度是进水的2倍,所以0点到3点只进水不出水,3点到4点水量减少,则一个进水口进水,另一个关闭,出水口出水;4点到6点水量不变,可能是不进水不出水或两个进水口进水,一个出水口出水,所以只有①正确,故选A.答案:A7.解析:当此人收入为4 000元时(扣税前),应纳税(4 000-800)×20%×(1-30%)=448>280,可知此人收入不超过4000元(扣税前),则设此人应得稿费为x 元(扣税前),则(x -800)×20%×(1-30%)=280,解得x =2 800.故正确答案为2 800. 答案:2 8008.解析:设出租车行驶x 千米时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15x -3+1,3<x ≤8,8+2.15×5+2.85x -8+1,x >8,当x =5.6时,y =8+2.15×2.6+1=14.59(元). 由y =22.6,知x >8,由8+2.15×5+2.85(x -8)+1=22.6,解得x =9. 答案:14.59 99.解析:设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎪⎫2x +2×4x =80+20⎝ ⎛⎭⎪⎫x +4x ≥80+20×2x ·4x=160⎝ ⎛⎭⎪⎫当且仅当x =4x,即x =2时取等号.所以该容器的最低总造价为160元. 答案:16010.解析:设日销售金额为y (元),则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t 2-140t +4 000,25≤t ≤30.(t ∈N *)①当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900(元).②当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125(元). 结合①②得y max =1 125(元).因此,这种商品日销售额的最大值为1 125元,且在第25天时日销售金额达到最大.学科素养升级练1.解析:(A)容器下粗上细最上方为柱形,水高变化为逐渐变快再匀速,故(A)应匹配(4),(B)容器下方为球形上方为柱形,水高变化为先逐渐变慢再逐渐变快再匀速,故(B)应匹配(1);(C),(D)容器都是柱形的,水高变化的速度都应是不变的,但(C)容器细,(D)容器粗,故(C)容器水高变化快,(D)容器慢.(C)应匹配(3),(D)应匹配(2),故正确匹配的是BD.答案:BD2.解析:设生产x 吨产品全部卖出,获利润为y 元, 则y =xQ -P =x ⎝ ⎛⎭⎪⎫a +x b -⎝ ⎛⎭⎪⎫1 000+5x +110x 2=⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.所以⎩⎨⎧-a -52⎝ ⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.答案:A3.解析:(1)当0<x ≤1时,f (x )=-x 2+4x +40=-(x -2)2+44,∴f (x )在(0,1]上是增函数,其最大值为f (1)=43;f (x )在(2,3]上单调递减,故当2<x ≤3时, f (x )<-3×2+48=42.因此,撒放药物1小时后,药物的浓度最高为43,并维持1小时.(2)当0<x ≤1时,令f (x )=41.75,即-(x -2)2+44=41.75,解得x =3.5(舍去)或x =0.5;当2<x ≤3时,令f (x )=41.75,即-3x +48=41.75,解得x ≈2.08. 因此药物浓度在41.75以上的时间为2.08-0.5=1.58小时>1.5小时, ∴撒放药物后,能够达到消毒要求.。
目录函数的应用(Ⅰ) (1)【学习目标】 (1)【要点梳理】 (1)【典型例题】 (3)【巩固练习】 (11)函数的应用(Ⅰ)撰稿:柏兴增 审稿:柏兴增【学习目标】1.通过实例理解有关一次函数和二次函数的有关问题,会解数学模型为一次函数和二次函数的有关应用问题.2.学会独立思考,提高分析问题、解决问题的能力.【要点梳理】要点一:一次函数模型的应用1.一次函数的一般形式:(0)y kx b k =+≠,其定义域是R ,值域是R .要点二:二次函数模型的应用1.二次函数的一般形式是2(0)y ax bx c a =++≠,其定义域为R . 2.若0a >,则二次函数2y ax bx c =++在2b x a =-时有最小值244ac b a -; 若0a <,则二次函数2y ax bx c =++在2b x a =-时有最大值244ac b a -.3.建立二次函数模型解应用题的步骤和建立一次函数模型解应用题的步骤一样:读题,解题,建模,解答.要点三:数学建模1.数学建模的过程2.数学建模的步骤:第一步:阅读理解,认真审题读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息.第二步:引进数学符号,建立数学模型设自变量为x,函数为y,并用x表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果.第四步:再转译为具体问题作出解答.3.函数模型的综合应用函数的应用题是利用函数模型解决实际问题。
在数学建模的过程中有若干个有着明显区别的处理阶段:第一阶段,对于面临的实际问题,我们首先需要认真审题,熟悉实际问题的背景知识,明确研究的对象和研究的目的。
3.1函数的概念及其表示第1课时函数的概念(一)教材要点(1)非空性:函数定义中的集合A,B必须是两个非空实数集.(2)任意性:即定义域中的每一个元素都有函数值.(3)单值性:每一个自变量有唯一的函数值与之对应.(4)方向性:函数是一个从定义域到值域的对应关系,如果改变这个对应方向,那么新的对应所确定的关系就不一定是函数关系.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)函数的定义域和值域一定是无限集合.()(2)任何两个集合之间都可以建立函数关系.()(3)函数的定义域必须是数集,值域可以为其他集合.()(4)在函数的定义中,集合B是函数的值域.()2.下列可作为函数y=f(x)的图象的是()3.函数y =√x−1的定义域是( )A .{x |x ≥1}B .{x |x ≤1}C .{x |x >1}D .{x |x <1}4.若f (x )=x -√x +1,则f (3)=________.题型1 函数关系的判断例1 (1)下列从集合A 到集合B 的对应关系f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A ={平行四边形},B =R ,f :求A 中平行四边形的面积 (2)设A ={x |0≤x ≤2},B ={x |1≤x ≤2},能表示从集合A 到集合B 的函数关系的是( )方法归纳(1)判断所给对应是否为函数的方法 ①首先观察两个数集A ,B 是否非空;②其次验证对应关系下,集合A 中x 的任意性,集合B 中y 的唯一性,既不能没有数y 对应数x ,也不能有多于一个的数y 对应x .(2)根据图形判断对应是否为函数的方法步骤 ①任取一条垂直于x 轴的直线l ; ②在定义域内平行移动直线l ;③若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.跟踪训练1 (1)(多选)已知集合M ={-1,1,2,4},N ={1,2,4},给出下列四个对应关系:①y =x 2,②y =x +1,③y =x -1,④y =|x |.其中不能构成从M 到N 的函数的是( )A .①B .②C .③D .④(2)图中所给图象是函数图象的个数为( )A .1B .2C .3D .4 题型2 求函数值例2 设f (x )=2x 2+2,g (x )=1x+2,(1)求f (2),f (a +3),g (a )+g (0)(a ≠-2);(2)求g (f (2)),f (g (2)).方法归纳 函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 跟踪训练2 已知函数f (x )=x+1x+2.(1)求f (2); (2)求f (f (1)).题型3 求函数的定义域 角度1 已知解析式求定义域例3 (1)函数f (x )=√1−x +1x+3的定义域为( ) A .{x |-3<x ≤0} B .{x |-3<x ≤1}C .{x |x <-3或-3<x ≤0}D .{x |x <-3或-3<x ≤1}(2)函数f (x )=(x −12)0+√x +2的定义域为( ) A .{x|x ≥−2且x ≠12} B .{x |x ≥-2}C .{x|x >−2且x ≠12}D .{x |x >-2}角度2 实际问题中函数的定义域 例4如图所示,用长为1的铁丝做一个下面为矩形、上面为半圆的框架,若半圆的半径为x ,求此框架围成的面积y 与x 的函数解析式,并写出它的定义域.方法归纳求给出解析式的函数的定义域的基本步骤常见函数的定义域(1)f (x )为整式型函数时,定义域为R ;(2)由于分式的分母不为0,所以当f (x )为分式型函数时,定义域为使分母不为零的实数的集合;(3)由于偶次根式的被开方数非负,所以当f (x )为二次根式型函数时,定义域为使被开方数非负的实数的集合;(4)函数y =x 0中的x 不为0;(5)如果函数是由一些简单函数通过四则运算构成的,那么它的定义域是各个简单函数定义域的交集.跟踪训练3 (1)函数f (x )=√−x2x 2−3x−2的定义域为( ) A .{x |x ≤0} B .{x|x ≤−12}C .{x|x ≤0且x ≠−12} D .{x|−12<x ≤0}(2)函数y =√x+3x−2的定义域为________.易错辨析 忽略参数取值范围致误例5 若函数f (x )=√mx 2−mx+2的定义域为R ,则实数m 的取值范围是________. 解析:函数f (x )=√mx 2−mx+2的定义域为R ,即mx 2-mx +2>0恒成立. 当m =0时,易知成立,当m ≠0时,需满足{m >0,Δ=m 2−8m <0,∴0<m <8, 综上所述,0≤m <8. 答案:0≤m <8课堂十分钟1.下列各图中,一定不是函数图象的是( )2.函数f (x )=√1−3xx的定义域为( )A .{x|x ≤13} B .{x|x <13} C .{x|0<x ≤13} D .{x|x ≤13且x ≠0}3.若A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )4.已知函数f (x )=11+x ,又知f (t )=6,则t =________. 5.已知函数f (x )=1x+1+√x +2. (1)求f (x )的定义域;(2)若a >0,求f (a -1)的值.第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念第1课时函数的概念(一)新知初探·课前预习要点实数集任意一个数x唯一x[基础自测]1.答案:(1)×(2)×(3)×(4)×2.答案:D3.答案:C4.答案:1题型探究·课堂解透例1解析:(1)对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.(2)A中,函数的值域为{y|0≤y≤2},不满足条件;B中,函数的值域为{y|0≤y≤2},不满足条件;C中,在0≤x<2内,一个x有两个y与之对应,不满足条件;D中,每个x 都满足函数的性质,是函数关系.故选D.答案:(1)A(2)D跟踪训练1解析:(1)①中,当x=4时,y=42=16∉N,故不能构成函数.②中,当x =-1时,y=-1+1=0∉N,故不能构成函数;③中,当x=-1时,y=-1-1=-2∉N,故不能构成函数;④中,当x=±1时,y=|x|=1∈N,当x=2时,y=|x|=2∈N,当x=4时,y=|x|=4∈N,故构成函数.故选ABC.(2)根据函数的概念可知③④是函数的图象.故选B.答案:(1)ABC(2)B例2解析:(1)f(2)=2×22+2=10;f(a+3)=2(a+3)2+2=2a2+12a+20;g (a )+g (0)=1a+2+12;(2)g (f (2))=g (10)=110+2=112;f (g (2))=f (14)=2×(14)2+2=178.跟踪训练2 解析:(1)f (2)=2+12+2=34;(2)∵f (1)=1+11+2=23; ∴f (f (1))=f (23)=23+123+2=58.例3 解析:(1)要使函数f (x )有意义, 则{1−x ≥0,x +3≠0,解得x ≤1且x ≠-3,所以函数f (x )的定义域为{x |x ≤1且x ≠-3},故选D. (2)要使函数f (x )有意义,则{x ≠12,x +2≥0,解得x ≥-2且x ≠12,故选A.答案:(1)D (2)A例4 解析:由题意知,AB =2x ,CD ̂的长为πx , 于是AD =1−2x−πx 2,∴y =2x ·1−2x−πx2+πx 22,即y =-π+42x 2+x .由{2x >0,1−2x−πx2>0,解得0<x <1π+2,∴所求函数的定义域为(0,1π+2).故所求的函数为 y =-π+42x 2+x (0<x <1π+2).跟踪训练3 解析:(1)要使函数f (x )有意义, 则{−x ≥0,2x 2−3x −2≠0,解得x ≤0且x ≠-12,故选C.(2)∵函数解析式为y =√x+3x−2, ∴x +3≥0且x ≠2,∴x ≥-3且x ≠2.答案:(1)C (2){x |x ≥-3且x ≠2}[课堂十分钟]1.答案:A 2.答案:D 3.答案:B4.答案:-565.解析:(1)由{x +1≠0x +2≥0,解得x ≥-2且x ≠-1,故f (x )的定义域为{x |x ≥−2且x ≠−1}; (2)若a >0,f (a -1)=1a−1+1+√a −1+2=1a+√a +1.。
第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数(0)y kx k =≠仅有一个零点。
②反比例函数(0)k y k x=≠没有零点。
③一次函数(0)y kx b k =+≠仅有一个零点。
④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。
⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是函数()f x 零点的个数。
2.3 函数的应用(Ⅰ)
1.直线型的函数模型
我们学过的正比例函数、一次函数等都是直线型的,它们在每个区间的变化率都一样. 解题时常设为:常数函数型:y =C (C ∈R ,C 为常数),正比例型:y =kx (k ≠0),一次函数型:y =kx +b (k ≠0).
当k >0时后两者都是增长型函数,k 的值越大增速越快.
如果一个问题中有两个变量,且这两个变量之间存在一次函数关系,则可以用一次函数模型来解决.
【例1】据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元.若普通车存车量为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )
A .y =0.3x +800(0≤x ≤2 000)
B .y =0.3x +1 600(0≤x ≤2 000)
C .y =-0.3x +800(0≤x ≤2 000)
D .y =-0.3x +1 600(0≤x ≤2 000)
解析:由题意可知总收入y (元)关于x (辆次)的函数关系式为y =0.5x +(2 000-x )×0.8=-0.3x +1 600,0≤x ≤2 000.
答案:D
2.二次函数模型的建立
投物、射击、喷泉、灌溉等相应物体运动的轨迹有某种规律,或者变量的变化具有二次函数关系时,可以通过直角坐标系由实际问题建立抛物线的数学模型,利用图象的性质解答.
【例2】某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8 m ,两侧距地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示,则厂门的高为(水泥建筑物厚度忽略不计,精确到0.1 m)( )
A .6.9 m
B .7.0 m
C .7.1 m
D .6.8 m
解析:可建立坐标系,设出抛物线的解析式为y =a (x 2-16)(a <0).又点(3,3)在抛物线上,∴3=a (9-16).∴3=7a -.∴23=(16)7y x --.令x =0,得48= 6.97
y ≈. 答案:A
3.分段函数模型的建立
有些实际问题,在事物的某个阶段对应的变化规律不尽相同,此时我们可以选择利用分段函数模型来刻画它,由于分段函数在不同的区间中具有不同的解析式,因此分段函数在研究条件变化的实际问题中,或者在某一特定条件下的实际问题中具有广泛的应用.
【例3】已知A ,B 两地相距150 km.某人开汽车以每小时60 km 的速度从A 地到达B 地,在B 地停留1 h 后再以每小时50 km 的速度返回A 地.把汽车离开A 地的距离x 表示为时间t 的函数表达式是( )
A .x =60t
B .x =60t +50t
C .60,0 2.5,=15050,2.5 3.5
t t x t t ≤≤⎧⎨-<≤⎩ D .60,=150,15050( 3.5),t x t ⎧⎪⎨⎪--⎩
0 2.5,2.5 3.5,3.5 6.5t t t ≤≤<≤<≤
解析:如图,汽车离开A 地的距离x (km)与时间t (h)之间的关系式是
60,=150,15050( 3.5),t x t ⎧⎪⎨⎪--⎩
0 2.5,2.5 3.5,3.5 6.5.t t t ≤≤<≤<≤
答案:D
析规律 对分段函数模型的理解
在现实生活中有很多问题都是用分段函数表示的,分段函数每一段自变量变化所遵循的规律不同.在应用时,可先将其当做几个问题,将各段的变化规律分别找出来,再将其合到一起.还要注意各段变量的范围,特别是端点值.
4.一次函数模型的应用
在实际生活中,普遍存在着最优化问题——最佳投资,最小成本等,这些常常可归结为函数的最值问题.对于与一次函数有关的最值问题通常借助于一次函数的单调性来处理.
例如:某电脑公司在甲、乙两地各有一个分公司,甲分公司现有电脑6台,乙分公司有同一型号的电脑12台.现A 地某单位向该公司购买该型号的电脑10台,B 地某单位向该公司购买该型号的电脑8台.已知甲地运往A ,B 两地每台电脑的运费分别是40元和30元,乙地运往A ,B 两地每台电脑的运费分别是80元和50元.
(1)设甲地调运x 台至B 地,该公司运往A 和B 两地的总运费为y 元,求y 关于x 的函数关系式;
(2)若总运费不超过1 000元,问能有几种调运方案?
解:(1)设甲地调运x 台到B 地,则剩下(6-x )台电脑调运到A 地;乙地应调运(8-x )台电脑至B 地,运往A 地10-(6-x )=(x +4)台电脑(0≤x ≤6,x ∈N ),
则总运费y =30x +40(6-x )+50(8-x )+80(x +4)=20x +960,
∴y =20x +960(x ∈N ,且0≤x ≤6).
(2)若使y ≤1 000,即20x +960≤1 000,得x ≤2.又0≤x ≤6,x ∈N ,
∴0≤x ≤2,x ∈N .
∴x =0,1,2,即能有3种调运方案.
【例4-1】某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW·h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW·h.对于一个平均每月用电量为200 kW·h 的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为多少kW·h?
分析:先求出原来用电的费用,再设出峰时段的用电量建立不等式求解.
解:原来电费y 1=0.52×200=104(元).
设峰时段用电量为x kW·h ,电费为y ,谷时段用电量为(200-x ) kW·h.则y =x ×0.55+
(200-x )×0.35≤(1-10%)y 1,
即0.55x +70-0.35x ≤93.6,则0.2x ≤23.6.所以x ≤118,
即这个家庭每月在峰时段的平均用电量至多为118 kW·h.
【例4-2】一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
分析:本题所给条件较多,数量关系比较复杂,可以列表分析.设每天从报社买进x 份(250≤x ≤400
解:则y =[(6x +750)+(0.8x -200)]-6x
=0.8x +550(250≤x ≤400,x ∈N +).
∵y 在x ∈[250,400]上是一次函数,
∴当x =400时,y 取得最大值870,
即每天从报社买进400份时,每月获得的利润最大,最大利润为870元.
5.二次函数模型的应用
在实际生活中,有很多最优化问题可以通过建立二次函数模型,并借助于二次函数的图象和性质加以解决,其解题的关键是列出二次函数解析式,转化为求二次函数的最值问题.例如:
某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销根据题表,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x 元后,日均销售利润为y 元,而在此情况下的日均销售量就为:480-40(x -1)=520-40x (桶).由
于x >0,且520-40x >0,即0<x <13,于是可得y =(520-40x )·x -200=-40x 2+520x -
200=-40(x -6.5)2+1 490(0<x <13).易知,当x =6.5时,y 有最大值.所以,只需将销售
单价定为11.5元,就可获得最大的利润,最大利润为1 490元.
【例5】某军工企业生产一种精密电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
()21400,0400,=280000,400,
x x x R x x ⎧-≤≤⎪⎨⎪>⎩ 其中x 是仪器的月产量.
(1)将利润表示为月产量的函数.
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)
分析:(1)由于总收益=总成本+利润,则利润=总收益-总成本,总收益是R (x ),总成本=固定成本+可变成本=20 000+100x ,因此利润=R (x )-(20 000+100x );(2)由于R (x )是分段函数,则利润关于月产量也是分段函数,求出各“段”上的最大值,在最大值中取最大的一个值就是最大利润.
解:(1)设月产量为x 台,则总成本为20 000+100x ,从而利润
2130020000,0400,()=260000100,400.
x x x f x x x ⎧-+-≤≤⎪⎨⎪->⎩
(2)当0≤x ≤400时,f (x )=-12
(x -300)2+25 000,所以当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数,
所以f (x )<60 000-100×400=20 000<25 000.所以当x =300时,有最大值25 000,即当月产量为300台时,公司所获利润最大,最大利润是25 000元.
点技巧 准确建立函数模型的方法
分析明确题目条件及解题目标,并围绕解题目标寻找数量关系是解应用题建立函数模型的重要方法.。