根轨迹法校正
- 格式:ppt
- 大小:274.50 KB
- 文档页数:25
1 根轨迹法校正设计如果设计指标是时域特征量,应采用时域校正方法,即将设计指标转换为对闭环主导极点位置的设计,常称为根轨迹法。
设计过程中,不必绘制根轨迹图。
根轨迹法同频率分析法一样也可以有串联超前校正、串联滞后校正和串联滞后-超前校正,因“超前”和“滞后”是频域中的概念,在根轨迹法中不使用。
基本概念: ⑴ 动态性能校正使开环增益满足设计要求。
例:)2)(5()(0++=s s s k s G ;111)(p s z s s G c ++=;222)(p s z s s G c ++=; ⑴ 动态性能校正 配置。
配置)(1s G c 的零极点应使需要的闭环极点在校正后的系统根轨迹上,同时还要满足“闭环主导极点”条件。
⑵ 增益校正 配置)(2s G c 零极点,使校正后的开环增益满足要求v c c s K s G s G s sG =→)()()(lim 0120。
说明:以根轨迹的相角条件,图解1z 和1p 的选取;图解2z 和2p 选取原系统的闭环极点位置基本不变,并使开环可以取较大的数值。
典型设计指标:开环增益K ,超调量σ,和调节时间s t 。
无论是典型设计指标还是其它形式的设计指标,都需要转换成满足指标要求的闭环主导极点位置。
设计步骤:1.1 根据动态性能指标,计算闭环主导极点1s 和2s ;1.2 按闭环主导极点条件,选取动态特性校正环节结构)(1s G c ;依据校正后系统特征多项式与期望特征多项式相等,计算出校正环节的参数;1.3 根据开环增益K ,计算增益校正环节)(2s G c 参数;为使根轨迹(起始段除外)形状基本不变,即闭环主导极点基本不变,又要有较高的开环增益,校正环节的零点和极点必须相互接近,且接近原点。
p s z s s G c --=)(2,需满足0)()()(2≈-∠--∠=∠p s z s s G i i i c 和α==∞→pz s G c s )(lim 2; 零点和极点选取方法,1.0)Re(/1<s z ,α/z p =。
控制系统校正的根轨迹方法用根轨迹法进行校正的基础,是通过在系统开环传递函数中增加零点和极点以改变根轨迹的形状,从而使系统根轨迹在S 平面上通过希望的闭环极点。
根轨迹法校正的特征是基于闭环系统具有一对主导闭环极点,当然,零点和附加的极点会影响响应特性。
应用根轨迹进行校正,实质上是通过采用校正装置改变根轨迹的,从而将一对主导闭环极点配置到期望的位置上。
在开环传递函数中增加极点,可以使根轨迹向右方移动,从而降低系统的相对稳定性,增大系统调节时间。
等同于积分控制,相当于给系统增加了位于原点的极点,因此降低了系统的稳定性。
在开环传递函数中增加零点,可以使根轨迹向左方移动,从而提高系统的相对稳定性,减小系统调节时间。
等同于微分控制,相当于给系统前向通道中增加了零点,因此增加了系统的超调量,并且加快了瞬态响应。
根轨迹超前校正计算步骤如下。
(1)作原系统根轨迹图;(2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。
(3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为:is s=︒±=(s)][G arg -180o ϕ (1)此相角差φ表明原根轨迹不过主导极点。
为了使得根轨迹能够通过该点,必须校正装置,使补偿后的系统满足幅角条件。
(4)根据相角差φ,确定微分校正装置的零极点位置; 微分校正装置的传递函数为:11++=sTp sTz KcGc (2)例题:已知系统开环传递函数: 试设计超前校正环节,使其校正后系统的静态速度误差系数Kv ≤4.6,闭环主导极点满足阻尼比ζ=0.2,自然振荡角频率ωn=12.0rad/s ,并绘制校正前后系统的单位阶跃响应曲线、单位脉冲响应曲线和根轨迹。
解: 由6.4)(*)(0*lim 0==→s Gc s G s Kv s 得kc=2计算串联超前校正环节的matlab 程序如下: 主函数: close; num=2.3;den=conv([1,0],conv([0.2,1],[0.15,1])); G=tf(num,den) %校正前系统开环传函 zata=0.2;wn=12.0; %要求参数 [num,den]=ord2(wn,zata); %追加系统动态特性 s=roots(den); s1=s(1);kc=2; %增益kc Gc=cqjz_root(G,s1,kc)GGc=G*Gc*kc %校正后系统开环传函 Gy_close=feedback(G,1) %校正前系统闭环传函 Gx_close=feedback(GGc,1) %校正后系统闭环传函 figure(1);step(Gx_close,'b',3.5); %校正后单位阶跃响应 hold onstep(Gy_close,'r',3.5); %校正前单位阶跃响应 grid;gtext('校正前的'); gtext('校正后的'); figure(2);0 2.3s(1+0.2s)(1+0.15s)G =impulse(Gx_close,'b',3.5); %校正后单位冲激响应 hold onimpulse(Gy_close,'r',3.5); %校正前单位冲激响应 grid;gtext('校正前的'); gtext('校正后的'); figure(3);rlocus(G,GGc); %根轨迹图 grid;gtext('校正前的'); gtext('校正后的');为使校正后系统的根轨迹能经过期望闭环主导极点,其闭环特征方程跟必须满足幅值和相角条件,即πθj j e e M Tp s Tz s Kcs G S Gc 111)(0)(0011=++=-,式中,M 0是校正前系统在1s 处的幅值,θ0是对应的相角。
在根轨迹校正法中,当系统的动态性能不足时,通常选择什么形式的串联校正网络?网络参数取值与校正效果之间有什么关系?工程应用时应该注意什么问题?
(1)可以采用的校正装置的形式为
单零点校正:)()(c c c z s k s G +=,零点c z -在s 平面的负实轴上;
零极点校正:)()()
()(c c c c c c z p p s z s K s G >++=,零极点均在负实轴上,零点比极点靠近原
点(即:超前校正)。
(2)零点越靠近原点、极点越远离原点校正作用越强。
(3)在工程应用时,应考虑校正装置的可实施性,零极点分布最好在左半平面的中部,因为零点太靠近原点,微分作用太强,可能使执行机构进入饱和状态而达不到预期的效果。
在根轨迹校正法中,当系统的静态性能不足时,通常选择什么形式的串联校正网络?网络参数取值与校正效果之间有什么关系?工程应用时应该注意什么问题? (1)校正装置的形式为)()
()()(c c c c c c p z p s z s K s G >++=,即滞后校正装置。
零极点均在负实轴上,零极点非常靠近虚轴,且与受控对象的其他零极点相比可以构成一对偶极子。
由于增加一对偶极子基本不改变系统的动态性能,但可以增大系统的开环增益,从而达到减小系统静态误差的目的。
(2)零极点之比c c p z 的取值越大,系统开环增益增加幅度越大,因为校正后的开环增益是校正前开环增益的c c p z 倍。
(3)在工程实施时,考虑到系统的稳定性,极点不能太靠近原点。
西安石油大学课程设计学院:电子工程学院专业:自动化班级:自动化0901学号:题目根轨迹法校正学生指导老师霍爱清二零一零年十二月目录1任务书 (3)2课程设计的题目 (4)3设计思想 (4)4编制的程序及仿真图 (5)(1)求校正装置的放大系数Kc (5)(2)检验原系统的阶跃响应是否满足要求 (5)(3)检验校正装置是否满足要求 (7)5设计结论 (8)6设计总结 (9)7参考文献 (9)1.《自动控制理论I 》课程设计任务书题目根轨迹法校正学生姓名学号专业班级自动化0901设计内容与要求设计内容:4. 已知单位负反馈系统被控对象的开环传递函数为:)12(4)(0+=sssG设计校正环节。
要求使其校正后系统单位斜坡响应稳态误差025.0vess≤;阶跃响应的超调量%15≤σ;相角稳定裕度︒≥45γ;阶跃响应的调节时间sts20≤。
设计要求:(1)编程绘制原系统节约响应曲线,并计算出原系统的动态性能指标;(2)利用SISOTOOL设计校正方案(得到相应的控制其参数);(3)绘制校正后系统阶跃响应曲线,并计算出校正后系统的动态性能指标;(4)整理设计结果,提交设计报告。
起止时间2011 年12 月19 日至2010 年12 月30 日指导教师签名年月日系(教研室)主任签名年月日学生签名年月日2.课程设计的题目:已知单位负反馈系统被控对象的开环传递函数为:)12(4)(0+=s s s G 设计校正环节。
要求使其校正后系统单位斜坡响应稳态误差0025.0v e ss ≤;阶跃响应的超调量%15≤σ;相角稳定裕度︒≥45γ;阶跃响应的调节时间s t s 20≤。
3设计思想:当根轨迹的性能指标给定为时域指标(如超调量、阻尼系数、自然频率等)时,用根轨迹法对系统进行校正比较方便。
这是因为系统的动态性能取决于它的闭环零、极点在S 平面上的分布。
因此,根轨迹法校正的特点就是:如何选择控制的零﹑极点,去促使系统的根轨迹朝有利于提高系统性能的方向变化,从而满足设计要求。
根軌跡法根軌跡法概述在時域分析中已經看到,控制系統的性能取決於系統的閉環傳遞函數,因此,可以根據系統閉環傳遞函數的零、極點研究控制系統性能。
但對於高階系統,採用解析法求取系統的閉環特征方程根(閉環極點)通常是比較困難的,且當系統某一參數(如開環增益)發生變化時,又需要重新計算,這就給系統分析帶來很大的不便。
1948年,伊万思根据反馈系统中开、死循环传递函数间的内在联系,提出了求解死循环特征方程根的比较简易的图解方法,这种方法称为根轨迹法。
因为根轨迹法直观形象,所以在控制工程中获得了广泛应用。
根轨迹法的基本概念根轨迹是当开环系统某一参数(如根轨迹增益)从零变化到无穷时,闭环特征方程的根在S平面上移动的轨迹。
根轨迹增益K * 是首1形式开环传递函数对应的系数。
在介绍图解法之前,先用直接求根的方法来说明根轨迹的含义。
控制系统如上图所示。
其开环传递函数为:根轨迹增益。
闭环传递函数为:闭环特征方程为:特征根为:当系统参数K * (或K)从零变化到无穷大时,闭环极点的变化情况见下表:利用计算结果在S平面上描点并用平滑曲线将其连接,便得到K * (或K)从零变化到无穷大时闭环极点在S平面上移动的轨迹,即根轨迹,如下图所示。
图中,根轨迹用粗实线表示,箭头表示K * (或K)增大时两条根轨迹移动的方向。
根轨迹与系统性能依据根轨迹图(见系统根轨迹图),就能分析系统性能随参数(如K * )变化的规律。
1.稳定性开环增益从零变到无穷大时,如系统根轨迹图所示的根轨迹全部落在左半s平面,因此,当K>0时,如图控制系统根所示系统是稳定的;如果系统根轨迹越过虚轴进入右半s平面,则在相应K值下系统是不稳定的;根轨迹与虚轴交点处的K值,就是临界开环增益。
2.稳态性能由系统根轨迹图可见,开环系统在坐标原点有一个极点,系统属于Ⅰ型系统,因而根轨迹上的K值就等于静态误差系数K v。
当r(t)=1(t)时,e ss = 0;当r(t)=t时,3.动态性能由系统根轨迹图可见,当0 <K< 0.5时,闭环特征根为实根,系统呈现过阻尼状态,阶跃响应为单调上升过程;当K=0.5时,闭环特征根为二重实根,系统呈现临界阻尼状态,阶跃响应仍为单调过程,但响应速度较0 <K< 0.5时为快;当K>0.5时,闭环特征根为一对共轭复根,系统呈现欠阻尼状态,阶跃响应为振荡衰减过程,且随K增加,阻尼比减小,超调量增大,但t s基本不变。
三阶系统的分析与校正引言:在控制系统中,三阶系统是一种常见且重要的系统。
它具有更高的阶数,因此对于控制系统的性能和稳定性有着更高的要求。
因此,对于三阶系统的分析和校正具有一定的复杂性。
本文将围绕三阶系统的分析和校正展开讨论,并介绍常见的校正方法。
一、三阶系统的基本特点和模型表示三阶系统是一个具有三个自由度的系统,可以用如下的传递函数表示:G(s)=K/(s^3+a*s^2+b*s+c)其中,K为传递函数的增益,a、b、c分别为系统的阻尼、震荡频率和系统自然频率。
二、三阶系统的稳定性分析稳定性是控制系统设计和校正的基本要求。
对于三阶系统的稳定性分析可以采用Bode图和Nyquist图等方法。
1. Bode图分析通过绘制传递函数的幅频响应和相频响应曲线,可以得到系统的幅度余弦曲线和相位余弦曲线。
根据Bode图的特点,可以确定系统的稳定性。
2. Nyquist图分析Nyquist图是对传递函数的极坐标表示。
通过绘制传递函数的Nyquist图,可以分析系统的稳定性。
以上两种方法都可以用来评估系统的稳定性。
如果系统的Bode图和Nyquist图图像均在单位圆内,则系统是稳定的。
三、三阶系统的校正方法校正是为了使控制系统具有所需的性能指标,通过调整系统中的参数和控制器等手段实现。
1.PID控制器的设计PID控制器是最常用的控制器之一,具有简单、稳定、易于实现等特点。
PID控制器由比例控制、积分控制和微分控制三部分组成。
通过调整PID控制器中的三个参数,可以实现对三阶系统的控制。
2.根轨迹法根轨迹法是一种经典的校正方法,通过分析系统的根轨迹来设计合适的校正器。
根轨迹是描述系统根位置随参数变化而变化的曲线。
通过调整参数,可以使根轨迹满足设计要求,进而实现对系统的校正。
3.频率响应方法频率响应方法基于传递函数的幅频响应和相频响应特性进行校正。
根据系统的特性,通过调整增益和相位等参数,可以实现对系统的校正。
以上是常见的三阶系统的校正方法,可以根据实际需求选择合适的方法进行校正。