2019版一轮优化探究理数练习:第九章 第六节 椭 圆 含解析
- 格式:doc
- 大小:122.50 KB
- 文档页数:7
一、填空题.设是椭圆+=上的点.若、是椭圆的两个焦点,则+等于.解析:由题意知=,∴+==.答案:.已知椭圆的短轴长为,离心率为,则椭圆的焦点到长轴的一个端点的距离为.解析:由题意可知(\\(=,,()=(),=+,))且>,>,>,解得=,=,=.∴椭圆的焦点到长轴的一个端点的距离为+=或-=-=.答案:或.“>>”是“方程+=表示焦点在轴上的椭圆”的条件.解析:把椭圆方程化成+=.若>>,则>>.所以椭圆的焦点在轴上.反之,若椭圆的焦点在轴上,则>>即有>>.故为充要条件.答案:充要.已知焦点在轴上的椭圆的离心率为,且它的长轴长等于圆:+--=的半径,则椭圆的标准方程是.解析:由+--=,知==⇒=.又==,=,则=-=.答案:+=.若椭圆上存在点,使得点到两个焦点的距离之比为∶,则此椭圆离心率的取值范围是.解析:设到两个焦点的距离分别为,,根据椭圆定义可知:=,又结合椭圆的性质可知.椭圆上的点到两个焦点距离之差的最大值为,即≤,∴≤,即≥.答案:[,).已知,分别是椭圆+=的左、右焦点,是椭圆上的任意一点,则的取值范围是.解析:显然当=时,=.由椭圆定义得=-,从而==.而-≤≤+,所以≤≤,故≤+.综上所述,∈[+].答案:[+].已知椭圆的中心在原点,焦点在轴上,若其离心率为,焦距为,则该椭圆的方程是.解析:由题意知,=,=,∴===,∴=,从而=-=,∴方程是+=.答案:+=.已知是椭圆+=上的动点,,是椭圆的两个焦点,则·的取值范围为.解析:解法一(利用三角代换)设椭圆上任意一点为(,),所以(\\(=() θ,=θ))(其中θ为参数),椭圆的左、右焦点分别为(-,),(,),所以=(--,-),=(-,-).所以·=+-=θ+θ-=θ-∈[-].解法二(转换成二次函数)设椭圆上任意一点为(,),椭圆的左、右焦点分别为(-,),(,),所以=(--,-),=(-,-).所以·=+-,该式表示椭圆上任意一点到原点的距离的平方与的差.因为椭圆上任意一点到原点的距离最小值为短半轴=,距离最大值为长半轴=.所以+∈[],所以·=+-∈[-].答案:[-].以等腰直角△的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为.解析:当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有=,此时可求得离心率====;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为,故有==(+),所以,离心率====-.答案:或-二、解答题.已知椭圆的中心在原点,一个焦点为(-),且长轴长与短轴长的比是∶.()求椭圆的方程;。
基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做错误!椭圆.这两定点叫做椭圆的错误!焦点,两焦点间的距离叫做错误!焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若错误!a>c,则集合P表示椭圆;(2)若错误!a=c,则集合P表示线段;(3)若错误!a<c,则集合P为空集.2.椭圆的标准方程和几何性质续表椭圆的常用性质(1)设椭圆错误!+错误!=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)过椭圆的焦点且垂直于长轴的弦之长为错误!.(5)椭圆离心率e=错误!.1.已知椭圆错误!+错误!=1,长轴在y轴上,若焦距为4,则m等于()A.4B.5C.7 D.8答案D解析椭圆焦点在y轴上,∴a2=m—2,b2=10—m.又c=2,∴m—2—(10—m)=c2=4.∴m=8.2.(2018·广西模拟)若椭圆C:错误!+错误!=1(a>b>0)的短轴长等于焦距,则椭圆的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析因为椭圆的短轴长等于焦距,所以b=c,所以a2=b2+c2=2c2,所以e=错误!=错误!,故选C.3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于错误!,则椭圆C的方程是()A.错误!+错误!=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案D解析依题意,设椭圆方程为错误!+错误!=1(a>b>0),所以错误!解得a2=9,b2=8.故椭圆C 的方程为错误!+错误!=1.4.(2019·西安模拟)已知点P(x1,y1)是椭圆错误!+错误!=1上的一点,F1,F2是其左、右焦点,当∠F1PF2最大时,△PF1F2的面积是()A.错误!B.12C.16(2+错误!)D.16(2—错误!)答案B解析∵椭圆的方程为错误!+错误!=1,∴a=5,b=4,c=错误!=3,∴F1(—3,0),F2(3,0).根据椭圆的性质可知当点P与短轴端点重合时,∠F1PF2最大,此时△PF1F2的面积S=错误!×2×3×4=12,故选B.5.椭圆3x2+ky2=3的一个焦点是(0,错误!),则k=________.答案1解析方程3x2+ky2=3可化为x2+错误!=1.a2=错误!>1=b2,c2=a2—b2=错误!—1=2,解得k=1.6.设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F 2,∠PF1F2=30°,则C的离心率为________.答案错误!解析设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=错误!x.又|PF1|+|PF 2|=2a,|F1F2|=2c.∴2a=3x,2c=错误!x,∴C的离心率为e=错误!=错误!.核心考向突破考向一椭圆定义的应用例1(1)(2018·湖北八校联考)设F1,F2为椭圆错误!+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为()A.错误!B.错误!C.错误!D.错误!解析由题意知a=3,b=错误!,c=2.设线段PF1的中点为M,则有OM∥PF2,∵OM⊥F1F2,∴PF2⊥F1F2,∴|PF2|=错误!=错误!.又∵|PF1|+|PF2|=2a=6,∴|PF1|=2a—|PF2|=错误!,∴错误!=错误!×错误!=错误!.故选B.(2)设F1,F2分别是椭圆E:错误!+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E 于A,B两点,|AF1|=3|F1B|,且|AB|=4,△ABF2的周长为16.则|AF2|=________.答案5解析由|AF1|=3|F1B|,|AB|=4,得|AF1|=3.∵△ABF2的周长为16,∴4a=16,∴a=4.则|AF1|+|AF2|=2a=8,∴|AF2|=8—|AF1|=8—3=5.触类旁通椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF1|·|PF2|,通过整体代入可求其面积等.即时训练1.(2019·甘肃联考)设A,B是椭圆C:错误!+错误!=1的两个焦点,点P是椭圆C与圆M:x2+y2=10的一个交点,则||PA|—|PB||=()A.2错误!B.4错误!C.4错误!D.6错误!答案C解析由题意知,A,B恰好在圆M上且AB为圆M的直径,∴|PA|+|PB|=2a=4错误!,|PA|2+|PB|2=(2c)2=40,∴(|PA|+|PB|)2=|PA|2+|PB|2+2|PA||PB|,解得2|PA||PB|=8,∴(|PA|—|PB|)2=|PA|2+|PB|2—2|PA||PB|=32,则||PA|—|PB||=4错误!,故选C.2.已知椭圆C:错误!+错误!=1,点M与椭圆C的焦点不重合.若M关于椭圆C的焦点的对称点分别为A,B,线段MN的中点在椭圆C上,则|AN|+|BN|=________.解析取MN的中点为G,点G在椭圆C上.设点M关于椭圆C的焦点F1的对称点为A,点M关于椭圆C的焦点F2的对称点为B,则有|GF1|=错误!|AN|,|GF2|=错误!|BN|,所以|AN|+|BN|=2(|GF 1|+|GF2|)=4a=12.考向二椭圆的标准方程例2(1)(2019·杭州模拟)已知椭圆C:错误!+错误!=1(a>b>0)的左、右焦点为F1,F2,离心率为错误!,过F2的直线l交C于A,B两点.若△AF1B的周长为4错误!,则C的方程为()A.错误!+错误!=1B.错误!+y2=1C.错误!+错误!=1D.错误!+错误!=1答案A解析由题意及椭圆的定义知4a=4错误!,则a=错误!,又错误!=错误!=错误!,∴c=1,∴b2=2,∴C的方程为错误!+错误!=1.选A.(2)已知A错误!,B是圆:错误!2+y2=4(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为________.答案x2+错误!y2=1解析如图,由题意知|PA|=|PB|,|PF|+|BP|=2.所以|PA|+|PF|=2且|PA|+|PF|>|AF|,即动点P的轨迹是以A,F为焦点的椭圆,a=1,c=错误!,b2=错误!.所以动点P的轨迹方程为x2+错误!y2=1.触类旁通求椭圆方程的常用方法(1)定义法,定义法的要点是根据题目所给的条件确定动点的轨迹满足椭圆的定义.2待定系数法,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1m>0,n>0,m≠n,再用待定系数法求出m,n的值即可.即时训练3.(2019·青岛模拟)已知F1(—1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为()A.错误!+y2=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案C解析如图,|AF2|=错误!|AB|=错误!,|F1F2|=2,由椭圆定义,得|AF1|=2a—错误!. 1在Rt△AF1F2中,|AF1|2=|AF2|2+|F1F2|2=错误!2+22.2由12得a=2,∴b2=a2—c2=3.∴椭圆C的方程为错误!+错误!=1,应选C.4.设F1,F2为椭圆C:错误!+错误!=1(a>b>0)的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为4错误!的等边三角形,则椭圆C的方程为________.答案错误!+错误!=1解析l经过F1垂直于x轴,得yA=错误!,在Rt△AF1F2中,∠AF2F1=30°,得错误!=错误!×2c,错误!×2c×错误!=4错误!,a2=b2+c2,解得a2=9,b2=6,c2=3.所求的椭圆方程为错误!+错误!=1.考向三椭圆的几何性质例3(1)(2018·全国卷Ⅰ)已知椭圆C:错误!+错误!=1的一个焦点为(2,0),则C的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析根据题意,可知c=2,因为b2=4,所以a2=b2+c2=8,即a=2错误!,所以椭圆C的离心率为e=错误!=错误!.故选C.率e的取值范围是________.答案错误!解析∵c2—b2+ac<0,∴c2—(a2—c2)+ac<0,即2c2—a2+ac<0,∴2错误!—1+错误! <0,即2e2+e—1<0,解得—1<e<错误!.又∵0<e<1,∴0<e<错误!.∴椭圆的离心率e的取值范围是错误!.触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.即时训练5.(2018·全国卷Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF 2,且∠PF2F1=60°,则C的离心率为()A.1—错误!B.2—错误!C.错误!D.错误!—1答案D解析在△F1PF2中,∠F1PF2=90°,∠PF2F1=60°,设|PF2|=m,则2c=|F1F2|=2m,|PF 1|=错误!m,又由椭圆定义可知2a=|PF1|+|PF2|=(错误!+1)m,则离心率e=错误!=错误!=错误!=错误!—1.故选D.6.(2019·江苏模拟)已知椭圆错误!+错误!=1(a>b>0),A为左顶点,B为上顶点,F为右焦点且AB⊥BF,则这个椭圆的离心率等于________.答案错误!解析由题意得A(—a,0),B(0,b),F(c,0),∵AB⊥BF,∴错误!·错误!=0,∴(a,b)·(c,—b)=ac—b2=ac—a2+c2=0,∴e—1+e2=0,解得e=错误!.考向四直线与椭圆的位置关系角度错误!弦的中点问题例4(2018·全国卷Ⅲ)已知斜率为k的直线l与椭圆C:错误!+错误!=1交于A,B两点.线段AB 的中点为M(1,m)(m>0).(1)证明:k<—错误!;(2)设F为C的右焦点,P为C上一点,且F错误!+F错误!+F错误!=0.证明:|错误!|,|错误!|,|错误! |成等差数列,并求该数列的公差.解(1)证明:设A(x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1.两式相减,并由错误!=k得错误!+错误!·k=0.由题设知错误!=1,错误!=m,于是k=—错误!.1由题设得m< 错误!=错误!,且m>0,即0<m<错误!,故k<—错误!.(2)由题意得F(1,0).设P(x3,y3),则由(1)及题设得(x3—1,y3)+(x1—1,y1)+(x2—1,y2)=(0,0),x3=3—(x1+x2)=1,y3=—(y1+y2)=—2m<0.又点P在C上,所以m=错误!,从而P错误!,|F错误!|=错误!.于是|F错误!|=错误!=错误!=2—错误!.同理|F错误!|=2—错误!.所以|F错误!|+|F错误!|=4—错误!(x1+x2)=3.故2|F错误!|=|F错误!|+|F错误!|,即|错误!|,|错误!|,|错误!|成等差数列.设该数列的公差为d,则2|d|=||错误!|—|错误!||=错误!|x1—x2|=错误!错误!.2将m=错误!代入1得k=—1.所以l的方程为y=—x+错误!,代入C的方程,并整理得7x2—14x+错误!=0.故x1+x2=2,x1x2=错误!,代入2解得|d|=错误!.所以该数列的公差为错误!或—错误!.角度错误!弦长的问题例5(2019·陕西咸阳模拟)在平面直角坐标系xOy中,已知椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),且离心率e=错误!.(1)求椭圆C的方程;(2)直线l的斜率为错误!,直线l与椭圆C交于A,B两点.求△PAB面积的最大值.解(1)∵e2=错误!=错误!=错误!,∴a2=4b2.又椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),∴错误!+错误!=1,∴a2=8,b2=2.故所求椭圆方程为错误!+错误!=1.(2)设l的方程为y=错误!x+m,点A(x1,y1),B(x2,y2),联立错误!整理,得x2+2mx +2m2—4=0.∵Δ=4m2—8m2+16>0,解得|m|<2.∴x1+x2=—2m,x1x2=2m2—4.则|AB|=错误!× 错误!=错误!.点P到直线l的距离d=错误!=错误!.∴S△PAB=错误!d|AB|=错误!×错误!×错误!=错误!≤错误!=2.当且仅当m2=2,即m=±错误!时取得最大值.触类旁通1解决直线与椭圆的位置关系的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.(3)直线与椭圆相交时常见问题的处理方法涉及问题处理方法弦长根与系数的关系、弦长公式(直线与椭圆有两交点)中点弦或弦点差法(结果要检验Δ>0)的中点即时训练7.(2019·广西联考)已知椭圆C:错误!+错误!=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为错误!,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A,B两点,线段AB的中点为P.(1)求椭圆C的标准方程;(2)过点P垂直于AB的直线与x轴交于点D错误!,求k的值.解(1)由题易得,过椭圆短轴的一个端点与两个焦点的圆的半径为错误!.设椭圆的右焦点的坐标为(c,0),依题意知错误!又因为b>1,解得a=2,b=错误!,c=1,所以椭圆C的标准方程为错误!+错误!=1.(2)由题意,过椭圆C的右焦点的直线l的方程为y=k(x—1),将其代入错误!+错误!=1,得(3+4k2)x2—8k2x+4k2—12=0.设A(x1,y1),B(x2,y2),则x1+x2=错误!,x1x2=错误!,所以y1+y2=k(x1+x2)—2k=错误!.因为P为线段AB的中点,所以点P的坐标为错误!.又因为直线PD的斜率为—错误!,所以直线PD的方程为y—错误!=—错误!错误!.令y=0,得x=错误!,所以点D的坐标为错误!,则错误!=错误!,解得k=±1.8.(2019·云南昆明模拟)已知中心在原点O,焦点在x轴上的椭圆E过点C(0,1),离心率为错误!.(1)求椭圆E的方程;(2)直线l过椭圆E的左焦点F,且与椭圆E交于A,B两点,若△OAB的面积为错误!,求直线l的方程.解(1)设椭圆E的方程为错误!+错误!=1(a>b>0),由已知得错误!解得a2=2,b2=1,所以椭圆E的方程为错误!+y2=1.(2)由已知,直线l过左焦点F(—1,0).当直线l与x轴垂直时,A错误!,B错误!,此时|AB|=错误!,则S△OAB=错误!×错误!×1=错误!,不满足条件.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由错误!得(1+2k2)x2+4k2x+2k2—2=0,所以x1+x2=—错误!,x1x2=错误!.因为S△OAB=错误!|OF|·|y1—y2|=错误!|y1—y2|,由已知S△OAB=错误!得|y1—y2|=错误!.因为y1+y2=k(x1+1)+k(x2+1)=k(x1+x2)+2k=k· 错误!+2k=错误!,y1y2=k(x1+1)·k(x2+1)=k2(x1x2+x1+x2+1)=错误!,所以|y1—y2|=错误!=错误!=错误!,所以k4+k2—2=0,解得k=±1,所以直线l的方程为x—y+1=0或x+y+1=0.1.已知点F1,F2是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,那么|错误!+错误!|的最小值是()A.0 B.1C.2D.2错误!答案C解析解法一:设P(x0,y0),则错误!=(—1—x0,—y0),错误!=(1—x0,—y0),所以错误!+错误!=(—2x0,—2y0),所以|错误!+错误!|=错误!=2错误!=2错误!.因为点P在椭圆上,所以0≤y 错误!≤1,所以当y错误!=1时,|错误!+错误!|取最小值2.解法二:由错误!+错误!=错误!+错误!+错误!+错误!=2错误!求解.故选C.2.已知F是椭圆错误!+错误!=1的左焦点,P是此椭圆上的动点,A(1,1)是一定点,求|PA|+|PF|的最大值和最小值.解由题意知a=3,b=错误!,c=2,F(—2,0).设椭圆右焦点为F′,则|PF|+|PF′|=6,所以|PA|+|PF|=|PA|—|PF′|+6.当P,A,F′三点共线时,|PA|—|PF′|取到最大值|AF′|=错误!,或者最小值—|AF′|=—错误!.所以|PA|+|PF|的最大值为6+错误!,最小值为6—错误!.3.在椭圆错误!+错误!=1上求一点,使它到直线2x—3y+15=0的距离最短.解设所求点坐标为A(3错误!cosθ,2错误!sinθ),θ∈R,由点到直线的距离公式得=错误!,当θ=2kπ+错误!,k∈Z时,d取到最小值错误!,此时A点坐标为(—3,2).答题启示椭圆中距离的最值问题一般有3种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e);(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解.对点训练1.设P,Q分别为圆x2+(y—6)2=2和椭圆错误!+y2=1上的点,则P,Q两点间的最大距离是()A.5错误!B.错误!+错误!C.7+错误!D.6错误!答案D解析解法一:设椭圆上任意一点为Q(x,y),则圆心(0,6)到点Q的距离d=错误!=错误!=错误!≤5错误!,P,Q两点间的最大距离d′=dmax+错误!=6错误!.解法二:易知圆心坐标为M(0,6),|PQ|的最大值为|MQ|max+错误!,设Q(错误!cosθ,sinθ),则|MQ|=错误!=错误!当sinθ=—错误!时,|MQ|max=5错误!,所以|PQ|max=5错误!+错误!=6错误!.故选D.2.如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为________.答案4解析设P点坐标为(x0,y0).由题意知a=2,因为e=错误!=错误!,所以c=1,所以b2=a2—c2=3.所以椭圆方程为错误!+错误!=1.所以—2≤x0≤2,—错误!≤y0≤错误!.因为F(—1,0),A(2,0),错误!=(—1—x0,—y0),错误!=(2—x0,—y0),所以错误!·错误!=x错误!—x0—2+y错误!=错误!x错误!—x0+1=错误!(x0—2)2.即当x0=—2时,错误!·错误!取得最大值4.。
§9.3椭圆及其性质考纲解读分析解读从近几年的高考试题来看,椭圆的定义、标准方程、几何性质以及直线与椭圆的位置关系一直是高考命题的重点和热点,离心率问题是每年高考考查的重点,多在选择题和填空题中出现,主要考查学生结合定义、几何性质等分析问题、解决问题的能力以及运算能力,分值为5分,属于中档题目;在解答题中主要以直线与椭圆的位置关系为考查对象,考查面较广,往往会和平面向量、函数、导数、不等式等知识相结合,在考查对椭圆基本概念和性质理解及应用的同时,又考查直线与圆锥曲线的位置关系,考查数形结合思想和转化与化归思想的应用.(1)设椭圆的离心率为e.由已知,可得(c+a)c=.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0<e<1,解得e=.所以,椭圆的离心率为.(2)(i)依题意,设直线FP的方程为x=my-c(m>0),则直线FP的斜率为.由(1)知a=2c,可得直线AE的方程为+=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=,y=,即点Q的坐标为.由已知|FQ|=c,有+=,整理得3m2-4m=0,所以m=,即直线FP的斜率为.(ii)由a=2c,可得b=c,故椭圆方程可以表示为+=1.由(i)得直线FP的方程为3x-4y+3c=0,与椭圆方程联立得消去y,整理得7x2+6cx-13c2=0,解得x=-(舍去),或x=c.因此可得点P,进而可得|FP|==,所以|PQ|=|FP|-|FQ|=-=c. 由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QN⊥FP,所以|QN|=|FQ|·tan∠QFN=×=,所以△FQN的面积为|FQ||QN|=,同理△FPM的面积等于,由四边形PQNM的面积为3c,得-=3c,整理得c2=2c,又由c>0,得c=2.所以,椭圆的方程为+=1.五年高考考点一椭圆的定义及其标准方程1.(2015广东,8,5分)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=( )A.2B.3C.4D.9答案 B2.(2014大纲全国,9,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C 于A、B两点.若△AF1B的周长为4,则C的方程为( )A.+=1B.+y2=1C.+=1D.+=1答案 A3.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案124.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=,由题意得x B=,从而y B=.由(1)知,F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA=∠MAO⇔|MA|=|MO|,即(x M-2)2+=+,化简得x M=1,即=1,解得k=-,或k=. 所以,直线l的斜率为-或.5.(2015重庆,21,12分)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.解析(1)由椭圆的定义,2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|===2,即c=,从而b==1.故所求椭圆的标准方程为+y2=1.(2)如图,连接QF1,由PF1⊥PQ,|PQ|=λ|PF1|,得|QF1|==|PF1|.由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,进而|PF1|+|PQ|+|QF1|=4a.于是(1+λ+)|PF1|=4a,解得|PF1|=,故|PF2|=2a-|PF1|=.由勾股定理得|PF1|2+|PF2|2=|F1F2|2=(2c)2=4c2,从而+=4c2,两边除以4a2,得。
(北京专用)2019版高考数学一轮复习第九章平面解析几何第六节双曲线作业本理1.已知椭圆+=1(a>0)与双曲线-=1有相同的焦点,则a的值为( )A. B.C.4D.2.已知双曲线-=1(a>0,b>0)的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为( )A.-=1B.-=1C.-=1D.-=13.已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为( )A.x±y=0B.x±y=0C.x±2y=0D.2x±y=04.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A. B.C.D.5.(2017北京,9,5分)若双曲线x2-=1的离心率为,则实数m= .6.(2017北京朝阳二模,9)双曲线-=1的渐近线方程是,离心率是.7.(2017北京房山一模,11)已知双曲线-=1(a>0)的一条渐近线方程为y=2x,则该双曲线的焦距为.8.已知双曲线C:-=1(a>0,b>0)的一条渐近线l的倾斜角为,且C的一个焦点到l的距离为,则双曲线C的方程为.9.已知双曲线的中心在原点,左,右焦点F1,F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:·=0.B组提升题组10.若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( )A.2B.C.D.11.如果双曲线的离心率e=,则称此双曲线为黄金双曲线,有以下几个命题:①双曲线-=1是黄金双曲线;②双曲线y2-=1是黄金双曲线;③在双曲线-=1中,F1为左焦点,A2为右顶点,B1(0,b),若∠F1B1A2=90°,则该双曲线是黄金双曲线;④在双曲线-=1中,过焦点F2作实轴的垂线交双曲线于M、N两点,O为坐标原点,若∠MON=120°,则该双曲线是黄金双曲线.其中正确命题的序号为( )A.①和②B.②和③C.③和④D.①和④12.(2016北京,13,5分)双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a= .13.(2017北京东城一模,13)若双曲线-=1(a>0,b>0)的渐近线为等边三角形OAB的边OA,OB所在的直线,直线AB过双曲线的焦点,且|AB|=2,则a= .13.若圆(x-2)2+y2=1与双曲线C:-y2=1(a>0)的渐近线相切,则a= ;双曲线C的渐近线方程是.14.若点O和点F2(-,0)分别为双曲线-y2=1(a>0)的对称中心和左焦点,点P(x0,y0)为双曲线右支上的任意一点,则的取值范围为.15.已知双曲线E:-=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E.若存在,求出双曲线E的方程.答案精解精析A组基础题组1.C 因为椭圆+=1(a>0)与双曲线-=1有相同的焦点(±,0),则有a2-9=7,所以a=4.2.A 由题意知圆心坐标为(5,0),即c=5,又e==,所以a=,所以a2=5,b2=20,所以双曲线的标准方程为-=1.3.A 设椭圆C1和双曲线C2的离心率分别为e1和e2,则e1=,e2=.因为e1·e2=,所以=,即=,∴=.故双曲线的渐近线方程为y=±x=±x,即x±y=0.4.A 若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈.故选A.5.答案 2解析由题意知,a2=1,b2=m.∵e====,∴m=2.6.答案y=±x;解析由题知a=,b=,所以c=3,渐近线方程为y=±x,即y=±x,离心率e==.7.答案10解析由双曲线方程可知b=2,∵双曲线的一条渐近线方程为y=2x,∴==2,∴a=,∴c2=5+20=25,∴c=5,∴焦距为2c=2×5=10.8.答案x2-=1解析由题意知双曲线C的渐近线的斜率为±tan=±,即=,①又双曲线C的一个焦点到l的距离为,所以c==2,②由①②及a2+b2=c2知a=1,b=,故双曲线C的方程为x2-=1.9.解析(1)∵e=,∴可设双曲线的方程为x2-y2=λ(λ≠0).∵双曲线过点(4,-),∴16-10=λ,即λ=6, ∴双曲线的方程为-=1.(2)证法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0),∴=,=,∴·==-.∵点M(3,m)在双曲线上,∴9-m2=6,m2=3, 故·=-1,∴MF1⊥MF2,即·=0. 证法二:由证法一知=(-3-2,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2, ∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴·=0.B组提升题组10.A 由题意可知圆的圆心为(2,0),半径为2.因为双曲线-=1的渐近线方程为y=±x,即bx±ay=0,且双曲线的一条渐近线与圆相交所得的弦长为2,所以=,所以=.故离心率e==2.选A.11.B 对于①,由双曲线方程知a2=2,b2=-1,所以c2=a2+b2=+1,所以e2==,即e=,所以①错误;对于②,由双曲线方程知a2=1,b2=,所以c2=a2+b2=,所以e2==,即e=,所以②正确;对于③,在Rt△F1B1A2中,由射影定理知b2=ac,即c2-a2=ac,由e=知,e2-e-1=0,解得e=或e=(舍去),所以③正确;对于④,如图所示,由∠MON=120°知∠MOF2=60°,易知|MF2|=,|OF2|=c,在Rt△OF2M中,tan∠MOF2=tan 60°===,即b2=ac,由c2=a2+b2得c2-a2=ac,即e2-e-1=0,解得e=或e=(舍),所以④错误.综上可知,正确命题的序号为②③,故选B.12.答案 2解析由OA、OC所在的直线为渐近线,且OA⊥OC,知两条渐近线的夹角为90°,从而双曲线为等轴双曲线,则其方程为x2-y2=a2.OB是正方形的对角线,且点B是双曲线的焦点,则c=2,根据c2=2a2可得a=2.13.答案解析如图所示,设直线AB过双曲线的右焦点F2,则F2(c,0),∵A、B两点在双曲线-=1的渐近线上,双曲线的渐近线方程为y=±x,∴A,B,∴tan∠AOF2=tan 30°====,∴a=b,∵|AB|==2,∴a=bc,∴c=,∴a2=b2c2=3b2=3(c2-a2)=9-3a2,∴4a2=9,∴a=.14.答案;y=±x解析双曲线的渐近线方程为y=±,即x±ay=0.由于圆与渐近线相切,r=1,∴d==1,解得a=(舍负).∴双曲线的渐近线方程为y=±x.15.答案解析由F2(-,0)得c=,∴a=1,∵P(x0,y0)为双曲线右支上任意一点,∴x0≥1,且-=1,∴|PF2|2=(x0+)2+=(x0+)2+-1=2+2x0+1,|OP|2+1=++1=2,∴==+×+1=,∴∈.16.解析(1)因为双曲线E的渐近线方程分别为y=2x,y=-2x,所以=2,所以=2,故c=a, 从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为-=1.设直线l与x轴相交于点C.当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,又因为△OAB的面积为8,所以|OC|·|AB|=8,因此a·4a=8,解得a=2, 此时双曲线E的方程为-=1.。
一、填空题1.设P 是椭圆x 225+y 216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于________. 解析:由题意知a =5,∴|PF 1|+|PF 2|=2a =10.答案:102.已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为________.解析:由题意可知⎩⎪⎨⎪⎧ 2b =6,c a =45,a 2=b 2+c 2,且a >0,b >0,c >0,解得a =5,b =3,c =4.∴椭圆C 的焦点F 到长轴的一个端点的距离为a +c =9或a -c =5-4=1.答案:1或93.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的________条件.解析:把椭圆方程化成x 21m +y 21n=1.若m >n >0,则1n >1m>0.所以椭圆的焦点在y 轴上.反之,若椭圆的焦点在y 轴上,则1n >1m >0即有m >n >0.故为充要条件.答案:充要4.已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________.解析:由x 2+y 2-2x -15=0,知r =4=2a ⇒a =2.又e =c a =12,c =1,则b 2=a 2-c 2=3.答案:x 24+y 23=15.若椭圆上存在点P ,使得点P 到两个焦点的距离之比为2∶1,则此椭圆离心率的取值范围是________.解析:设P 到两个焦点的距离分别为2k ,k ,根据椭圆定义可知:3k =2a ,又结合椭圆的性质可知.椭圆上的点到两个焦点距离之差的最大值为2c ,即k ≤2c ,∴2a ≤6c ,即e ≥13.答案:[13,1)6.已知F 1,F 2分别是椭圆x 28+y 24=1的左、右焦点,P 是椭圆上的任意一点,则|PF 1-PF 2|PF 1的取值范围是________.解析:显然当PF 1=PF 2时,|PF 1-PF 2|PF 1=0.由椭圆定义得PF 2=42-PF 1,从而|PF 1-PF 2|PF 1=|2PF 1-42|PF 1=⎪⎪⎪⎪⎪⎪42PF 1-2.而22-2≤PF 1≤22+2,所以4222+2≤42PF 1≤4222-2,故⎪⎪⎪⎪⎪⎪42PF 1-2≤2+2 2.综上所述,|PF 1-PF 2|PF 1∈[0,22+2]. 答案:[0,22+2]7.已知椭圆的中心在原点,焦点在y 轴上,若其离心率为12,焦距为8,则该椭圆的方程是________.解析:由题意知,2 c =8,c =4,∴e =c a =4a =12,∴a =8,从而b 2=a 2-c 2=48,∴方程是y 264+x 248=1.答案:y 264+x 248=1 8.已知P 是椭圆x 212+y 24=1上的动点,F 1,F 2是椭圆的两个焦点,则PF 1→·PF 2→的取值范围为________________.解析:解法一 (利用三角代换)设椭圆上任意一点为P (x 0,y 0),所以⎩⎨⎧ x 0=23cos θ,y 0=2sin θ(其中θ为参数),椭圆的左、右焦点分别为F 1(-22,0),F 2(22,0),所以PF 1→=(-22-x 0,-y 0),PF 2→=(22-x 0,-y 0).所以PF 1→·PF 2→=x 20+y 20-8=12cos 2 θ+4sin 2 θ-8=8cos 2 θ-4∈[-4,4]. 解法二 (转换成二次函数)设椭圆上任意一点为P (x 0,y 0),椭圆的左、右焦点分别为F 1(-22,0),F 2(22,0),。
§9.6 椭 圆1.椭圆的定义(1)定义:平面内与两个定点F 1,F 2的距离的和等于常数2a (2a ______|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.※(2)另一种定义方式(见人教A 版教材选修2-1 P47例6、P50):平面内动点M 到定点F 的距离和它到定直线l 的距离之比等于常数e (0<e <1)的轨迹叫做椭圆.定点F 叫做椭圆的一个焦点,定直线l 叫做椭圆的一条准线,常数e 叫做椭圆的__________.焦点在x 轴上 焦点在y 轴上(1)图形(2)标准 方程y 2a 2+x2b 2=1 (a >b >0) (3)范围 -a ≤x ≤a , -b ≤y ≤b-a ≤y ≤a , -b ≤x ≤b(4)中心原点O (0,0)(5)顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ), B 2(0,b )(6)对称轴 x 轴,y 轴(7)焦点F 1(0,-c ),F 2(0,c )(8)焦距 2c =2a 2-b 2(9)离心率※(10)准线x =±a 2cy =±a 2c自查自纠1.(1)> 焦点 焦距 (2)离心率2.(2)x 2a 2+y 2b2=1(a >b >0)(5)A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0) (7)F 1(-c ,0),F 2(c ,0) (9)e =c a(0<e <1)(2015·广东)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解:由25-m 2=4,得m 2=9,又m >0,∴m =3.故选B . “-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:要使方程x 25-m +y2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B .(2013·全国课标Ⅱ)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解:设||F 1F 2=2c ,则||PF 2=233c ,∴||PF 1=433c .∴2a =||PF 1+||PF 2=23c ,故e =ca =33.故选D . 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是____________.解:由椭圆C 的右焦点为F (1,0)知c =1,且焦点在x 轴上,又e =c a =12,∴a =2,a2=4,b 2=a 2-c 2=3,椭圆C 的方程为x 24+y 23=1.故填x 24+y 23=1.已知椭圆x 2m +y 24=1的焦距是2,则该椭圆的长轴长为____________.解:当焦点在x 轴上时,有m -4=1,得m =5,此时长轴长为25;当焦点在y 轴上时,长轴长为4.故填25或4.类型一 椭圆的定义及其标准方程求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P 到两焦点的距离之和等于10;(2)过点P (-3,2),且与椭圆x 29+y 24=1有相同的焦点;(3)已知点P 在以坐标轴为对称轴的椭圆上,且点P 到两焦点的距离分别为5,3,过点P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,2c =6,即a =5,c =3, ∴b 2=a 2-c 2=52-32=16.∴所求椭圆的标准方程为x 225+y 216=1.(2)∵所求的椭圆与椭圆x 29+y 24=1的焦点相同,∴其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∵所求椭圆过点P (-3,2),∴有9a 2+4b2=1.又a 2-b 2=c 2=5,∴联立上述两式,解得⎩⎪⎨⎪⎧a 2=15,b 2=10.∴所求椭圆的标准方程为x 215+y 210=1. (3)由于焦点的位置不确定,可设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,∴b 2=12.故椭圆方程为x 216+y 212=1或y 216+x 212=1. 【点拨】(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过两点P 1(2,2),P 2(-3,-1)作一个椭圆,使它的中心在原点,焦点在x轴上,求椭圆的方程,椭圆的长半轴、短半轴的长度以及离心率.解:根据题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),将两已知点坐标代入得⎩⎪⎨⎪⎧4a 2+4b 2=1,9a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=323,b 2=325.故椭圆方程为332x 2+532y 2=1,长半轴长a =323=436,短半轴长b =325=4105. ∵c 2=a 2-b 2=323-325=6415,∴离心率e =ca=c 2a 2=105.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为____________.解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4. 由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.解法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同, ∴其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0),∵c 2=16,且c 2=a 2-b 2,∴a 2-b 2=16.① 又点(3,-5)在所求椭圆上,∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得⎩⎪⎨⎪⎧a 2=20,b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.故填y 220+x 24=1.类型二 椭圆的离心率设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎥⎤0,22B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1解法一:由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. ∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c-c ,整理得13≤e 2<1,33≤e <1. ∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D . 【点拨】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.(2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是____________.解:设左焦点为F 1,由F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,得|OQ |=|OF |,又|OF 1|=|OF |,∴F 1Q ⊥QF .不妨设|QF 1|=ck ,则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a=ck +bk ,∴c a =a b +c ,即a 2=c 2+bc ,得b =c ,a =2c ,∴e =c a =22.故填22.类型三 椭圆的焦点三角形已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆离心率的范围;(2)求证△F 1PF 2的面积只与椭圆的短轴长有关.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),P 点坐标为(x 0,y 0).(1)||PF 1=a +ex 0,||PF 2=a -ex 0. 在△F 1PF 2中,cos ∠F 1PF 2=||PF 12+||PF 22-||F 1F 222||PF 1·||PF 2=(a +ex 0)2+(a -ex 0)2-4c 22(a +ex 0)(a -ex 0)=cos60°=12,解得x 20=4c 2-a 23e2. ∵x 0∈(-a ,a ),∴x 20∈[0,a 2),0≤4c 2-a 23c 2a 2<a 2, 有0≤4c 2-a 2<3c 2,解得12≤e <1.∴椭圆离心率e ∈⎣⎢⎡⎭⎪⎫12,1. (2)证明:将x 20=4c 2-a 23e 2代入b 2x 20+a 2y 20=a 2b 2,求得y 20=b 43c 2,∴||y 0=b 23c . ∴S △F 1PF 2=12||y 0||F 1F 2=12·b 23c ·2c =33b 2.得证.【点拨】椭圆的焦点三角形是描述椭圆的焦距、焦半径之间的相互制约关系的一个载体.由于其位置、边的特殊性决定了它易于同椭圆的定义、长轴长、离心率等几何量发生联系,内容丰富多彩.(2014·安徽)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1,∵△ABF 2的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8, 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k ,由椭圆定义可得 |AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得 |AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k .于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,因此|BF 2|2=|AF 2|2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,∴椭圆E 的离心率e =c a =22. 类型四 椭圆的弦长(2015·陕西)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解:(1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bc a =c2, 得a =2b =2a 2-c 2,解得离心率e =c a =32.(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其直线方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b21+4k2. 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.【点拨】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略对判别式的判断.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,则椭圆C 的方程为____________.解:由题意知离心率e =c a =23,c =23a ,由b 2=a 2-c 2,得b =53a ,∴椭圆C 的方程为x 2a2+9y25a2=1 .① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝ ⎛⎭⎪⎫x -23a ,与①联立得32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8.由|AB |=1+3|x 1-x 2|=2⎪⎪⎪⎪⎪⎪a 4-78a =54a =154,解得a =3,∴b =53a = 5.∴椭圆C 的方程为x29+y25=1.故填x29+y25=1.类型五 椭圆中的最值问题(1)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解:由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6 ,∴|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.∴|PA |+|PF |的最大值为6+2,最小值为6- 2.(2)求A (0,2)到椭圆x 24+y 2=1上的动点的距离的最大值和最小值.解:设椭圆上的动点B (x ,y ),则|AB |=x 2+(y -2)2=-3y 2-4y +8=-3⎝ ⎛⎭⎪⎫y +232+283,∵点B 是椭圆上的点,∴-1≤y ≤1.∴|AB |的最大值为2213,最小值为1.(3)在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解:设所求点坐标为A (32cos θ,22sin θ),θ∈R ,由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+(-3)2=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2).【点拨】椭圆中距离的最值问题一般有3种解法:①利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );②根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上,如(2)中的点A );③用椭圆的参数方程设动点的坐标,转化为三角问题求解.(1)(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B.46+ 2 C .7+ 2D .6 2解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到椭圆的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ),则|MQ |=10cos 2θ+(sin θ-6)2=-9sin 2θ-12sin θ+46=-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,∴|PQ |max =52+2=6 2.故选D .(2)(2015·安徽合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为____________.解:设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.∴椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),∴PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.即当x 0=-2时,PF →·PA →取得最大值4.故填4.1.在运用椭圆的定义时,要注意“|F 1F 2|<2a ”这个条件,若|F 1F 2|=2a ,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F 1F 2|>2a ,则轨迹不存在.2.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n=1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.3.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出关于a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.4.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.5.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.6.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.7.椭圆中几个常用的结论:(1)焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段叫做椭圆的焦半径,分别记作r 1=||PF 1,r 2=||PF 2.①x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; ②y 2a 2+x 2b2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0; ③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;②S =b 2tan θ2=c ||y 0,当||y 0=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b2a.(4)AB 为椭圆x 2a 2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则①弦长l =1+k 2||x 1-x 2=1+1k2|y 1-y 2|;②直线AB 的斜率k AB =-b 2x 0a 2y 0.以上常用结论在教材的例题与习题中都有体现.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.故选A .2.方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)D .(0,1)解:将方程x 2+ky 2=2变形为x 22+y 22k=1,根据椭圆的定义,要使焦点在y 轴,只须2k>2,解得0<k <1.故选D .3.(2014·全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1 解:由椭圆的定义知△AF 1B 的周长为4a =43,a = 3.由e =c a=c3=33,得c =1,∴b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选A .4.(2015·豫西五校联考)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为5,则b 的值是( )A .1B. 2C.32D. 3解:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,∴|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知,过椭圆焦点的弦中,通径最短,则2b2a=3,∴b 2=3,即b = 3.故选D .5.(2013·四川)从椭圆x 2a 2+y 2b2=1()a >b >0上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解:由题意知A ()a ,0,B ()0,b ,AB →=()-a ,b ,P ⎝ ⎛⎭⎪⎫-c ,b 2a ,OP →=⎝ ⎛⎭⎪⎫-c ,b 2a ,∵AB∥OP ,∴AB →∥OP →,因此有()-a ·b 2a =b ·()-c ,解得b =c .∴a 2-b 2=a 2-c 2=c 2,得e =22.故选C .6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||AB =10,||BF =8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解:由余弦定理||AF 2=||BF 2+||AB 2-2||BF ·||AB cos ∠ABF =82+102-2×8×10×45=36,||AF =6,∵||AF 2+||BF 2=||AB 2,∴△AFB 为直角三角形.设椭圆的右焦点为F ′,连接AF ′,BF ′,由对称性知四边形AFBF ′为平行四边形. 又∵∠AFB =90°,∴四边形AFBF ′为矩形. ∴⎩⎨⎧2c =||FF ′=||AB =10,2a =||AF +||AF ′=||AF +||BF =14, 得⎩⎪⎨⎪⎧c =5,a =7.∴e =c a =57.故选B .7.(2015·乌鲁木齐调研)已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是__________.解:设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.故填⎣⎢⎡⎦⎥⎤33,22.8.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=____________.解:设MN 的中点为P ,椭圆C 的左、右焦点分别为F 1,F 2,连接PF 1,PF 2,则PF 1,PF 2分别为△ANM 与△BNM 的中位线,有|PF 1|=12|AN |,|PF 2|=12|BN |,又∵点P 在椭圆上,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2·2a =12.故填12.9.已知椭圆中心在原点,长轴在坐标轴上,离心率为53,短轴长为4,求椭圆的方程. 解:由题意得c a =53,2b =4, 又a 2=b 2+c 2,则有a 2=9,b 2=4, 于是椭圆方程为x 29+y 24=1或x 24+y 29=1.10.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.11.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解:(1)由题意知|BF 2|2=b 2+c 2=a 2=2,∵点C ⎝ ⎛⎭⎪⎫43,13在椭圆上, ∴⎝ ⎛⎭⎪⎫432a2+⎝ ⎛⎭⎪⎫132b2=1,解得b 2=1.∴椭圆的方程为x 22+y 2=1.(2)易知BF 2→=(c ,-b ).∵点B (0,b ),F 2(c ,0)在直线AB 上, ∴直线AB 的方程为x c +y b=1. 设A (x 1,y 1),联立⎩⎪⎨⎪⎧x c +yb =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,∴点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c2-a 2)a 2+c 2. 又AC ⊥x 轴,∴由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a2-c 2)a 2+c 2. ∴F 1C →=⎝ ⎛⎭⎪⎫3a 2c +c3a 2+c 2,b 3a 2+c 2.又∵F 1C ⊥AB , ∴F 1C →·BF 2→=c 2(3a 2+c 2)a 2+c 2-b 4a 2+c 2=0,即c 2(3a 2+c 2)-(a 2-c 2)2=0,化简得5c 2=a 2,e 2=15,e =55.(2015·全国Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k,∴k OM ·k =-9,即直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.∵直线l 过点⎝ ⎛⎭⎪⎫m3,m ,∴l 不过原点且与椭圆C 有两个交点的充要条件是k >0,k ≠3. 由(1)得直线OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入(1)中l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M ,于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.∵k >0,k ≠3,∴当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.。
核按钮(新课标)高考数学一轮复习第九章平面解析几何9.6椭圆习题理1.椭圆的定义(1)定义:平面内与两个定点F 1,F 2的距离的和等于常数2a (2a ______|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.※(2)另一种定义方式(见人教A 版教材选修2-1 P47例6、P50):平面内动点M 到定点F 的距离和它到定直线l 的距离之比等于常数e (0<e <1)的轨迹叫做椭圆.定点F 叫做椭圆的一个焦点,定直线l 叫做椭圆的一条准线,常数e 叫做椭圆的__________.2.椭圆的标准方程及几何性质焦点在x 轴上 焦点在y 轴上(1)图形(2)标准 方程y 2a 2+x2b 2=1 (a >b >0) (3)范围 -a ≤x ≤a , -b ≤y ≤b-a ≤y ≤a , -b ≤x ≤b(4)中心原点O (0,0)(5)顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ), B 2(0,b )(6)对称轴 x 轴,y 轴(7)焦点F 1(0,-c ),F 2(0,c )(8)焦距 2c =2a 2-b 2(9)离心率※(10)准线x =±a 2cy =±a 2c自查自纠1.(1)> 焦点 焦距 (2)离心率2.(2)x 2a 2+y 2b2=1(a >b >0)(5)A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0) (7)F 1(-c ,0),F 2(c ,0) (9)e =c a(0<e <1)(2015·广东)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解:由25-m 2=4,得m 2=9,又m >0,∴m =3.故选B . “-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:要使方程x 25-m +y2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B .(2013·全国课标Ⅱ)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解:设||F 1F 2=2c ,则||PF 2=233c ,∴||PF 1=433c .∴2a =||PF 1+||PF 2=23c ,故e =ca =33.故选D . 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是____________.解:由椭圆C 的右焦点为F (1,0)知c =1,且焦点在x 轴上,又e =c a =12,∴a =2,a2=4,b 2=a 2-c 2=3,椭圆C 的方程为x 24+y 23=1.故填x 24+y 23=1.已知椭圆x 2m +y 24=1的焦距是2,则该椭圆的长轴长为____________.解:当焦点在x 轴上时,有m -4=1,得m =5,此时长轴长为25;当焦点在y 轴上时,长轴长为4.故填25或4.类型一 椭圆的定义及其标准方程求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P 到两焦点的距离之和等于10;(2)过点P (-3,2),且与椭圆x 29+y 24=1有相同的焦点;(3)已知点P 在以坐标轴为对称轴的椭圆上,且点P 到两焦点的距离分别为5,3,过点P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,2c =6,即a =5,c =3, ∴b 2=a 2-c 2=52-32=16.∴所求椭圆的标准方程为x 225+y 216=1.(2)∵所求的椭圆与椭圆x 29+y 24=1的焦点相同,∴其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∵所求椭圆过点P (-3,2),∴有9a 2+4b2=1.又a 2-b 2=c 2=5,∴联立上述两式,解得⎩⎪⎨⎪⎧a 2=15,b 2=10.∴所求椭圆的标准方程为x 215+y 210=1. (3)由于焦点的位置不确定,可设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,∴b 2=12.故椭圆方程为x 216+y 212=1或y 216+x 212=1. 【点拨】(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过两点P 1(2,2),P 2(-3,-1)作一个椭圆,使它的中心在原点,焦点在x 轴上,求椭圆的方程,椭圆的长半轴、短半轴的长度以及离心率.解:根据题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),将两已知点坐标代入得⎩⎪⎨⎪⎧4a 2+4b 2=1,9a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=323,b 2=325.故椭圆方程为332x 2+532y 2=1,长半轴长a =323=436,短半轴长b =325=4105. ∵c 2=a 2-b 2=323-325=6415,∴离心率e =ca=c 2a 2=105.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为____________.解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4. 由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.解法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同, ∴其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0),∵c 2=16,且c 2=a 2-b 2,∴a 2-b 2=16.① 又点(3,-5)在所求椭圆上,∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得⎩⎪⎨⎪⎧a 2=20,b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.故填y 220+x 24=1.类型二 椭圆的离心率设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎥⎤0,22B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1解法一:由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. ∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c-c ,整理得13≤e 2<1,33≤e <1. ∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D . 【点拨】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.(2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是____________.解:设左焦点为F 1,由F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,得|OQ |=|OF |,又|OF 1|=|OF |,∴F 1Q ⊥QF .不妨设|QF 1|=ck ,则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a=ck +bk ,∴c a =a b +c ,即a 2=c 2+bc ,得b =c ,a =2c ,∴e =c a =22.故填22.类型三 椭圆的焦点三角形已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;(2)求证△F 1PF 2的面积只与椭圆的短轴长有关.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),P 点坐标为(x 0,y 0).(1)||PF 1=a +ex 0,||PF 2=a -ex 0. 在△F 1PF 2中,cos ∠F 1PF 2=||PF 12+||PF 22-||F 1F 222||PF 1·||PF 2=(a +ex 0)2+(a -ex 0)2-4c 22(a +ex 0)(a -ex 0)=cos60°=12,解得x 20=4c 2-a 23e2. ∵x 0∈(-a ,a ),∴x 20∈[0,a 2),0≤4c 2-a 23c 2a 2<a 2, 有0≤4c 2-a 2<3c 2,解得12≤e <1.∴椭圆离心率e ∈⎣⎢⎡⎭⎪⎫12,1. (2)证明:将x 20=4c 2-a 23e 2代入b 2x 20+a 2y 20=a 2b 2,求得y 20=b 43c 2,∴||y 0=b 23c . ∴S △F 1PF 2=12||y 0||F 1F 2=12·b 23c ·2c =33b 2.得证.【点拨】椭圆的焦点三角形是描述椭圆的焦距、焦半径之间的相互制约关系的一个载体.由于其位置、边的特殊性决定了它易于同椭圆的定义、长轴长、离心率等几何量发生联系,内容丰富多彩.(2014·安徽)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1,∵△ABF 2的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8, 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k ,由椭圆定义可得 |AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k .于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,因此|BF 2|2=|AF 2|2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,∴椭圆E 的离心率e =c a =22. 类型四 椭圆的弦长(2015·陕西)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解:(1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bc a =c2, 得a =2b =2a 2-c 2,解得离心率e =c a =32.(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其直线方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b21+4k2. 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.【点拨】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略对判别式的判断.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,则椭圆C 的方程为____________.解:由题意知离心率e =c a =23,c =23a ,由b 2=a 2-c 2,得b =53a ,∴椭圆C 的方程为x 2a2+9y25a2=1 .① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝ ⎛⎭⎪⎫x -23a ,与①联立得32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8.由|AB |=1+3|x 1-x 2|=2⎪⎪⎪⎪⎪⎪a 4-78a =54a =154,解得a =3,∴b =53a = 5.∴椭圆C 的方程为x 29+y 25=1.故填x 29+y 25=1. 类型五 椭圆中的最值问题(1)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解:由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6 ,∴|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.∴|PA |+|PF |的最大值为6+2,最小值为6- 2.(2)求A (0,2)到椭圆x 24+y 2=1上的动点的距离的最大值和最小值.解:设椭圆上的动点B (x ,y ),则|AB |=x 2+(y -2)2=-3y 2-4y +8=-3⎝ ⎛⎭⎪⎫y +232+283,∵点B 是椭圆上的点,∴-1≤y ≤1.∴|AB |的最大值为2213,最小值为1.(3)在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解:设所求点坐标为A (32cos θ,22sin θ),θ∈R ,由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+(-3)2=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2).【点拨】椭圆中距离的最值问题一般有3种解法:①利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );②根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上,如(2)中的点A );③用椭圆的参数方程设动点的坐标,转化为三角问题求解.(1)(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B.46+ 2 C .7+ 2D .6 2解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到椭圆的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ),则|MQ |=10cos 2θ+(sin θ-6)2=-9sin 2θ-12sin θ+46=-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,∴|PQ |max =52+2=6 2.故选D .(2)(2015·安徽合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为____________.解:设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.∴椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),∴PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.即当x 0=-2时,PF →·PA →取得最大值4.故填4.1.在运用椭圆的定义时,要注意“|F 1F 2|<2a ”这个条件,若|F 1F 2|=2a ,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F 1F 2|>2a ,则轨迹不存在.2.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n=1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.3.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出关于a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.4.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.5.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.6.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.7.椭圆中几个常用的结论:(1)焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段叫做椭圆的焦半径,分别记作r 1=||PF 1,r 2=||PF 2.①x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; ②y 2a 2+x 2b2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0; ③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;②S =b 2tan θ2=c ||y 0,当||y 0=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b2a.(4)AB 为椭圆x 2a2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 ①弦长l =1+k 2||x 1-x 2=1+1k2|y 1-y 2|;②直线AB 的斜率k AB =-b 2x 0a 2y 0. 以上常用结论在教材的例题与习题中都有体现.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.故选A .2.方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)D .(0,1)解:将方程x 2+ky 2=2变形为x 22+y 22k=1,根据椭圆的定义,要使焦点在y 轴,只须2k>2,解得0<k <1.故选D .3.(2014·全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1 解:由椭圆的定义知△AF 1B 的周长为4a =43,a = 3.由e =c a=c3=33,得c =1,∴b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选A .4.(2015·豫西五校联考)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为5,则b 的值是( )A .1B. 2C.32D. 3解:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,∴|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知,过椭圆焦点的弦中,通径最短,则2b2a=3,∴b 2=3,即b = 3.故选D .5.(2013·四川)从椭圆x 2a 2+y 2b 2=1()a >b >0上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解:由题意知A ()a ,0,B ()0,b ,AB →=()-a ,b ,P ⎝ ⎛⎭⎪⎫-c ,b 2a ,OP →=⎝ ⎛⎭⎪⎫-c ,b 2a ,∵AB∥OP ,∴AB →∥OP →,因此有()-a ·b 2a =b ·()-c ,解得b =c .∴a 2-b 2=a 2-c 2=c 2,得e =22.故选C .6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||AB =10,||BF =8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解:由余弦定理||AF 2=||BF 2+||AB 2-2||BF ·||AB cos ∠ABF =82+102-2×8×10×45=36,||AF =6,∵||AF 2+||BF 2=||AB 2,∴△AFB 为直角三角形.设椭圆的右焦点为F ′,连接AF ′,BF ′,由对称性知四边形AFBF ′为平行四边形. 又∵∠AFB =90°,∴四边形AFBF ′为矩形. ∴⎩⎨⎧2c =||FF ′=||AB =10,2a =||AF +||AF ′=||AF +||BF =14, 得⎩⎪⎨⎪⎧c =5,a =7.∴e =c a =57.故选B .7.(2015·乌鲁木齐调研)已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是__________.解:设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2,∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.故填⎣⎢⎡⎦⎥⎤33,22.8.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=____________.解:设MN 的中点为P ,椭圆C 的左、右焦点分别为F 1,F 2,连接PF 1,PF 2,则PF 1,PF 2分别为△ANM 与△BNM 的中位线,有|PF 1|=12|AN |,|PF 2|=12|BN |,又∵点P 在椭圆上,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2·2a =12.故填12.9.已知椭圆中心在原点,长轴在坐标轴上,离心率为53,短轴长为4,求椭圆的方程. 解:由题意得c a =53,2b =4, 又a 2=b 2+c 2,则有a 2=9,b 2=4, 于是椭圆方程为x 29+y 24=1或x 24+y 29=1.10.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.11.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解:(1)由题意知|BF 2|2=b 2+c 2=a 2=2,∵点C ⎝ ⎛⎭⎪⎫43,13在椭圆上,∴⎝ ⎛⎭⎪⎫432a2+⎝ ⎛⎭⎪⎫132b2=1,解得b 2=1.∴椭圆的方程为x 22+y 2=1.(2)易知BF 2→=(c ,-b ).∵点B (0,b ),F 2(c ,0)在直线AB 上, ∴直线AB 的方程为x c +y b=1. 设A (x 1,y 1),联立⎩⎪⎨⎪⎧x c +yb =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,∴点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c2-a 2)a 2+c 2. 又AC ⊥x 轴,∴由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a2-c 2)a 2+c 2. ∴F 1C →=⎝ ⎛⎭⎪⎫3a 2c +c3a 2+c 2,b 3a 2+c 2.又∵F 1C ⊥AB , ∴F 1C →·BF 2→=c 2(3a 2+c 2)a 2+c 2-b 4a 2+c 2=0,即c 2(3a 2+c 2)-(a 2-c 2)2=0,化简得5c 2=a 2,e 2=15,e =55.(2015·全国Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k,∴k OM ·k =-9,即直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.∵直线l 过点⎝ ⎛⎭⎪⎫m3,m ,∴l 不过原点且与椭圆C 有两个交点的充要条件是k >0,k ≠3.由(1)得直线OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入(1)中l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M ,于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.∵k >0,k ≠3,∴当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.。
§9.3椭圆及其性质考纲解读分析解读从近几年的高考试题来看,椭圆的定义、标准方程、几何性质以及直线与椭圆的位置关系一直是高考命题的重点和热点,离心率问题是每年高考考查的重点,多在选择题和填空题中出现,主要考查学生结合定义、几何性质等分析问题、解决问题的能力以及运算能力,分值为5分,属于中档题目;在解答题中主要以直线与椭圆的位置关系为考查对象,考查面较广,往往会和平面向量、函数、导数、不等式等知识相结合,在考查对椭圆基本概念和性质理解及应用的同时,又考查直线与圆锥曲线的位置关系,考查数形结合思想和转化与化归思想的应用.(1)设椭圆的离心率为e.由已知,可得(c+a)c=.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0<e<1,解得e=.所以,椭圆的离心率为.(2)(i)依题意,设直线FP的方程为x=my-c(m>0),则直线FP的斜率为.由(1)知a=2c,可得直线AE的方程为+=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=,y=,即点Q的坐标为.由已知|FQ|=c,有+=,整理得3m2-4m=0,所以m=,即直线FP的斜率为.(ii)由a=2c,可得b=c,故椭圆方程可以表示为+=1.由(i)得直线FP的方程为3x-4y+3c=0,与椭圆方程联立得消去y,整理得7x2+6cx-13c2=0,解得x=-(舍去),或x=c.因此可得点P,进而可得|FP|==,所以|PQ|=|FP|-|FQ|=-=c. 由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QN⊥FP,所以|QN|=|FQ|·tan∠QFN=×=,所以△FQN的面积为|FQ||QN|=,同理△FPM的面积等于,由四边形PQNM的面积为3c,得-=3c,整理得c2=2c,又由c>0,得c=2.所以,椭圆的方程为+=1.五年高考考点一椭圆的定义及其标准方程1.(2015广东,8,5分)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=( )A.2B.3C.4D.9答案 B2.(2014大纲全国,9,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C 于A、B两点.若△AF1B的周长为4,则C的方程为( )A.+=1B.+y2=1C.+=1D.+=1答案 A3.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|= .答案124.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=,由题意得x B=,从而y B=.由(1)知,F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA=∠MAO⇔|MA|=|MO|,即(x M-2)2+=+,化简得x M=1,即=1,解得k=-,或k=. 所以,直线l的斜率为-或.5.(2015重庆,21,12分)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.解析(1)由椭圆的定义,2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|===2,即c=,从而b==1.故所求椭圆的标准方程为+y2=1.(2)如图,连接QF1,由PF1⊥PQ,|PQ|=λ|PF1|,得|QF1|==|PF1|.由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,进而|PF1|+|PQ|+|QF1|=4a.于是(1+λ+)|PF1|=4a,解得|PF1|=,故|PF2|=2a-|PF1|=.由勾股定理得|PF1|2+|PF2|2=|F1F2|2=(2c)2=4c2,从而+=4c2,两边除以4a2,得+=e2.若记t=1+λ+,则上式变成e2==8+.由≤λ<,并注意到t=1+λ+关于λ的单调性,得3≤t<4,即<≤.进而<e2≤,即<e≤.6.(2015天津,19,14分)已知椭圆+=1(a>b>0)的上顶点为B,左焦点为F,离心率为.(1)求直线BF的斜率;(2)设直线BF与椭圆交于点P(P异于点B),过点B且垂直于BP的直线与椭圆交于点Q(Q异于点B),直线PQ 与y轴交于点M,|PM|=λ|MQ|.(i)求λ的值;(ii)若|PM|sin∠BQP=,求椭圆的方程.解析(1)设F(-c,0).由已知离心率=及a2=b2+c2,可得a=c,b=2c.又因为B(0,b),F(-c,0),故直线BF的斜率k===2.(2)设点P(x P,y P),Q(x Q,y Q),M(x M,y M).(i)由(1)可得椭圆的方程为+=1,直线BF的方程为y=2x+2c.将直线方程与椭圆方程联立,消去y,整理得3x2+5cx=0,解得x P=-.因为BQ⊥BP,所以直线BQ的方程为y=-x+2c,与椭圆方程联立,消去y,整理得21x2-40cx=0,解得x Q=.又因为λ=,及x M=0,可得λ===.(ii)由(i)有=,所以==,即|PQ|=|PM|.又因为|PM|sin∠BQP=,所以|BP|=|PQ|sin∠BQP=|PM|sin∠BQP=.又因为y P=2x P+2c=-c,所以|BP|==c,因此c=,得c=1.所以,椭圆方程为+=1.7.(2014天津,18,13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为 B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切.求直线l的斜率.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=·|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2.故椭圆方程为+=1.设P(x0,y0).由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c).由已知,有·=0,即(x0+c)c+y0c=0.又c≠0,故有x0+y0+c=0.①又因为点P在椭圆上,故+=1.②由①和②可得3+4cx0=0.而点P不是椭圆的顶点,故x0=-c,代入①得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1==-c,y1==c,进而圆的半径r== c.设直线l的斜率为k,依题意,直线l的方程为y=kx.由l与圆相切,可得=r,即=c,整理得k2-8k+1=0,解得k=4±.所以直线l的斜率为4+或4-.教师用书专用(8—10)8.(2013广东,9,5分)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是( )A.+=1B.+=1C.+=1D.+=1答案 D9.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的左焦点为F(-2,0),离心率为.(1)求椭圆C的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.解析(1)由已知可得,=,c=2,所以a=.又由a2=b2+c2,解得b=,所以椭圆C的标准方程是+=1.(2)设T点的坐标为(-3,m),则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0,所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.因为四边形OPTQ是平行四边形,所以=,即(x1,y1)=(-3-x2,m-y2).所以解得m=±1.此时,S四边形OPTQ=2S△OPQ=2×·|OF|·|y1-y2|=2=2.10.(2014辽宁,20,12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:y=x+交于A,B两点.若△PAB的面积为2,求C的标准方程.解析(1)设切点坐标为(x0,y0)(x0>0,y0>0),则切线斜率为-,切线方程为y-y0=-(x-x0),即x0x+y0y=4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S=··=,由+=4≥2x0y0知当且仅当x0=y0=时x0y0有最大值,即S有最小值,因此点P的坐标为(,).(2)设C的标准方程为+=1(a>b>0),点A(x1,y1),B(x2,y2).由点P在C上知+=1,并由得b2x2+4x+6-2b2=0,又x1,x2是方程的根,因此由y1=x1+,y2=x2+,得|AB|=|x1-x2|=·.由点P到直线l的距离为及S△PAB=×|AB|=2得b4-9b2+18=0,解得b2=6或3,因此b2=6,a2=3(舍)或b2=3,a2=6,从而所求C的方程为+=1.考点二椭圆的几何性质1.(2017浙江,2,5分)椭圆+=1的离心率是( )A. B. C. D.答案 B2.(2017课标全国Ⅰ,12,5分)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)答案 A3.(2016课标全国Ⅰ,5,5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( )A. B. C. D.答案 B4.(2016课标全国Ⅲ,12,5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A. B. C. D.答案 A5.(2015课标Ⅰ,5,5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=( )A.3B.6C.9D.12答案 B6.(2015浙江,15,4分)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.答案7.(2015安徽,20,13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点.证明:MN⊥AB.解析(1)由题设条件知,点M的坐标为,又k OM=,从而=.进而a=b,c==2b.故e==.(2)证明:由N是AC的中点知,点N的坐标为,可得=.又=(-a,b),从而有·=-a2+b2=(5b2-a2).由(1)的计算结果可知a2=5b2,所以·=0,故MN⊥AB.8.(2014课标Ⅱ,20,12分)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.解析(1)根据c=及题设知M,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.(2)由题意,知原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a,①由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1<0,则即代入C的方程,得+=1.②将①及c=代入②得+=1.解得a=7,b2=4a=28.故a=7,b=2.教师用书专用(9—14)9.(2013课标全国Ⅱ,5,5分)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为( )A. B. C. D.答案 D10.(2013辽宁,11,5分)已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A、B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为( )A. B. C. D.答案 B11.(2013四川,9,5分)从椭圆+=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是( )A. B. C. D.答案 C12.(2014江西,14,5分)设椭圆C:+=1(a>b>0)的左,右焦点为F1,F2,过F2作x轴的垂线与C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率等于.答案13.(2013福建,15,4分)椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.答案-114.(2014广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.解析(1)由题意得c=,∵e==,∴a=3,∴b==2,∴椭圆C的标准方程为+=1.(2)当过P点的两条切线的斜率均存在时,不妨设为k1、k2,则过P点的切线方程可设为y-y0=k(x-x0)⇒y=kx+y0-kx0,由消去y,有(4+9k2)x2+18k(y0-kx0)x+9[(y0-kx0)2-4]=0,Δ=[18k(y0-kx0)]2-4(4+9k2)×9[(y0-kx0)2-4]=0,整理得(9-)k2+2x0y0k-+4=0,∴k1k2=(x0≠±3),由已知得k1k2=-1,∴=-1,∴+=13,即此时点P的轨迹方程为+=13.当两条切线中有一条垂直于x轴时,此时两条切线方程应分别为x=3,y=2或x=-3,y=2或x=3,y=-2或x=-3,y=-2,P点坐标为(3,2)或(-3,2)或(3,-2)或(-3,-2),均满足方程+=13.综上所述,所求P点的轨迹方程为+=13.考点三直线与椭圆的位置关系1.(2017北京,19,14分)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE 与△BDN的面积之比为4∶5.解析(1)设椭圆C的方程为+=1(a>b>0).由题意得解得c=.所以b2=a2-c2=1.所以椭圆C的方程为+y2=1.(2)证明:设M(m,n),则D(m,0),N(m,-n).由题设知m≠±2,且n≠0.直线AM的斜率k AM=,故直线DE的斜率k DE=-.所以直线DE的方程为y=-(x-m).直线BN的方程为y=(x-2).联立解得点E的纵坐标y E=-.由点M在椭圆C上,得4-m2=4n2.所以y E=-n.又S△BDE=|BD|·|y E|=|BD|·|n|,S△BDN=|BD|·|n|,所以△BDE与△BDN的面积之比为4∶5.2.(2016课标全国Ⅱ,21,12分)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N 在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,证明:<k<2.解析(1)设M(x1,y1),则由题意知y1>0.由已知及椭圆的对称性知,直线AM的倾斜角为.又A(-2,0),因此直线AM的方程为y=x+2.(2分)将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×××=.(4分)(2)证明:将直线AM的方程y=k(x+2)(k>0)代入+=1得(3+4k2)x2+16k2x+16k2-12=0.由x1·(-2)=得x1=,故|AM|=|x1+2|=.由题设,直线AN的方程为y=-(x+2),故同理可得|AN|=.(7分)由2|AM|=|AN|得=,即4k3-6k2+3k-8=0.(9分)设f(t)=4t3-6t2+3t-8,则k是f(t)的零点, f '(t)=12t2-12t+3=3(2t-1)2≥0,所以f(t)在(0,+∞)内单调递增.又f()=15-26<0, f(2)=6>0,因此f(t)在(0,+∞)内有唯一的零点,且零点k在(,2)内,所以<k<2.(12分)3.(2016四川,20,13分)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P在椭圆E上.(1)求椭圆E的方程;(2)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.解析(1)由已知得,a=2b.又椭圆+=1(a>b>0)过点P,故+=1,解得b2=1.所以椭圆E的方程是+y2=1.(2)证明:设直线l的方程为y=x+m(m≠0),A(x1,y1),B(x2,y2),由方程组得x2+2mx+2m2-2=0,①方程①的判别式为Δ=4(2-m2),由Δ>0,即2-m2>0,解得-<m<.由①得x1+x2=-2m,x1x2=2m2-2.所以M点坐标为,直线OM的方程为y=-x,由方程组得C,D.所以|MC|·|MD|=(-m+)·(+m)=(2-m2).又|MA|·|MB|=|AB|2=[(x1-x2)2+(y1-y2)2]=[(x1+x2)2-4x1x2]=[4m2-4(2m2-2)]=(2-m2),所以|MA|·|MB|=|MC|·|MD|.4.(2015北京,20,14分)已知椭圆C:x2+3y2=3.过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.解析(1)椭圆C的标准方程为+y2=1.所以a=,b=1,c=.所以椭圆C的离心率e==.(2)因为AB过点D(1,0)且垂直于x轴,所以可设A(1,y1),B(1,-y1).直线AE的方程为y-1=(1-y1)(x-2).令x=3,得M(3,2-y1).所以直线BM的斜率k BM==1.(3)直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)可知k BM=1.又因为直线DE的斜率k DE==1,所以BM∥DE.当直线AB的斜率存在时,设其方程为y=k(x-1)(k≠1).设A(x 1,y 1),B(x 2,y 2),则直线AE 的方程为y-1=(x-2).令x=3,得点M .由得(1+3k 2)x 2-6k 2x+3k 2-3=0.所以x 1+x 2=,x 1x 2=.直线BM 的斜率k BM =.因为k BM -1==121221(-1)[-2()-3](3-)(-2)k x x x x x x ++==0,所以k BM =1=k DE . 所以BM∥DE.综上可知,直线BM 与直线DE 平行.5.(2015湖南,20,13分)已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:+=1(a>b>0)的一个焦点,C 1与C 2的公共弦的长为2.过点F 的直线l 与C 1相交于A,B 两点,与C 2相交于C,D 两点,且与同向.(1)求C 2的方程;(2)若|AC|=|BD|,求直线l 的斜率.解析 (1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.① 又C 1与C 2的公共弦的长为2,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y,由此易知C 1与C 2的公共点的坐标为,所以+=1.②联立①,②得a 2=9,b 2=8.故C 2的方程为+=1. (2)如图,设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).因与同向,且|AC|=|BD|,所以=,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③设直线l 的斜率为k,则l 的方程为y=kx+1.由得x 2-4kx-4=0.而x 1,x 2是这个方程的两根, 所以x 1+x 2=4k,x 1x 2=-4.④由得(9+8k 2)x 2+16kx-64=0.而x 3,x 4是这个方程的两根,所以x 3+x 4=-,x 3x 4=-.⑤将④,⑤代入③,得16(k 2+1)=+,即16(k 2+1)=,所以(9+8k 2)2=16×9,解得k=±,即直线l 的斜率为±.6.(2014陕西,20,13分)已知椭圆+=1(a>b>0)经过点(0,),离心率为,左,右焦点分别为F 1(-c,0),F 2(c,0). (1)求椭圆的方程;(2)若直线l:y=-x+m 与椭圆交于A,B 两点,与以F 1F 2为直径的圆交于C,D 两点,且满足=,求直线l 的方程.解析(1)由题设知解得a=2,b=,c=1,∴椭圆的方程为+=1.(2)由(1)知,以F1F2为直径的圆的方程为x2+y2=1,∴圆心到直线l的距离d=,由d<1得|m|<.(*)∴|CD|=2=2=.设A(x1,y1),B(x2,y2),由得x2-mx+m2-3=0,由根与系数关系可得x1+x2=m,x1x2=m2-3.∴|A B|==.由=得=1,解得m=±,满足(*).∴直线l的方程为y=-x+或y=-x-.教师用书专用(7—10)7.(2013安徽,21,13分)已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).(1)求椭圆C的方程;(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE.过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG.问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.解析(1)因为焦距为4,所以a2-b2=4.又因为椭圆C过点P(,),所以+=1,故a2=8,b2=4,从而椭圆C的方程为+=1.(2)由题意,得E点坐标为(x0,0),设D(x D,0),则=(x0,-2),=(x D,-2),再由AD⊥AE知,·=0,即x0x D+8=0.由于x0y0≠0,故x D=-.因为点G是点D关于y轴的对称点,所以点G.故直线QG的斜率k QG==.又因Q(x0,y0)在椭圆C上,所以+2=8.①从而k QG=-.故直线QG的方程为y=-.②将②代入椭圆C的方程,得(+2)x2-16x0x+64-16=0.③再将①代入③,化简得x2-2x0x+=0.解得x=x0,所以y=y0,即直线QG与椭圆C一定有唯一的公共点.8.(2013陕西,20,13分)已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.(1)求动点M的轨迹C的方程;(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率. 解析(1)设M到直线l的距离为d,根据题意得,d=2|MN|.由此得|4-x|=2,化简得+=1,所以动点M的轨迹方程为+=1.(2)解法一:由题意,设直线m的方程为y=kx+3,A(x1,y1),B(x2,y2).将y=kx+3代入+=1中,有(3+4k2)x2+24kx+24=0,其中,Δ=(24k)2-4×24(3+4k2)=96(2k2-3)>0,由根与系数的关系得x1+x2=-, ①x1x2=. ②又因A是PB的中点,故x2=2x1, ③将③代入①,②得x1=-,=,可得=,且k2>,解得k=-或k=,所以直线m的斜率为-或.解法二:由题意,设直线m的方程为y=kx+3,A(x1,y1),B(x2,y2).∵A是PB的中点,∴x1=, ①y1=. ②又+=1, ③+=1, ④联立①,②,③,④解得或即点B的坐标为(2,0)或(-2,0),所以直线m的斜率为-或.9.(2013重庆,21,12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A,A'两点,|AA'|=4.(1)求该椭圆的标准方程;(2)取平行于y轴的直线与椭圆相交于不同的两点P,P',过P,P'作圆心为Q的圆,使椭圆上的其余点均在圆Q 外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.解析(1)由题意知点A(-c,2)在椭圆上,则+=1.从而e2+=1.由e=得b2==8,从而a2==16.故该椭圆的标准方程为+=1.(2)由椭圆的对称性,可设Q(x0,0).又设M(x,y)是椭圆上任意一点,则|QM|2=(x-x0)2+y2=x2-2x0x++8=(x-2x0)2-+8(x∈[-4,4]).设P(x1,y1),由题意知,P是椭圆上到Q的距离最小的点,因此,上式当x=x1时取最小值,又因x1∈(-4,4),所以上式当x=2x0时取最小值,从而x1=2x0,且|QP|2=8-.由对称性知P'(x1,-y1),故|PP'|=|2y1|,所以S=|2y1||x1-x0|=×2|x0|==.当x0=±时,△PP'Q的面积S取到最大值2.此时对应的圆Q的圆心坐标为Q(±,0),半径|QP|==,因此,这样的圆有两个,其标准方程分别为(x+)2+y2=6,(x-)2+y2=6.10.(2013山东,22,14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设=t,求实数t的值.解析(1)设椭圆C的方程为+=1(a>b>0),由题意知解得a=,b=1.因此椭圆C的方程为+y2=1.(2)(i)当A,B两点关于x轴对称时,设直线AB的方程为x=m,由题意知-<m<0或0<m<.将x=m代入椭圆方程+y2=1,得|y|=.所以S△AOB=|m|=.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),因为P为椭圆C上一点,所以=1.②由①②得t2=4或t2=,又因为t>0,所以t=2或t=.(ii)当A,B两点关于x轴不对称时,设直线AB的方程为y=kx+h.将其代入椭圆的方程+y2=1,得(1+2k2)x2+4khx+2h2-2=0,设A(x1,y1),B(x2,y2). 由判别式Δ>0可得1+2k2>h2,此时x1+x2=-,x1x2=,y1+y2=k(x1+x2)+2h=,所以|AB|==2.因为点O到直线AB的距离d=,所以S△AOB=|AB|d=×2·=|h|.又S△AOB=,所以|h|=.③令n=1+2k2,代入③整理得3n2-16h2n+16h4=0,解得n=4h2或n=h2,即1+2k2=4h2或1+2k2=h2.④又=t=t(+)=t(x1+x2 ,y1+y2)=,因为P为椭圆C上一点,所以t2=1,即t2=1.⑤将④代入⑤得t2=4或t2=,又知t>0,故t=2或t=,经检验,适合题意.综合(i)(ii),得t=2或t=.三年模拟A组2016—2018年模拟·基础题组考点一椭圆的定义及其标准方程1.(2018宁夏银川一中月考,5)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方程为( )A.+=1B.+=1C.+=1D.+=1答案 C2.(2018广东惠州二调,10)设F1,F2为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( )A. B. C. D.答案 D3.(2017湖南长沙一模,5)椭圆的焦点在x轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )A.+=1B.+y2=1C.+=1D.+=1答案 C4.(2017河南三市联考,5)“mn>0”是“方程mx2+ny2=1表示椭圆”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案 A5.(2017甘肃兰州联考,6)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为( )A.+=1B.+=1C.+=1D.+=1答案 A6.(2016河南八市重点中学联考,14)在平面直角坐标系中,已知△ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆+=1上,则= .答案考点二椭圆的几何性质7.(2018黑龙江哈六中12月模拟,9)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A 是椭圆C上的点,则椭圆C的离心率为( )A. B. C. D.-1答案 D8.(2018河南百校联盟12月联考,5)已知椭圆C:+=1(a>b>0)与直线x=b在第一象限交于点P,若直线OP的倾斜角为30°,则椭圆C的离心率为( )A. B. C. D.答案 B9.(2017黑龙江哈六中模拟,13)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的2倍,则m的值为.答案考点三直线与椭圆的位置关系10.(2018河南开封调研,10)已知椭圆+=1(a>b>0)的一条弦所在直线方程是x-y+5=0,弦的中点坐标是M(-4,1),则椭圆的离心率是( )A. B. C. D.答案 C11.(2016天津和平调研考试,13)过椭圆+=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为.答案12.(2018湖南益阳、湘潭9月联考,20)已知椭圆E:+=1(a>b>0)经过点,离心率为.(1)求椭圆E的方程;(2)设点A、F分别为椭圆的右顶点、右焦点,经过点F作直线交椭圆于C,D两点,求四边形OCAD面积的最大值(O为坐标原点).解析(1)由题设得:解得∴椭圆方程为+=1.(2)设直线CD的方程为x=ky+1,与椭圆方程+=1联立得(3k2+4)y2+6ky-9=0.设C(x1,y1),D(x2,y2),∴y1+y2=- ,y1y2=-,∴S四边形OCAD=S△OCA+S△ODA=×2×|y1|+×2×|y2|=|y1-y2|====,其中t=,t≥1.∵t≥1,∴f(t)=3t+单调递增,∴3t+≥4,∴S四边形OCAD≤3(当且仅当k=0时取等号).故四边形OCAD的面积的最大值为3.B组2016—2018年模拟·提升题组(满分:75分时间:60分钟)一、选择题(每小题5分,共15分)1.(2018贵州贵阳摸底测试,12)P是椭圆+=1(a>b>0)上的一点,A为左顶点,F为右焦点,PF⊥x轴,若tan∠PAF=,则椭圆的离心率e为( )A. B. C. D.答案 D2.(2017江西上饶一模,10)设F1,F2为椭圆C1:+=1(a1>b1>0)与双曲线C2:-=1(a2>0,b2>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e1=,则双曲线C2的离心率e2为( )A. B. C. D.答案 B3.(2017江西九江模拟,10)已知椭圆+=1(a>b>0),F1,F2为椭圆的左、右焦点,O为坐标原点,点P为椭圆上一点,|OP|=a,且|PF1|,|F1F2|,|PF2|成等比数列,则椭圆的离心率为( )A. B. C. D.答案 D二、填空题(每小题5分,共15分)4.(2018江西赣中南五校联考,15)已知点P是圆F1:(x+1)2+y2=16上任意一点(F1是圆心),点F2与点F1关于原点对称,线段PF2的垂直平分线m分别与PF1,PF2交于M,N两点,则点M的轨迹方程为.答案+=15.(2017广东五校联考,16)已知椭圆C:+y2=1的两焦点为F1、F2,点P(x0,y0)满足0<+<1,则|PF1|+|PF2|的取值范围是.答案[2,2)6.(2016湖南长沙一中月考,15)如图,∠OFB=,△ABF的面积为2-,则以OA为长半轴,OB为短半轴,F为一个焦点的椭圆方程为.答案+=1三、解答题(每小题15分,共45分)7.(2018河南新乡一模,20)已知直线l:y=2x-2与椭圆Ω:+=1(m≠0)交于A,B两点.(1)求Ω的离心率;(2)若以线段AB为直径的圆C经过坐标原点,求Ω的方程及圆C的标准方程.解析(1)e====.(2)由得17x2-32x+16-4m2=0,设A(x1,y1),B(x2,y2),则Δ=(-32)2-68(16-4m2)>0,x1+x2=,x1x2=.由已知得·=x1x2+y1y2=x1x2+4(x1-1)(x2-1)=5x1x2-4(x1+x2)+4=0,即5·-4·+4=0,∴m2=1,且满足Δ>0.故Ω的方程为+y2=1.设圆C的圆心为(x0,y0),则x0==,y0=2(x0-1)=-.|AB|=·=.故圆C的标准方程为+=.8.(2018四川成都一模,8)已知椭圆C:+=1(a>b>0)的右焦点为F(,0),长半轴与短半轴长度之比等于2.(1)求椭圆C的标准方程;(2)设经过点A(1,0)的直线l与椭圆C相交于不同的两点M,N.若点B(0,1)在以线段MN为直径的圆上,求直线l的方程.解析(1)∵c=,=2,a2=b2+c2,∴a=2,b=1.∴椭圆的标准方程为+y2=1.(2)易知当直线l的斜率为0时,不合题意.当直线l的斜率不为0时,设直线l的方程为x=my+1,设M(x1,y1),N(x2,y2).由消去x可得(4+m2)y2+2my-3=0.∴Δ=16m2+48>0,y1+y2=,y1y2=.∵点B在以MN为直径的圆上,∴·=0.∴·=(my1+1,y1-1)·(my2+1,y2-1)=(m2+1)y1y2+(m-1)(y1+y2)+2=0,∴(m2+1)·+(m-1)·+2=0.整理,得3m2-2m-5=0,解得m=-1或m=.∴直线l的方程为x+y-1=0或3x-5y-3=0.9.(2017湖南六校联盟联考,20)已知椭圆E:+=1(a>b>0)的离心率为,点F1,F2是椭圆E的左、右焦点,过F1的直线与椭圆E交于A,B两点,且△F2AB的周长为8.(1)求椭圆E的标准方程;(2)动点M在椭圆E上,动点N在直线l:y=2上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.解析(1)由题意得解得a=2,b=,所以椭圆E的标准方程为+=1.(2)设原点O到直线l的距离为d.①若直线ON的斜率不存在,则|ON|=2,|OM|=2,所以|MN|=4,d==.②若直线ON的斜率存在,设直线OM的方程为y=kx(k≠0),代入+=1得x2=,∴y2=,易知直线ON的方程为y=-x,代入y=2,得N(-2k,2),|MN|2=|ON|2+|OM|2=(-2k)2+(2)2+=,则|MN|·d=|OM|·|ON|⇒d2==3,则d=.综上所述,原点O到直线MN的距离为定值.C组2016—2018年模拟·方法题组方法1 求椭圆标准方程的方法1.(2017河北衡水六调,8)已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为( )A.+=1B.-=1C.-=1D.+=1答案 D2.(2016河南三市调研,8)已知椭圆C:+=1(a>b>0)的离心率为,且与抛物线y2=x交于A、B两点,若△OAB(O 为坐标原点)的面积为2,则椭圆C的方程为( )A.+=1B.+y2=1C.+=1D.+=1答案 A方法2 求椭圆的离心率(范围)的方法3.(2018河北衡水中学六调,10)已知椭圆C:+=1(a>b>0)的左、右顶点分别为M,N,若在椭圆C上存在点H,使k MH k NH∈,则椭圆C的离心率的取值范围为( )A. B. C. D.答案 A4.(2018湖北武汉部分重点中学调研,11)已知A,B分别为椭圆+=1(0<b<3)的左、右顶点,P,Q是椭圆上关于x轴对称的不同两点,设直线AP,BQ的斜率分别为m,n,若点A到直线y=x的距离为1,则该椭圆的离心率为( )A. B. C. D.答案 B5.(2016福建厦门双十、南安一中、厦门海沧实验中学联考,9)已知直线l:y=kx+2过椭圆+=1(a>b>0)的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若L≥,则椭圆离心率e的取值范围是( )A. B. C. D.答案 B6.(2017河北百校联盟联考,14)已知椭圆C1:+=1(a>b>0)与椭圆C2:+=1(a>b>0)相交于A、B、C、D四点,若椭圆C1的一个焦点为F(-,0),且四边形ABCD的面积为,则椭圆C1的离心率e为.答案方法3 与直线和椭圆的位置关系有关问题的求解方法7.(2016河北唐山统考,11)平行四边形ABCD内接于椭圆+=1,直线AB的斜率k1=1,则直线AD的斜率k2=( )A. B.- C.- D.-2答案 B8.(2018湖北重点中学12月联考,21)已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),直线x=c交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.(1)求椭圆E的标准方程与离心率;(2)若直线l与椭圆E交于C、D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.解析(1)由题知解得∴椭圆E的标准方程为+=1,离心率e==.(2)易知直线l的斜率存在,设为k,设C(x1,y1),D(x2,y2),则∴+=0,∴+=0,又P(2,2)是线段CD的中点,∴x1+x2=4,y1+y2=4,∴k==-,故直线l的方程为y-2=-(x-2),化为一般形式即3x+4y-14=0.9.(2017广东七校第二次联考,20)已知圆E:x2+=经过椭圆C:+=1(a>b>0)的左、右焦点F1,F2,且与椭圆C在第一象限的交点为A,且F1,E,A三点共线,直线l交椭圆C于M,N两点,且=λ(λ≠0).(1)求椭圆C的方程;(2)当△AMN的面积取到最大值时,求直线l的方程.解析(1)∵圆E经过椭圆C的左、右焦点F1,F2,∴c2+=,解得c=.∵F1,E,A三点共线,∴AF1为圆E的直径.∴AF2⊥F1F2,∴|AF2|2=|AF1|2-|F1F2|2=9-8=1,∴2a=|AF1|+|AF2|=3+1=4,∴a=2.由a2=b2+c2,得b=,∴椭圆C的方程为+=1.(2)由(1)可得,点A的坐标为(,1),由题意知直线l的斜率为,设直线l的方程为y=x+m,联立得整理得x2+mx+m2-2=0,设M(x1,y1),N(x2,y2),由Δ=(m)2-4(m2-2)>0,得-2<m<2.∵∴|MN|=·=.又点A到直线l的距离d==|m|,∴S△AMN=|MN|d=·|m|=≤·=,当且仅当4-m2=m2,即m=±时,等号成立.∴当△AMN的面积取最大值时,直线l的方程为y=x+或y=x-.。
一、填空题1.设P 是椭圆x 225+y 216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于________.解析:由题意知a =5,∴|PF 1|+|PF 2|=2a =10. 答案:102.已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为________. 解析:由题意可知⎩⎪⎨⎪⎧2b =6,c a =45,a 2=b 2+c 2, 且a >0,b >0,c >0,解得a =5,b =3,c =4.∴椭圆C 的焦点F 到长轴的一个端点的距离为a +c =9或a -c =5-4=1. 答案:1或93.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的________条件. 解析:把椭圆方程化成x 21m +y 21n =1.若m >n >0,则1n >1m >0.所以椭圆的焦点在y 轴上.反之,若椭圆的焦点在y 轴上,则1n >1m >0即有m >n >0.故为充要条件. 答案:充要4.已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________. 解析:由x 2+y 2-2x -15=0, 知r =4=2a ⇒a =2.又e =c a =12,c =1,则b 2=a 2-c 2=3. 答案:x 24+y 23=15.若椭圆上存在点P ,使得点P 到两个焦点的距离之比为2∶1,则此椭圆离心率的取值范围是________.解析:设P 到两个焦点的距离分别为2k ,k ,根据椭圆定义可知:3k =2a ,又结合椭圆的性质可知.椭圆上的点到两个焦点距离之差的最大值为2c ,即k ≤2c ,∴2a ≤6c ,即e ≥13. 答案:[13,1)6.已知F 1,F 2分别是椭圆x 28+y 24=1的左、右焦点,P 是椭圆上的任意一点,则|PF 1-PF 2|PF 1的取值范围是________.解析:显然当PF 1=PF 2时,|PF 1-PF 2|PF 1=0.由椭圆定义得PF 2=42-PF 1,从而|PF 1-PF 2|PF 1=|2PF 1-42|PF 1=⎪⎪⎪⎪⎪⎪42PF 1-2.而22-2≤PF 1≤22+2,所以4222+2≤42PF 1≤4222-2,故⎪⎪⎪⎪⎪⎪42PF 1-2≤2+2 2.综上所述,|PF 1-PF 2|PF 1∈[0,22+2]. 答案:[0,22+2]7.已知椭圆的中心在原点,焦点在y 轴上,若其离心率为12,焦距为8,则该椭圆的方程是________.解析:由题意知,2c =8,c =4, ∴e =c a =4a =12, ∴a =8,从而b 2=a 2-c 2=48, ∴方程是y 264+x 248=1. 答案:y 264+x 248=18.已知P 是椭圆x 212+y 24=1上的动点,F 1,F 2是椭圆的两个焦点,则PF 1→·PF 2→的取值范围为________________.解析:解法一 (利用三角代换)设椭圆上任意一点为P (x 0,y 0),所以⎩⎨⎧x 0=23cos θ,y 0=2sin θ(其中θ为参数),椭圆的左、右焦点分别为F 1(-22,0),F 2(22,0),所以PF 1→=(-22-x 0,-y 0),PF 2→=(22-x 0,-y 0).所以PF 1→·PF 2→=x 20+y 20-8=12cos 2 θ+4sin 2 θ-8=8cos 2 θ-4∈[-4,4].解法二 (转换成二次函数)设椭圆上任意一点为P (x 0,y 0),椭圆的左、右焦点分别为F 1(-22,0),F 2(22,0), 所以PF 1→=(-22-x 0,-y 0), PF 2→=(22-x 0,-y 0).所以PF 1→·PF 2→=x 20+y 20-8,该式表示椭圆上任意一点到原点的距离的平方与8的差.因为椭圆上任意一点到原点的距离最小值为短半轴b =2,距离最大值为长半轴a =2 3.所以x 20+y 20∈[4,12],所以PF 1→·PF 2→=x 20+y 20-8∈ [-4,4]. 答案:[-4,4]9.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为________.解析:当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =c a =c b 2+c 2=c 2c =22;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为m ,故有2c =m,2a =(1+2)m ,所以,离心率e =c a =2c 2a =m(1+2)m =2-1.答案:22或2-1 二、解答题10.已知椭圆C 的中心在原点,一个焦点为F (-2,0),且长轴长与短轴长的比是2∶ 3.(1)求椭圆C 的方程;(2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当|MP →|最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围. 解析:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意,得⎩⎨⎧a 2=b 2+c 2,a ∶b =2∶3,c =2.解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.(2)设P (x ,y )为椭圆上的动点,由于椭圆方程为x 216+y 212=1,故-4≤x ≤4. 因为MP →=(x -m ,y ),所以|MP →|2=(x -m )2+y 2=(x -m )2+12·(1-x 216)=14x 2-2mx +m 2+12=14(x -4m )2+12-3m 2.因为当|MP →|最小时,点P 恰好落在椭圆的右顶点, 即当x =4时,|MP →|2取得最小值.而x ∈[-4,4], 故有4m ≥4,解得m ≥1.又点M 在椭圆的长轴上,所以-4≤m ≤4. 故实数m 的取值范围是[1,4].11.已知椭圆C 的中心为坐标原点,一个长轴端点为(0,1),短轴端点和焦点所组成的四边形为正方形.若直线l 与y 轴交于点P (0,m ),与椭圆C 交于不同的两点A 、B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求实数m 的取值范围. 解析:(1)依题意a =1,b =c ,∴b 2=12,∴所求椭圆C 的方程为2x 2+y 2=1.(2)设直线l :y =kx +m ,消去y 得(k 2+2)x 2+2kmx +m 2-1=0, Δ=4k 2m 2-4(k 2+2)(m 2-1) =-4(2m 2-k 2-2)>0, ∴2m 2-k 2-2<0,∵AP →=3PB →,设A (x 1,y 1),B (x 2,y 2),则x 1+3x 21+3=0,∴x 1=-3x 2,又∵x 1+x 2=-2kmk 2+2,x 1x 2=m 2-1k 2+2.∴消去x 1得⎩⎪⎨⎪⎧2x 2=2kmk 2+2,3x 22=-m 2-1k 2+2,消去x 2得3k 2m 2=(k 2+2)(1-m 2), ∴k 2=2-2m 24m 2-1.∴2m 2-2-2-2m24m 2-1<0⇒(m 2-1)(4m 2-1)<0,∴m ∈(-1,-12)∪(12,1).12.已知中心在原点O ,焦点在x 轴上的椭圆C 的离心率为32,点A ,B 分别是椭圆C 的长轴、短轴的端点,点O 到直线AB 的距离为655(如图所示). (1)求椭圆C 的标准方程;(2)已知点E (3,0),设点P 、Q 是椭圆C 上的两个动点,满足EP ⊥EQ ,求EP →·QP →的取值范围.解析:(1)由离心率e =c a =32,得b a =1-e 2=12. ∴a =2b .①∵原点O 到直线AB 的距离为655, ∴ab a 2+b 2=655.②①代入②,得b 2=9.∴a 2=36.则椭圆C 的标准方程为x 236+y29=1. (2)∵EP ⊥EQ ,∴EP →·EQ →=0. ∴EP →·QP →=EP →·(EP →-EQ →)=EP 2→.设P (x ,y ),则x 236+y 29=1,即y 2=9-x24.∴EP →·QP →=EP 2→=(x -3)2+y 2=x 2-6x +9+(9-x 24)=34(x -4)2+6. ∵-6≤x ≤6,∴6≤34(x -4)2+6≤81. 则EP →·QP →的取值范围为[6,81].。
一,填空题
1.设P 是椭圆x 225+y 216=1上的点.若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于________.
解析:由题意知a =5,∴|PF 1|+|PF 2|=2a =10.
答案:10
2.已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端
点的距离为________.
解析:由题意可知⎩⎪⎨⎪⎧ 2b =6,c a =45,
a 2=
b 2+
c 2, 且a >0,b >0,c >0,
解得a =5,b =3,c =4.
∴椭圆C 的焦点F 到长轴的一个端点的距离为a +c =9或a -c =5-4=1. 答案:1或9
3.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的________条件.
解析:把椭圆方程化成x 21m +y 21n
=1.若m >n >0,则1n >1m >0.所以椭圆的焦点在y 轴上.反
之,若椭圆的焦点在y 轴上,则1n >1m >0即有m >n >0.故为充要条件.
答案:充要
4.已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x
-15=0的半径,则椭圆的标准方程是________.
解析:由x 2+y 2-2x -15=0,
知r =4=2a ⇒a =2.
又e =c a =12,c =1,则b 2=a 2-c 2=3.
答案:x 24+y 23=1
5.若椭圆上存在点P ,使得点P 到两个焦点的距离之比为2∶1,则此椭圆离心率的取值范围是________.
解析:设P 到两个焦点的距离分别为2k ,k ,根据椭圆定义可知:3k =2a ,又结合椭圆的性质可知.椭圆上的点到两个焦点距离之差的最大值为2c ,即k ≤2c ,
∴2a ≤6c ,即e ≥13.
答案:[13,1)
6.已知F 1,F 2分别是椭圆x 28+y 24=1的左,右焦点,P 是椭圆上的任意一点,则|PF 1-PF 2|
PF 1的取值范围是________.
解析:显然当PF 1=PF 2时,|PF 1-PF 2|PF 1
=0.由椭圆定义得PF 2=42-PF 1,从而|PF 1-PF 2|PF 1=|2PF 1-42|PF 1=⎪⎪⎪⎪⎪⎪42PF 1-2.而22-2≤PF 1≤22+2,所以4222+2
≤42PF 1≤4222-2
,故⎪⎪⎪⎪⎪⎪42PF 1-2≤2+2 2.综上所述,|PF 1-PF 2|PF 1∈[0,22+2]. 答案:[0,22+2]
7.已知椭圆的中心在原点,焦点在y 轴上,若其离心率为12,焦距为8,则该椭
圆的方程是________.
解析:由题意知,2c =8,c =4,
∴e =c a =4a =12,
∴a =8,
从而b 2=a 2-c 2=48,
∴方程是y 264+x 248=1.
答案:y 264+x 248=1
8.已知P 是椭圆x 212+y 24=1上的动点,F 1,F 2是椭圆的两个焦点,则PF 1→·PF 2→的取值范围为________________.
解析:解法一 (利用三角代换)设椭圆上任意一点为P (x 0,y 0),所以⎩⎪⎨⎪⎧
x 0=23cos θ,y 0=2sin θ
(其中θ为参数),椭圆的左,右焦点分别为F 1(-22,0),F 2(22,0),所以PF 1→=(-22-x 0,-y 0),PF 2→=(22-x 0,-y 0).所以PF 1→·PF 2
→=x 20+y 20-8=12cos 2 θ+4sin 2 θ-8=8cos 2 θ-4∈[-4,4]. 解法二 (转换成二次函数)设椭圆上任意一点为P (x 0,y 0),椭圆的左,右焦点分别为F 1(-22,0),F 2(22,0),
所以PF 1→=(-22-x 0,-y 0),
PF 2→=(22-x 0,-y 0).
所以PF 1→·PF 2→=x 20+y 20-8,该式表示椭圆上任意一点到原点的距离的平方与8的差.因为椭圆上任意一点到原点的距离最小值为短半轴b =2,距离最大值为长
半轴a =2 3.所以x 20+y 20∈[4,12],
所以PF 1→·PF 2→=x 20+y 20-8∈ [-4,4].
答案:[-4,4]
9.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为________.
解析:当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,
此时可求得离心率e =c a =c
b 2+
c 2=c 2c
=22;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为m ,故有2c =m,2a =(1+2)m ,所以,离心率e =c a =2c 2a =m (1+2)m =2-1. 答案:22或2-1
二,解答题
10.已知椭圆C 的中心在原点,一个焦点为F (-2,0),且长轴长与短轴长的比是2∶ 3.
(1)求椭圆C 的方程;
(2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当|MP →|最小时,点
P 恰好落在椭圆的右顶点,求实数m 的取值范围. 解析:(1)设椭圆C 的方程为x 2a 2+y 2
b 2=1(a >b >0).
由题意,得⎩⎪⎨⎪⎧ a 2=b 2+c 2,a ∶b =2∶
3,c =2.
解得a 2=16,b 2=12.
所以椭圆C 的方程为x 216+y 2
12=1.
(2)设P (x ,y )为椭圆上的动点,由于椭圆方程为x 216+y 2
12=1,故-4≤x ≤4.
因为MP →=(x -m ,y ),
所以|MP →|2=(x -m )2+y 2=(x -m )2+12·(1-x 216)=14x 2-2mx +m 2+12=14(x -4m )2+12-3m 2.
因为当|MP →|最小时,点P 恰好落在椭圆的右顶点,
即当x =4时,|MP →|2取得最小值.而x ∈[-4,4],
故有4m ≥4,解得m ≥1.
又点M 在椭圆的长轴上,所以-4≤m ≤4.
故实数m 的取值范围是[1,4].
11.已知椭圆C 的中心为坐标原点,一个长轴端点为(0,1),短轴端点和焦点所组成的四边形为正方形.若直线l 与y 轴交于点P (0,m ),与椭圆C 交于不同的两
点A ,B ,且AP →=3PB →.
(1)求椭圆C 的方程;
(2)求实数m 的取值范围.
解析:(1)依题意a =1,b =c ,
∴b 2=12,
∴所求椭圆C 的方程为2x 2+y 2=1.
(2)设直线l :y =kx +m ,消去y 得(k 2+2)x 2+2kmx +m 2-1=0,
Δ=4k 2m 2-4(k 2+2)(m 2-1)
=-4(2m 2-k 2-2)>0,
∴2m 2-k 2-2<0,
∵AP →=3PB →,设A (x 1,y 1),B (x 2,y 2),则x 1+3x 21+3
=0, ∴x 1=-3x 2,
又∵x 1+x 2=-2km
k 2+2,x 1x 2=m 2-1k 2+2.
∴消去x 1得⎩⎪⎨⎪⎧ 2x 2=2km k 2+2,3x 22=-m 2
-1k 2+2,
消去x 2得3k 2m 2=(k 2+2)(1-m 2),
∴k 2=
2-2m 24m 2-1.
∴2m 2-2-2-2m 2
4m 2-1
<0⇒(m 2-1)(4m 2-1)<0, ∴m ∈(-1,-12)∪(12,1).
12.已知中心在原点O ,焦点在x 轴上的椭圆C 的离心率为32,点A ,B 分别是椭圆C 的长轴,短轴的端点,点O
到直线AB 的距离为655(如图所示).
(1)求椭圆C 的标准方程;
(2)已知点E (3,0),设点P ,Q 是椭圆C 上的两个动点,满足EP ⊥EQ ,求EP →·QP
→的取值范围.
解析:(1)由离心率e =c a =32,得b a =
1-e 2=12.
∴a =2b .①
∵原点O 到直线AB 的距离为655, ∴ab
a 2+
b 2=655.②
①代入②,得b 2=9.∴a 2=36.
则椭圆C 的标准方程为x 236+y 29=1.
(2)∵EP ⊥EQ ,∴EP →·EQ →=0.
∴EP →·QP →=EP →·(EP →-EQ →)=EP 2→.
设P (x ,y ),则x 236+y 29=1,即y 2=9-x 24.
∴EP →·QP →=EP 2→=(x -3)2+y 2=x 2-6x +9+(9-x 24)=34(x -4)2+6.
∵-6≤x ≤6,∴6≤34(x -4)2+6≤81.
则EP →·QP →的取值范围为[6,81].。