y=f(x)在区y间(a, b)内有且只有一个零点.
A
(×) yy AA
B
Oa
b x
b
OO aa
b xx
B
B
【探究三】 判断函数的零点、方程的根所在的区间
例2 函数 y 2x x 的零点所在的区间( B )
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
学以致用:
试判断方程 x3 2x 在区间[1,2] 内是否有实数根.
点. 2、函数零点存在性定理
如果函数y=f(x)在区间[a, b]上的图象是连续不断的一条曲线,并且 有f(a)·f(b)<0,那么,函数y=f(x)在区间(a, b)内有零点.
即存在c∈(a, b) ,使得f(c)=0,这个c也就是方程f(x)=0的根.
3、求函数的零点、方程的根的方法 直接法 利用零点存在性定理 图像法
作业布置
解析:令f (x) x3 2x , 函数f (x) x3 2x的图像在区间[1,2]上是连续曲线, 且f (1) 1 2 1 0, f (2) 8 4 4 0, f (1) f (2) 0,由零点存在性定理知, 函数f (x) x3 2x 在区间[1,2]内有零点 即方程x3 2x 在区间[1,2]内有实数根.
函
y
yy
yy
y
数
2
5
的
1 方程f (x)2 0有实数根 4
-1 0 1 2 3 x
1
3
图 象
x 0-1
1 -2
-3 -4
x2 函x 数-1 0y0x11、f (2xx2)的xx 图像-1 与0120 x1 轴2 有3 xx交点
方方程程的的实根数根 x1=-x11、,xx22=3