燃气蒸汽联合循环及热平衡计算.pdf
- 格式:pdf
- 大小:2.15 MB
- 文档页数:39
燃气轮机部分计算已知及选取值:燃气轮机轴功率P gt(KW)77100燃料热值H u(KJ/Kg)大气温度T a(K)288进气道压损率εc大气压力P a(Mpa)0.1013燃烧室压损率εb压气机内效率ηc0.9排气道压损率εt透平内效率ηt0.92烟气泄露系数μc1燃烧室内效率ηb0.98压缩比π整体效率ηm0.99燃烧温度T3﹡(K)C pa[KJ/(Kg*K)] 1.03k aC pg[KJ/(Kg*K)] 1.2K g燃料碳氢比x 3.72过量空气系数α计算部分:⑴在压缩机内⑵在燃烧室中T1*(K)288T3*(K)T2s*(K)633.97426q b(KJ/Kg)△T cs(K)345.97426燃料空气比f△T c(K)384.41584f在0.02~0.03之间,0.0227614符合要求T2*(K)672.41584压气机压缩功ωc395.94832⑶在透平内⑷整体性能πt15.835347比功ωn(KJ/Kg)T4s﹡(K)837.443空气流量q m(Kg/s)△T ts(K)785.557燃料流量q mf(Kg/s)△T t(K)722.71244循环效率ηgt排气温度T4﹡(K)900.28756烟气流量q mgs(Kg/s)透平膨胀功ωt(KJ/Kg)867.25493烟气焓h mgs(KJ/Kg)余热锅炉部分计算56263输入烟气焓Q r(KJ/Kg)1075.0080.01排烟温度t py(℃)1300.03排烟焓h py(KJ/Kg)2100.03排烟损失q20.1953470.05散热损失q50.00517灰渣损失q60 1623化学未完全燃烧损失q301.386机械未完全燃烧损失q401.315锅炉总损失∑q0.2003471.1锅炉热效率ηg l0.799653锅炉有效利用热Q1(KJ/Kg)859.6329给水温度t gs(℃)104 1623给水压力P gs(Mpa)0.12 1255.011682给水焓hgs(KJ/Kg)435.950.022761391高压过热蒸汽压力P gy(MPa)8 227614符合要求高压过热蒸汽温度t gy(℃)550高压过热蒸汽焓h gy(KJ/Kg)3519.74低压过热蒸汽压力P dy(MPa)0.72低压过热蒸汽温度t dy(℃)250低压过热蒸汽焓h dy(KJ/Kg)2953.3 466.5935406高压蒸汽流量D gy(t/h)126 165.2401786低压蒸汽流量D dy(t/h)34.519623.761096383总蒸汽流量D(t/h)160.51960.364348537锅炉额定容量D c(t/h)165176.24902821075.0079t/h总烟气利用能(KJ/s)151509.4563锅炉高压蒸汽最高流量(Kg/s)43.0456*******.9643锅炉低压蒸汽最高流量(Kg/s)51.30174933184.6863取高压蒸汽流量(Kg/s)35126低压蒸汽流量(Kg/s)9.58878417434.51962排汽量Dpq(t/h)汽机输出功率(KW)发电机额定功率(KW)汽轮机部分汽机高压进气量D0ˊ(t/h)126汽机低压进气量D0〞(t/h)17.20202138汽机高压蒸汽进气压力P0′(MPa)8汽机高压蒸汽进气温度t0′(℃)550汽机高压蒸汽进气焓h0′(KJ/Kg)3519.74汽机低压蒸汽进气压力P0″(MPa)0.72汽机低压蒸汽进气温度t0″(℃)250汽机低压蒸汽进气焓h0″(KJ/Kg)2953.3高压进气处熵值S0′(KJ/(Kg.K)) 6.8775在1MPa进汽处:查P-S图可知:抽汽温度t1′(℃)238.93抽汽焓h1′(KJ/Kg)2918.1464抽汽量D1(t/h)60抽汽后蒸汽流量D1′66在0.72MPa进气处:查P-S图可知:原高压蒸汽焓h2′(KJ/Kg)2846.327两股蒸汽汇合后总蒸汽焓h2(KJ/Kg)2868.443672查P-h图可知:汇合后蒸汽温度t2(℃)211.2汇合后蒸汽熵S2(KJ/(Kg.K)) 6.9236汇合后蒸汽流量D2(t/h)83.20202138在0.06MPa抽汽处:查P-S图可知:抽汽温度t3′(℃)86抽汽焓h3′(KJ/Kg)2434.9419抽汽量D3(t/h)14.88851935排气压力Dpq(Mpa)0.005排气温度tpq(℃)33排气焓hpq(KJ/Kg)2111.0535排汽量Dpq(t/h)68.40202138汽机输出功率(KW)38485.60542发电机额定功率(KW)40000出水量160.5196出水压力0.12出水温度104出水焓435.95除氧器加热给水参数:压力0.72温度250比焓2953.3 0.06MPa抽汽加热后参数:压力0.06温度70比焓292.9962流量14.8排气冷却后参数:压力0.005温度30比焓125.6643补水参数:压力0.1013温度30比焓138.287加热除氧器用汽量17.3176补给水流量(t/h)42.6824汽机排气量(t/h)68.40202排气冷凝后温度30排气冷凝后焓值125.6643冷却水进入温度15冷却水进入焓63.5142冷却水排出温度20冷却水排出焓83.9548冷却水量(t/h)6643.867冷却水密度1000冷却水流速(m/s) 1.5所需流通截面 1.230346管径(m)0.025管数2506.442取管数2507传热系数K(W/(m2℃)3000热损失系数0.98传热量(KW)36969.04逆流时的对数平均温差13.92362温差损失系数0.97有效平均温差13.50591需要传热面积912.4165每根管长 4.633924取标准长5校正传热面积984.4966超出范围0.078999 0.1到0.2之间符合要求烟筒中烟气进气温度130烟气进气焓210烟气进气流量(t/h)634.5烟气排气温度80烟气排气焓128.5烟气排气流量(t/h)634.5换热器换热量(KW)14364.38热水进入温度20热水进口焓83.9548热水流量(t/h)500热水出口焓187.3783出口热水温度44.64查得换热器换热系数116逆流时的对数平均温差71.93652温差修正系数0.97修正温差69.77842热损失系数0.95换热量(KW)13646.16需要的传热面积(m2)1635.321翅化率23.4进汽温度86进汽压力0.06进汽焓2434.942热水进入温度44.64热水进口焓187.3783热水出口温度60热水出口焓251.1591热水流量(t/h)500换热量(KW)8858.444蒸汽冷凝后出口温度70蒸汽冷凝后出口焓292.9962蒸汽抽汽量(t/h)14.88852换热器换热系数3000逆流时的对数平均温差25.67867温差修正系数0.97有效平均温差24.90831需要传热面积118.5474选取管子直径(m)0.025管厚0.0025热水流速(m/s) 1.5流通截面积(m2)0.092593需要管子数188.6281取整数190管子长度 3.972084取标准长度4。
燃气-蒸汽联合循环热效率的估算方法研究摘要:以燃气-蒸汽联合循环系统为基础,根据黑箱子原理和热力学能量平衡定律考虑系统进入的总能与输出的总能,建立分析模型,给出燃气-蒸汽循环系统各设备的能量平衡和热效率的估算方法,并与精确计算相比较,得出估算方法是可行的。关键词:燃气-蒸汽联合循环;热效率;估算Efficiency Estimation Method of Gas-steam Combined Cycle Thermal Efficiency Abstract: With gas and steam combined cycle system as the foundation, according to the black box principle and thermodynamic energy balance principle, a analysis model was built and a estimation method involved in energy balance and thermal efficiency of gas and steam combined cycle system unit was given in the paper. Compared with precise calculation, the estimation method is feasible.Key words: gas and steam combined cycle; thermal efficiency; estimation燃气-蒸汽联合循环是目前世界上供电效率最高的发电方式之一,其最高的供电效率已接近60%,较之传统的蒸汽发电方式供电效率提高近20个百分点[1,2]。燃气-蒸汽联合循环是将天然气(包括焦炉煤气和高炉煤气)在燃气轮机的燃烧室中进行燃烧,产生的高温烟气在燃气透平中做功,燃气轮机排气的热量进入余热锅炉加热水产生蒸汽,然后蒸汽在蒸汽轮机做功。整体循环系统利用了烟气和蒸汽两种工质,将勃莱敦循环和朗肯循环联系在一起,提高了整个系统的热效率。燃气-蒸汽联合循环系统主要是由压气机、燃气轮机、余热锅炉、蒸汽轮机等设备组成[3,4],其结构示意图如图1所示。对采用燃气-蒸汽联合循环发电电厂的能量的平衡计算和热效率的精确计算是十分困难的。但是在实际工程中又需要了解联合循环系统中能量被转化和利用的份额,以便可以找到提高循环热效率的有效途径,这就需要一种估算循环热效率的方法。研究以整体循环系统为基础,把整个循环系统作为一个黑匣子[5,6],根据热力学能量平衡定律考虑能量进入的总能与能量输出的总能,建立分析模型,给出燃气-蒸汽循环系统的能量平衡和热效率的估算方法。1分析模型的建立以进入燃烧室的天然气为基准,建立模型计算循环热效率。将系统进行简化,简化后的系统如下:能量在燃气轮机中只有做功和进入余热锅炉;余热锅炉内能量部分产生蒸汽,其余全部以烟气排向大气;进入蒸汽轮机的能量只有做功与经冷凝器损失到环境中去;并且忽略设备间能量传递的损失。整个系统中输入的能量只有燃烧的天然气所含有的能量以及这些天然气完全燃烧所需要的空气携带的能量,输出的能量为余热锅炉中排烟携带的能量、经冷凝器损失的能量和做功输出的能量。分析模型如图2所示。设进入燃烧室的天然气含有的能量为Q入,天然气完全燃烧所需空气所携带的能量为Qa,燃气轮机的循环效率为ηgt,余热锅炉的效率为ηh,蒸汽轮机的效率为ηst,则能量在各设备中的分布如下。在燃烧室中的能量分布为:Q入×ηr+Qa=Qs (1)式中Qs为进入燃气轮机的总能量;ηr为燃烧室的效率。在燃气轮机中的能量分布为:(Q入×ηr+Qa)×ηgt+Qh=Qs(2)式中Qh为进入余热锅炉的能量。在余热锅炉中的能量分布为:Qh=Qh×ηh+Q烟(3)式中Q烟为在余热锅炉中经烟气排向环境的能量。在蒸汽轮机中的能量分布为:Q1=Q1×ηst+Q冷(4)式中Q1为进入蒸汽轮机中的能量;Q冷为蒸汽轮机中经冷凝器冷却所损失的能量。在循环系统中输入的总能量为Q入+Qa,输出的能量只有余热锅炉排烟而损失的热量Q烟,蒸汽轮机经冷凝器损失的热量Q冷、燃气轮机和蒸汽轮机产生的电能(Q入+Qa)×ηgt+Q1ηst。则该循环系统中损失的能量之和为Q冷+Q烟,利用的能量之和为(Q入+Qa)×ηgt+Q1ηst,循环的热效率为:ηcc= (5)2实例计算与分析有某一燃气-蒸汽联合循环系统,环境温度为30℃,其各设备的利用效率:燃气轮机燃烧室的效率为ηr1=0.98,燃气轮机的循环效率为ηgt=0.37,余热锅炉的热效率为ηh=0.75,蒸汽轮机的循环效率为ηst=0.33,燃料为四川纳溪天然气,其组成成分如表1。则天然气完全燃烧所需的空气量为:VK=0.5H2*+0.5CO*+2CH4*+1.5H2S*+m+CmHn*(6)式中:H2*,CO*,CH4*,H2S*,CmHn*表示燃料中各种可燃成分的容积百分比。空气在30℃时的焓值为373.01 kJ/Nm3则总能量Q总=Q入+Qa=3 504.5 kJ+35 588 kJ=39 092.5 kJ。由公式(1)~(4),可以得出循环系统中各设备中能量利用和损失的情况,如表2所示。由表2可知,系统做功的热能总量是20 185.39 kJ,损失的总能为18 907.12 kJ,循环的热效率为ηcc=51.63%,其中在循环的热效率中,燃气轮机做功的热效率为36.33%,蒸汽轮机做功的热效率为15.30%,在循环效率中燃气轮机与蒸汽轮机作功之比约为2∶1。在能量的损失分布中燃烧室损失的热效率为1.82%;余热锅炉损失的热能为15.46%;蒸汽轮机损失的热能为29.43%。在燃气-蒸汽循环系统的设备中能量的损失大小依次为蒸汽轮机、余热锅炉、燃烧室、燃气轮机。在联合循环中燃气轮机的热效率高于蒸汽轮机,所以提高燃气轮机ηgt的作用将比同样程度的提高蒸汽轮机的ηst对于改善循环效率ηcc的效果更明显。而提高燃气轮机燃烧室出口温度(亦即燃气轮机进气温度)T3、降低大气环境温度。
燃气-蒸汽联合循环王小亮(学号:1090230113 班级:0902301)摘要:本文介绍上海发电设备成套设计研究所在整体煤气化燃气-蒸汽联合循环(IGCC)和第二代增压流化床联合循环(PFBC)关键技术方面的研究概况。
关键词:洁净煤技术联合循环发电煤气化燃烧室磨蚀试验1. 引言“煤的洁净燃烧”技术是当前各工业发达国家都十分重视的研究领域,燃煤燃气-蒸汽联合循环由于能较大幅度提高火力发电厂的热效率,并使污染问题获得解决,因而成为最有发展前途的发电技术。
我国是以燃煤为主的国家,电力工业中燃煤发电厂的装机容量占总装机容量的70%以上。
同时,燃煤发电厂又是严重的污染源,全国SO2总排放量的三分之一,NO X和粉尘总排放量的一半由燃煤发电厂产生。
所以我国对“洁净煤技术”也十分重视,七十年代末国家科委就开始部署“煤的洁净燃烧”发电技术的研究工作。
上海发电设备成套设计研究所在“六五”到“八五”期间先后承担了国家科委下达的燃煤燃气-蒸汽联合循环项目中的“低热值煤气燃气轮机关键技术研究”、“常压流化床空气埋管传热试验研究”、“第二代增压流化床联合循环发电关键技术研究”等科技攻关课题。
在吸收国外先进技术的基础上,成功地开展了对上述关键技术的攻关,取得了科研成果。
本文将介绍这些科技攻关课题的研究概况。
2. 低热值煤气燃气轮机关键技术研究整体煤气化燃气-蒸汽联合循环(IGCC)是“煤的洁净燃烧”发电技术的一个重要方式。
在IGCC中的燃气轮机必须可靠地燃烧气化炉产生的中、低热值煤气,标准的燃气轮机产品必须经过对燃烧系统改造方能满足IGCC的要求。
1981年国家科委布置了燃煤联合循环发电的关键技术科研攻关工作,上海发电设备成套设计研究所承担了“燃用低热值煤气的燃气轮机技术研究”课题,研究内容包括“低热值煤气燃气轮机燃烧室试验研究”和“低热值煤气燃气轮机燃料调节系统试验研究”两个方面。
课题攻关于1990年10月完成,并通过了国家科委和机械工业部组织的专家鉴定,主要研究成果有:2.1建立了国内第一套使用配制组合压缩气体为燃料的气体燃料燃烧室试验台,可进行燃气轮机燃烧室燃油、燃气或油气混燃的低压模化试验,配置了供油、供气体燃料的燃料系统、空气供应系统及燃烧室试验控制系统。
IndexCCA9123NGr0101.56 kPa,a, 15.2 °C, 79.00 % RH Guarantee Ambient CCA9124NGr0101.56 kPa,a, 15.2 °C, 79.00 % RH Guarantee Ambient CCA9125NGr0101.56 kPa,a, 15.2 °C, 79.00 % RH Guarantee Ambient CCA9126NGr0101.56 kPa,a, 15.2 °C, 79.00 % RH Guarantee Ambient CCA9127NGr0102.63 kPa,a, 2.0 °C, 70.00 % RH Winter Ambient CCA9128NGr0102.63 kPa,a, 2.0 °C, 70.00 % RH Winter Ambient CCA9129NGr0102.63 kPa,a, 2.0 °C, 70.00 % RH Winter Ambient CCA9130NGr0102.63 kPa,a, 2.0 °C, 70.00 % RH Winter Ambient CCA9131NGr0100.38 kPa,a, 28.0 °C, 85.00 % RH Summer Ambient CCA9132NGr0100.38 kPa,a, 28.0 °C, 85.00 % RH Summer Ambient CCA9133NGr0100.38 kPa,a, 28.0 °C, 85.00 % RH Summer Ambient CCA9134NGr0100.38 kPa,a, 28.0 °C, 85.00 % RH Summer Ambient CCA9135NGr0101.35 kPa,a, 15.0 °C, 60.00 % RH ISOCCA9136NGr0101.35 kPa,a, 15.0 °C, 60.00 % RH ISOCCA9137NGr0101.35 kPa,a, 15.0 °C, 60.00 % RH ISOCCA9138NGr0101.35 kPa,a, 15.0 °C, 60.00 % RH ISOHPIHuaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBECCA9123NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.56 kPa,a, 15.2 °C, 79.00 % RHNatural Gas, DLN Guarantee AmbientGas Turbine: PG9351100% LoadSteam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *396,730* Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11Heat Consumption (10^6 kJ/hr)LHV2,474.8HHV2,747.01.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,237.9HHV6,924.11.3.2 Gross Equipment Thermal Efficiency (%)LHV57.71HHV51.991.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.2Wet Bulb13.1Ambient Relative Humidity (%)79.00Ambient Air Pressure (kPa,a)101.56Site Elevation (m above MSL) 6.800Compressor Inlet Temperature (°C)Dry Bulb15.2Compressor Inlet Relative Humidity (%)78.27Steam Turbine Exhaust Pressure (kPaA) 4.900GE COMPANY PROPRIETARYHPIHuaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBECCA9124NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.56 kPa,a, 15.2 °C, 79.00 % RHNatural Gas, DLN Guarantee AmbientGas Turbine: PG935175% LoadSteam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *297,560* Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11Heat Consumption (10^6 kJ/hr)LHV1,948.0HHV2,162.31.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,546.6HHV7,266.81.3.2 Gross Equipment Thermal Efficiency (%)LHV54.99HHV49.541.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.2Wet Bulb13.1Ambient Relative Humidity (%)79.00Ambient Air Pressure (kPa,a)101.56Site Elevation (m above MSL) 6.800Compressor Inlet Temperature (°C)Dry Bulb18.8Compressor Inlet Relative Humidity (%)62.16Steam Turbine Exhaust Pressure (kPaA) 4.372GE COMPANY PROPRIETARYHPIHuaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBECCA9125NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.56 kPa,a, 15.2 °C, 79.00 % RHNatural Gas, DLN Guarantee AmbientGas Turbine: PG935150% LoadSteam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *198,370* Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11Heat Consumption (10^6 kJ/hr)LHV1,424.1HHV1,580.81.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV7,179.0HHV7,968.71.3.2 Gross Equipment Thermal Efficiency (%)LHV50.15HHV45.181.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.2Wet Bulb13.1Ambient Relative Humidity (%)79.00Ambient Air Pressure (kPa,a)101.56Site Elevation (m above MSL) 6.800Compressor Inlet Temperature (°C)Dry Bulb28.6Compressor Inlet Relative Humidity (%)34.55Steam Turbine Exhaust Pressure (kPaA) 3.913GE COMPANY PROPRIETARYHPIHuaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBECCA9126NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.56 kPa,a, 15.2 °C, 79.00 % RHNatural Gas, DLN Guarantee AmbientGas Turbine: PG935130% LoadSteam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *119,020* Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11Heat Consumption (10^6 kJ/hr)LHV1,019.1HHV1,131.21.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV8,562.1HHV9,503.91.3.2 Gross Equipment Thermal Efficiency (%)LHV42.05HHV37.881.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.2Wet Bulb13.1Ambient Relative Humidity (%)79.00Ambient Air Pressure (kPa,a)101.56Site Elevation (m above MSL) 6.800Compressor Inlet Temperature (°C)Dry Bulb28.8Compressor Inlet Relative Humidity (%)34.18Steam Turbine Exhaust Pressure (kPaA) 3.625GE COMPANY PROPRIETARYHuaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9127NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 102.63 kPa,a, 2.0 °C, 70.00 % RHNatural Gas, DLN Winter Ambient Gas Turbine: PG9351100% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *414,550 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV2,600.7HHV2,886.7 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,273.5HHV6,963.61.3.2 Gross Equipment Thermal Efficiency (%)LHV57.38HHV51.701.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb 2.0Wet Bulb.1 Ambient Relative Humidity (%)70.00 Ambient Air Pressure (kPa,a)102.63 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb 2.0 Compressor Inlet Relative Humidity (%)69.36 Steam Turbine Exhaust Pressure (kPaA) 3.386Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9128NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 102.63 kPa,a, 2.0 °C, 70.00 % RHNatural Gas, DLN Winter Ambient Gas Turbine: PG935175% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *310,920 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV2,030.9HHV2,254.3 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,531.9HHV7,250.41.3.2 Gross Equipment Thermal Efficiency (%)LHV55.11HHV49.651.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb 2.0Wet Bulb.1 Ambient Relative Humidity (%)70.00 Ambient Air Pressure (kPa,a)102.63 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb 5.6 Compressor Inlet Relative Humidity (%)53.84 Steam Turbine Exhaust Pressure (kPaA) 3.386Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9129NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 102.63 kPa,a, 2.0 °C, 70.00 % RHNatural Gas, DLN Winter Ambient Gas Turbine: PG935150% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *207,280 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV1,486.4HHV1,649.9 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV7,171.1HHV7,959.91.3.2 Gross Equipment Thermal Efficiency (%)LHV50.20HHV45.231.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb 2.0Wet Bulb.1 Ambient Relative Humidity (%)70.00 Ambient Air Pressure (kPa,a)102.63 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb16.1 Compressor Inlet Relative Humidity (%)26.76 Steam Turbine Exhaust Pressure (kPaA) 3.386Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9130NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 102.63 kPa,a, 2.0 °C, 70.00 % RHNatural Gas, DLN Winter Ambient Gas Turbine: PG935130% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *124,370 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV1,067.7HHV1,185.1 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV8,584.7HHV9,529.01.3.2 Gross Equipment Thermal Efficiency (%)LHV41.93HHV37.781.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb 2.0Wet Bulb.1 Ambient Relative Humidity (%)70.00 Ambient Air Pressure (kPa,a)102.63 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb15.5 Compressor Inlet Relative Humidity (%)27.78 Steam Turbine Exhaust Pressure (kPaA) 3.386Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9131NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 100.38 kPa,a, 28.0 °C, 85.00 % RHNatural Gas, DLN Summer Ambient Gas Turbine: PG9351100% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *361,880 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV2,290.4HHV2,542.3 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,329.1HHV7,025.31.3.2 Gross Equipment Thermal Efficiency (%)LHV56.88HHV51.241.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb28.0Wet Bulb25.9 Ambient Relative Humidity (%)85.00 Ambient Air Pressure (kPa,a)100.38 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb28.0 Compressor Inlet Relative Humidity (%)84.21 Steam Turbine Exhaust Pressure (kPaA)7.508Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9132NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 100.38 kPa,a, 28.0 °C, 85.00 % RHNatural Gas, DLN Summer Ambient Gas Turbine: PG935175% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *271,410 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV1,818.7HHV2,018.8 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,700.9HHV7,438.01.3.2 Gross Equipment Thermal Efficiency (%)LHV53.72HHV48.401.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb28.0Wet Bulb25.9 Ambient Relative Humidity (%)85.00 Ambient Air Pressure (kPa,a)100.38 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb31.6 Compressor Inlet Relative Humidity (%)68.31 Steam Turbine Exhaust Pressure (kPaA) 6.838Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9133NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 100.38 kPa,a, 28.0 °C, 85.00 % RHNatural Gas, DLN Summer Ambient Gas Turbine: PG935150% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *180,940 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV1,339.3HHV1,486.6 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV7,402.0HHV8,216.21.3.2 Gross Equipment Thermal Efficiency (%)LHV48.64HHV43.821.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb28.0Wet Bulb25.9 Ambient Relative Humidity (%)85.00 Ambient Air Pressure (kPa,a)100.38 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb40.9 Compressor Inlet Relative Humidity (%)41.06 Steam Turbine Exhaust Pressure (kPaA) 6.301Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9134NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 100.38 kPa,a, 28.0 °C, 85.00 % RHNatural Gas, DLN Summer Ambient Gas Turbine: PG935130% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *108,560 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV966.9HHV1,073.2 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV8,906.3HHV9,886.01.3.2 Gross Equipment Thermal Efficiency (%)LHV40.42HHV36.421.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb28.0Wet Bulb25.9 Ambient Relative Humidity (%)85.00 Ambient Air Pressure (kPa,a)100.38 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb41.6 Compressor Inlet Relative Humidity (%)39.71 Steam Turbine Exhaust Pressure (kPaA) 5.879Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9135NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.35 kPa,a, 15.0 °C, 60.00 % RHNatural Gas, DLN ISO Gas Turbine: PG9351100% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *397,250 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV2,470.6HHV2,742.4 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,219.3HHV6,903.51.3.2 Gross Equipment Thermal Efficiency (%)LHV57.88HHV52.151.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.0Wet Bulb10.8 Ambient Relative Humidity (%)60.00 Ambient Air Pressure (kPa,a)101.35 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb15.0 Compressor Inlet Relative Humidity (%)59.45 Steam Turbine Exhaust Pressure (kPaA) 3.786Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9136NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.35 kPa,a, 15.0 °C, 60.00 % RHNatural Gas, DLN ISO Gas Turbine: PG935175% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *297,940 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV1,942.2HHV2,155.9 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV6,518.9HHV7,235.91.3.2 Gross Equipment Thermal Efficiency (%)LHV55.22HHV49.751.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.0Wet Bulb10.8 Ambient Relative Humidity (%)60.00 Ambient Air Pressure (kPa,a)101.35 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb18.6 Compressor Inlet Relative Humidity (%)47.19 Steam Turbine Exhaust Pressure (kPaA) 3.386Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9137NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.35 kPa,a, 15.0 °C, 60.00 % RHNatural Gas, DLN ISO Gas Turbine: PG935150% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *198,620 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV1,419.7HHV1,575.8 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV7,147.7HHV7,933.91.3.2 Gross Equipment Thermal Efficiency (%)LHV50.37HHV45.371.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.0Wet Bulb10.8 Ambient Relative Humidity (%)60.00 Ambient Air Pressure (kPa,a)101.35 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb28.4 Compressor Inlet Relative Humidity (%)26.14 Steam Turbine Exhaust Pressure (kPaA) 3.386Huaneng Jinling Gas Turbine Power PlantHuaneng Jinling by: RBE CCA9138NG Rev:09-Jun-2004109FA Single ShaftAmbient Conditions: 101.35 kPa,a, 15.0 °C, 60.00 % RHNatural Gas, DLN ISO Gas Turbine: PG935130% Load Steam Turbine: 2 x 33.5 in LSB1. Plant Performance1.1 Power (kW)Gross Equipment Power *119,170 * Gross Power At Generator Terminals Minus Excitation Power1.2 FuelFuel: Kela 2 NGSpecification - GEI 41040G Supplemental SpecificationsCombustion System - DLNHeating Value (kJ/kg)LHV48,686.3HHV54,041.8HHV/LHV 1.11 Heat Consumption (10^6 kJ/hr)LHV1,016.3HHV1,128.0 1.3 Heat Rate1.3.1 Gross Equipment Heat Rate (kJ/kWh)LHV8,527.8HHV9,465.81.3.2 Gross Equipment Thermal Efficiency (%)LHV42.22HHV38.031.4 Operating ConditionsAmbient Air Temperature (°C)Dry Bulb15.0Wet Bulb10.8 Ambient Relative Humidity (%)60.00 Ambient Air Pressure (kPa,a)101.35 Site Elevation (m above MSL) 6.800 Compressor Inlet Temperature (°C)Dry Bulb28.6 Compressor Inlet Relative Humidity (%)25.90 Steam Turbine Exhaust Pressure (kPaA) 3.386。
燃气—蒸汽联合循环技术经济指标计算目录1 概述 (1)2 燃气—蒸汽联合循环基本理论 (1)3 燃气—蒸汽联合循环技术经济指标计算 (2)3.1 燃气轮机技术经济指标 (2)3.1.1 压气机进气温度 (2)3.1.2 压气机进气压力 (2)3.1.3 压气机排气温度 (3)3.1.4 压气机排气压力 (3)3.1.5 燃气轮机排气温度 (3)3.1.6 燃气轮机排气压力 (3)3.1.7 压气机压缩比 (3)3.1.8 燃料流量 (4)3.1.9 燃料温度 (4)3.1.10 燃气轮发电机组热耗率 (4)3.1.11 燃气轮发电机组热效率 (4)3.2 余热锅炉技术经济指标 (5)3.2.1 余热锅炉主蒸汽流量 (5)3.2.2 余热锅炉主蒸汽压力 (5)3.2.3 余热锅炉主蒸汽温度 (5)3.2.4 余热锅炉再热蒸汽流量 (5)3.2.5 余热锅炉再热蒸汽压力 (5)3.2.6 余热锅炉再热蒸汽温度 (5)3.2.7 余热锅炉排烟温度 (6)3.2.8 余热锅炉热端温差 (6)3.2.9 余热锅炉节点温差 (6)3.2.10 余热锅炉接近点温差 (6)3.2.11 余热锅炉烟气侧压损 (7)3.2.12 余热锅炉热效率 (7)3.3 联合循环汽轮机技术经济指标 (7)3.3.1 联合循环汽轮机主蒸汽流量 (7)3.3.2 联合循环汽轮机主蒸汽压力 (8)3.3.3 联合循环汽轮机主蒸汽温度 (8)3.3.4 联合循环汽轮机再热蒸汽压力 (8)3.3.5 联合循环汽轮机再热蒸汽温度 (8)3.3.6 联合循环汽轮机其他技术经济指标 (8)3.4 联合循环技术经济指标 (8)3.4.1 联合循环功率 (8)3.4.2 联合循环蒸燃功比 (9)3.4.3 联合循环蒸功百分率 (9)3.4.4 联合循环投入率 (9)3.4.5 联合循环热耗率 (9)3.4.6 联合循环热效率 (10)3.4.7 联合循环厂用电功率 (10)3.4.8 联合循环厂用电率 (11)3.4.9 联合循环等效发电煤耗率 (11)3.4.10 联合循环等效供电煤耗率 (11)3.4.11 联合循环机组等效标煤耗量 (12)1概述本文根据电力行业标准《火力发电厂技术经济指标计算方法DL/T 904-2004》编写而成,提供了燃气—蒸汽联合循环的技术经济指标计算方法,以指导燃气—蒸汽联合循环机组的性能计算使用。
燃气-蒸汽联合循环整厂热平衡分析
卜一凡;任显龙
【期刊名称】《机械工程师》
【年(卷),期】2016(000)006
【摘要】燃气-蒸汽联合循环整厂热平衡计算是进行联合循环计算的第一步,文中介绍了燃气-蒸汽联合循环整厂热平衡计算的一般方法,并对比模拟了增加一台背压汽轮机对整厂循环的影响.
【总页数】2页(P216-217)
【作者】卜一凡;任显龙
【作者单位】哈尔滨汽轮机厂有限责任公司,哈尔滨150046;哈尔滨锅炉厂有限责任公司,哈尔滨150046
【正文语种】中文
【中图分类】TK269
【相关文献】
1.燃气蒸汽联合循环的热平衡热效率计算及评价 [J], 黄宗汉
2.燃气-蒸汽联合循环机组余热锅炉安全门整定中旁路超温的问题分析 [J], 吴锋;赵熙;司派友;毛永清;张清峰;章嵛耑;张晓红
3.浅谈燃烧式热值仪与激光式热值仪在天铁集团动力厂\r50兆瓦级燃气蒸汽联合循环发电站的应用 [J], 丁宇
4.燃气轮机—蒸汽机联合循环发电机组调差系数优化整定分析与处理 [J], 马明锐
5.东方汽轮机厂“220 MW燃气-蒸汽联合循环汽轮机”成果通过省级专家鉴定[J],
因版权原因,仅展示原文概要,查看原文内容请购买。