第一讲 和绝对值有关的问题(部分含答案)
- 格式:doc
- 大小:219.50 KB
- 文档页数:4
绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。
对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。
二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。
例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。
2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x ≤|x|。
3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。
4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。
四. 含绝对值问题的有效处理方法1. 运用绝对值概念。
即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。
例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。
解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。
2.基本不等式一、选择题1.若a,b,c都是正数,且a(a+b+c)+bc=4-2,则2a+b+c的最小值为( )A.-1B.+1C.2+2D.2-2解析:∵a(a+b+c)+bc=4-2,∴(a+b)(a+c)=4-2,∵a,b,c>0,∴(a+c)(a+b)≤,当且仅当a+c=a+b,即b=c时,等号成立.∴2a+b+c≥2=2(-1)=2-2.答案:D2.下列结论中不正确的是( )A.a>0时,a+≥2B.≥2C.a2+b2≥2abD.a2+b2≥解析:选项A、C显然正确;选项D中,2(a2+b2)-(a+b)2=a2+b2-2ab≥0,∴a2+b2≥成立;而选项B中,≥2不成立,因为若ab<0,则不满足基本不等式成立的条件.答案:B3.函数y=3x2+的最小值是( )A.3-3B.-3C.6D.6-3解析:y=3x2+=3x2+3+-3,∵3x2+3>0,>0,∴y≥2-3=6-3,当且仅当3x2+3=时,y取得最小值6-3.答案:D4.设x,y∈R,且x+y=5,则3x+3y的最小值是( )A.10B.6C.4D.18解析:3x+3y≥2=2=2=18.答案:D5.若x,y>0,且x+2y=3,则的最小值是( )A.2B.C.1+D.3+2解析:=1+,当且仅当时,等号成立,取得最小值1+.答案:C二、非选择题6.若a>3,则+a的最小值为.解析:由基本不等式,得+a=+a-3+3≥2+3=2+3=7,当且仅当=a-3,即a=5(a=1舍去)时,等号成立.答案:77.若正数a,b满足ab=a+b+3,则ab的取值范围是.解析:令=t(t>0),由ab=a+b+3≥2+3,得t2≥2t+3,∴t≥3或t≤-1(舍去).∴≥3.∴ab≥9,当a=b=3时,等号成立.答案:[9,+∞)8.函数y=log a(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则的最小值为.解析:函数y=log a(x+3)-1的图象恒过定点A(-2,-1),∵点A在直线mx+ny+1=0上,∴-2m-n+1=0,即2m+n=1,则×(2m+n)==2++4·+2≥4+2=4+4=8,当且仅当m=,n=时取等号.答案:89.求函数y=(x≥0)的最小值.解:原式变形,得y==x+2++1.因为x≥0,所以x+2>0.所以x+2+≥6,所以y≥7,当且仅当x=1时,等号成立.所以函数y=(x≥0)的最小值为7.10. 若a>0,b>0,且.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.解:(1)由,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.11.如图,为处理含有某种杂质的污水,要制造一个底宽为2 m的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B孔流出,设箱体的长度为a m,高度为b m,已知流出的水中该杂质的质量分数与a,b的乘积ab成反比,现有制箱材料60 m2,问当a,b各为多少时,沉淀后流出的水中该杂质的质量分数最小?(A,B孔的面积忽略不计)解:设y为流出的水中该杂质的质量分数,则y=,k>0,k为比例系数,依题意,即求a,b的值,使y最小.依题设,有4b+2ab+2a=60(a>0,b>0),所以b=(0<a<30).①于是y====≥=.当a+2=时,等号成立,y取最小值.这时a=6,a=-10(舍去),将a=6代入①,得b=3.故当a为6,b为3时,沉淀后流出的水中该杂质的质量分数最小.三、备选习题1.已知a>2,试判断log a(a-1)·log a(a+1)与1的大小关系.解:∵a>2,∴log a(a-1)>0,log a(a+1)>0,且log a(a-1)≠log a(a+1),∴log a(a-1)·log a(a+1)<==1,∴当a>2时,log a(a-1)·log a(a+1)<1.2.一艘船由甲地逆水匀速行驶到乙地,甲乙两地相距s(千米),水速为常量p(千米/时),船在静水中的最大速度为q(千米/时),且p<q.已知船每小时的燃料费用(元)与船在静水中速度v(千米/时)的平方成正比,比例系数为k.(1)把全程燃料费用y(元)表示为静水中的速度v(千米/时)的函数,并指出其定义域;(2)为了使全程燃料费用最小,船的实际前进速度应为多少?解:(1)由于船每小时航行的燃料费用是kv2,全程航行时间为,于是全程燃料费用y=kv2·,故所求函数是y=ks·(p<v≤q),定义域是(p,q].(2)y=ks·=ks=ks·≥ks=4ksp.其中取“=”的充要条件是v-p=,即v=2p.①当v=2p∈(p,q],即2p≤q时y min=f(2p)=4ksp.②当v=2p∉(p,q],即2p>q.任取v1,v2∈(p,q],且v1<v2,则y1-y2=ks=·[p2-(v1-p)(v2-p)],而p2-(v1-p)(v2-p)>p2-(q-p)(q-p)=q(2p-q)>0,∴y1-y2>0.故函数y在区间(p,q]内单调递减,此时y(v)≥y(q),即y min=y(q)=ks.此时,船的前进速度等于q-p.故为使全程燃料费用最小,当2p≤q时,船的实际前进速度应为2p-p=p(千米/时);当2p>q 时,船的实际前进速度为q-p(千米/时).。
1.绝对值三角不等式基础巩固1已知|a-b|=1,b=(3,4),则|a|的取值范围是()A.[3,4]B.[4,5]C.[4,6]D.[3,6]||a-b|-|b||≤|a|=|a-b+b|≤|a-b|+|b|,∴4≤|a|≤6.2已知ab>0,有如下四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.其中正确的是()A.①和②B.①和③C.①和④D.②和④ab>0,∴a,b同号.∴|a+b|=|a|+|b|.∴①④正确.3已知实数a,b满足ab<0,则下列不等式成立的是() A.|a+b|>|a-b| B.|a+b|<|a-b|C.|a-b|<||a|-|b||D.|a-b|<|a|+|b|4已知|x-m|<ξ2,|ξ−ξ|<ξ2,则|4ξ+2ξ−4ξ−2ξ|小于()A.ξB.2ξC.3ξD.ξ25若不等式|x-2|+|x+3|<a的解集为⌀,则a的取值范围为() A.(5,+∞) B.[5,+∞)C.(-∞,5)D.(-∞,5]6已知|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=8,|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=5,则|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的取值范围是.ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,又|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |−|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |≤|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |≤|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |+|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |,所以3≤|ξξ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |≤13.7x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为.8不等式|ξ+ξ||ξ|-|ξ|≥1成立的充要条件是.⇔|ξ+ξ|-(|ξ|-|ξ|)|ξ|-|ξ|≥0.∵|a+b|≥|a|-|b|,∴|a+b|-(|a|-|b|)≥0.∴|a|-|b|>0,即|a|>|b|.9设|a|≤1,函数f(x)=ax2+x-a(-1≤x≤1),证明:|f(x)|≤54.(x)|=|a(x2-1)+x|≤|a(x2-1)|+|x|≤|x2-1|+|x|=1-x2+|x|=−(|ξ|-12)2+54≤54,即|f(x)|≤54.10已知f(x)=ax2+bx+c,且当|x|≤1时,|f(x)|≤1,求证:(1)|c|≤1;(2)|b|≤1.由|f(0)|≤1,得|c|≤1.(2)由|f(1)|≤1,得|a+b+c|≤1,由|f(-1)|≤1,得|a-b+c|≤1,故|b|=|ξ+ξ+ξ+(-ξ+ξ-ξ)|2≤12(|ξ+ξ+ξ|+|ξ−ξ+ξ|)≤1.能力提升1已知x 为实数,且|x-5|+|x-3|<m 有解,则m 的取值范围是( )A.m>1B.m ≥1C.m>2D.m ≥2|x-5|+|x-3|≥|x-5+3-x|=2, ∴|x-5|+|x-3|的最小值为2. ∴要使|x-5|+|x-3|<m 有解,则m>2.2已知h>0,a ,b ∈R ,命题甲:|a-b|<2h ;命题乙:|a-1|<h ,且|b-1|<h ,则甲是乙的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件a 与b 的距离可以很近,满足|a-b|<2h ,但此时a ,b 与1的距离可以很大,因此甲不能推出乙;若|a-1|<h ,|b-1|<h ,则|a-b|=|a-1+1-b|≤|a-1|+|b-1|<2h ,故乙可以推出甲.因此甲是乙的必要不充分条件.3已知|a|≠|b|,m =|ξ|-|ξ||ξ-ξ|,ξ=|ξ|+|ξ||ξ+ξ|,则ξ,ξ之间的大小关系是( )A.m>nB.m<nC.m=nD.m ≤n,知|a|-|b|≤|a ±b|≤|a|+|b|,则|ξ|-|ξ||ξ-ξ|≤1≤|ξ|+|ξ||ξ+ξ|.4设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( ) A.|a+b|+|a-b|>2 B.|a+b|+|a-b|<2 C.|a+b|+|a-b|=2 D.不能比较大小(a+b )(a-b )≥0时,|a+b|+|a-b|=|(a+b )+(a-b )|=2|a|<2, 当(a+b )(a-b )<0时,|a+b|+|a-b|=|(a+b )-(a-b )|=2|b|<2.综上可知,|a+b|+|a-b|<2.5下列不等式恒成立的个数是()①x+1ξ≥2(x≠0);②ξξ<ξξ(ξ>ξ>ξ>0);③ξ+ξξ+ξ>ξξ(ξ,ξ,ξ>0,ξ<ξ);④|a+b|+|b-a|≥2a.A.4B.3C.2D.1,当x<0时不等式不成立;②成立,a>b>c>0⇒ξξξ>ξξξ即1ξ>1ξ,又由于c>0,故有ξξ>ξξ;③成立,因为ξ+ξξ+ξ−ξξ=(ξ-ξ)ξξ(ξ+ξ)>0(ξ,ξ,ξ>0,ξ<ξ),所以ξ+ξξ+ξ>ξξ;④成立,由绝对值不等式的性质可知|a+b|+|b-a|≥|(a+b)-(b-a)|=|2a|≥2a,故选B.6已知函数f(x)=|x-3|-|x-a|.若存在实数x,使得不等式f(x)≥a成立,则实数a的取值范围为.-∞,32]7函数y=|x-4|+|x-6|的最小值为.4|+|x-6|≥|x-4+6-x|=2,当且仅当4≤x≤6时,等号成立.★8下列四个不等式:①log x10+lg x≥2(x>1);②|a-b|<|a|+|b|;③|ξξ+ξξ|≥2(ab≠0);④|x-1|+|x-2|≥1.其中恒成立的是(只填序号).x>1,∴log x10+lg x=1lgξ+lg x≥2,①正确;当ab ≤0时,|a-b|=|a|+|b|,②不正确; ∵ab ≠0,ξξ与ξξ同号,∴|ξξ+ξξ|=|ξξ|+|ξξ|≥2,③正确; 由|x-1|+|x-2|的几何意义知|x-1|+|x-2|≥1恒成立,④也正确;综上可知,①③④正确.★9对定义在区间[-1,1]上的函数f (x ),若存在常数A>0,使得对任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤A|x 1-x 2|,则称f (x )具有性质L .问函数f (x )=x 2+3x+5与g (x )=√|ξ|是否具有性质L ?试证明.f (x )具有性质L,函数g (x )不具有性质L . 证明如下:(1)对于函数f (x )=x 2+3x+5,任取x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|=|ξ12−ξ22+3(ξ1−ξ2)|=|(x 1-x 2)(x 1+x 2+3)| =|x 1-x 2||x 1+x 2+3|≤|x 1-x 2|(|x 1|+|x 2|+3)≤5|x 1-x 2|. 故存在A=5,使f (x )具有性质L . (2)对于函数g (x )=√|ξ|,设它具有性质L,任取x 1,x 2∈[-1,1],当x 1,x 2不同时为0时, 则|g (x 1)-g (x 2)|=|√|ξ1|−√|ξ2||=√|ξ12≤√|ξ12≤A|x 1-x 2|,得A ≥√|ξ121ξ≤√|ξ1|+√|ξ2|≤2.得1ξ∈(0,2]. 取x 1=14ξ2≤1,x 2=116ξ2≤14,有√|ξ1|+√|ξ2|=12ξ+14ξ=34ξ<1ξ, 与√|ξ1|+√|ξ2|≥1ξ矛盾, 故函数g (x )=√|ξ|不具有性质L .。
二绝对值不等式1.绝对值三角不等式课后篇巩固探究A组1.设ab>0,下面四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.其中正确的是()A.①②B.①③C.①④D.②④ab>0,∴a,b同号.∴|a+b|=|a|+|b|>|a|-|b|.∴①④正确.2.函数f(x)=|3-x|+|x-7|的最小值等于()A.10B.3C.7D.4|3-x|+|x-7|≥|(3-x)+(x-7)|=4,所以函数f(x)的最小值为4.3.已知|a|≠|b|,m=,n=,则m,n之间的大小关系是()A.m>nB.m<nC.m=nD.m≤n,知|a|-|b|≤|a±b|≤|a|+|b|.∴≤1≤.∴m≤n.4.若|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不确定(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2;当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2,综上有|a+b|+|a-b|<2.5.若关于x的不等式|x|+|x-1|<a(a∈R)的解集为⌀,则a的取值X围是()A.[-1,1]B.(-1,1)C.(-∞,1]D.(-∞,1)|x|+|x-1|≥|x-(x-1)|=1,∴若关于x的不等式|x|+|x-1|<a的解集为⌀,则a的取值X围是a≤1.6.若a,b∈R,且|a|≤3,|b|≤2,则|a+b|的最大值是,最小值是.|a|-|b|≤|a+b|≤|a|+|b|,所以1=3-2≤|a+b|≤3+2=5.7.若不等式|x-4|-|x-3|≤a对一切x∈R恒成立,则实数a的取值X围是.f(x)=|x-4|-|x-3|,则f(x)≤a对一切x∈R恒成立的充要条件是a大于等于f(x)的最大值.∵|x-4|-|x-3|≤|(x-4)-(x-3)|=1,即f(x)max=1,∴a≥1.+∞)8.不等式≥1成立的充要条件是.1⇔≥0⇔(|a|-|b|)[|a+b|-(|a|-|b|)]≥0(且|a|-|b|≠0).而|a+b|≥|a|-|b|,∴|a+b|-(|a|-|b|)≥0.∴|a|-|b|>0,即|a|>|b|.9.设m等于|a|,|b|和1中最大的一个,当|x|>m时,求证<2.m等于|a|,|b|和1中最大的一个,|x|>m,∴∴==2.故原不等式成立.10.导学号26394011已知函数f(x)=log2(|x-1|+|x-5|-a).(1)当a=2时,求函数f(x)的最小值;(2)当函数f(x)的定义域为R时,某某数a的取值X围.函数的定义域满足|x-1|+|x-5|-a>0,即|x-1|+|x-5|>a.设g(x)=|x-1|+|x-5|,由|x-1|+|x-5|≥|x-1+5-x|=4,当a=2时,∵g(x)min=4,∴f(x)min=log2(4-2)=1.(2)由(1)知,g(x)=|x-1|+|x-5|的最小值为4.∵|x-1|+|x-5|-a>0,∴a<g(x)min时,f(x)的定义域为R.∴a<4,即a的取值X围是(-∞,4).B组1.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为()A.1B.2C.3D.4|x-1|+|x|+|y-1|+|y+1|=(|1-x|+|x|)+(|1-y|+|1+y|)≥|(1-x)+x|+|(1-y)+(1+y)|=1+2=3,当且仅当(1-x)·x≥0,(1-y)·(1+y)≥0,即0≤x≤1,-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.2.函数f(x)=|2x+1|-|x-4|的最小值等于.y=|2x+1|-|x-4|,则y=作出函数y=|2x+1|-|x-4|的图象(如图),由函数的图象可知,当x=-时,函数取得最小值-.3.已知a和b是任意非零实数,则的最小值为.4.4.下列四个不等式:①log x10+lg x≥2(x>1);②|a-b|<|a|+|b|;③≥2(ab≠0);④|x-1|+|x-2|≥1,其中恒成立的是.(把你认为正确的序号都填上)x>1,∴lg x>0,∴log x10+lg x=+lg x≥2,①正确;当ab≤0时,|a-b|=|a|+|b|,②不正确;∵ab≠0,同号,∴≥2,③正确;由|x-1|+|x-2|的几何意义知|x-1|+|x-2|≥1恒成立,④也正确;综上,①③④正确.5.导学号26394012已知函数f(x)=x2-x+13,|x-a|<1,求证|f(x)-f(a)|<2(|a|+1).|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),∴|f(x)-f(a)|<2(|a|+1).6.导学号26394013已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时,|f(x)|≤1,求证:(1)|c|≤1;(2)当-1≤x≤1时,|g(x)|≤2.∵当-1≤x≤1时,|f(x)|≤1,∴|f(0)|≤1,即|c|≤1.(2)当a>0时,g(x)=ax+b在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1).∵当-1≤x≤1时,|f(x)|≤1,且|c|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2,g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,∴|g(x)|≤2.当a<0时,g(x)=ax+b在[-1,1]上是减函数,∴g(-1)≥g(x)≥g(1).∵当-1≤x≤1时,|f(x)|≤1,且|c|≤1,∴g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2.g(1)=a+b=f(1)-c≥-(|f(1)|+|c|)≥-2.∴|g(x)|≤2.当a=0时,g(x)=b,f(x)=bx+c,且-1≤x≤1,∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.综上可知,|g(x)|≤2.。
初一第一章的《绝对值》的几个难题(答案)解:根据题意,我们可以列出方程组:a-b = 2008kc-a = 2008(1-k)其中k为整数。
将XXX代入原方程可得:a-b + c-a = 2化XXX:c-b = 2008k+1或c-b = 2008(1-k)-1因为a、b、c为整数,所以k只能为0或1.当k=0时,c-b=1,a-b=2008,b-c=-2007,所以c-a+a-b+b-c=2.当k=1时,c-b=-1,a-b=-2008,b-c=2007,所以c-a+a-b+b-c=2.因此,c-a+a-b+b-c的值为2.3、解方程:x-2+2x-1=8.答:将x-2和2x-1括起来,得到(x-2)+(2x-1)=8,化简得3x-3=8,解得x=11/3.4、已知:关于x的方程x-ax=1,同时有一个正根和一个负根,求整数a的值。
答:设正根为x1,负根为x2,则有x1-x2=2|a|。
因为x1和x2都是根,所以x1-ax1=1,x2-ax2=1.将两式相减得到x1-x2=a(x1-x2),因为x1和x2不相等,所以a=1或a=-1.当a=1时,方程化为x-x=1无解;当a=-1时,方程化为x+x=1,解得x=-1/2,符合要求。
因此,a=-1.5、已知:a、b、c是非零有理数,且a+b+c=0,求:abc/(abc)的值。
答:由a+b+c=0可得abc=-(ab+bc+ca),因此abc/(abc)=-1.6、设abcde是一个五位数,其中a、b、c、d、e是阿拉伯数字,且a<b<c<d,试求y=a-b+b-c+c-d+d-e的最大值。
答:因为a<b<c<d,所以b-a≥1,c-b≥1,d-c≥1,e-d≥1,将y拆开得到y=(b-a)+(c-b)+(d-c)+(e-d),因此y≥4.当a=1,b=2,c=3,d=4,e=5时,y=4,所以y的最大值为4.7、求关于x的方程x-2-1=a(0<a<1)所有解的和。
绝对值中考要求重难点绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.课前预习例题精讲【例1】到数轴原点的距离是2的点表示的数是()A、±2 B、2 C、-2 D、4【难度】1星【解析】此题要全面考虑,原点两侧各有一个点到原点的距离为2,即表示2和-2的点.【答案】根据题意,知到数轴原点的距离是2的点表示的数,即绝对值是2的数,应是±2.故选A.点评:利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥【难度】2星【解析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【答案】①0是有理数,|0|=0,故本小题错误;②互为相反数的两个数的绝对值相等,故本小题错误;③互为相反数的两个数的绝对值相等,故本小题正确;④有绝对值最小的有理数,故本小题错误;⑤由于数轴上的点和实数是一一对应的,所以所有的有理数都可以用数轴上的点来表示,故本小题正确;⑥只有符号不同的两个数互为相反数,故本小题错误.所以③⑤正确.故选B.点评:本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.【例3】如果a的绝对值是2,那么a是()A、2B、-2C、±2D、【难度】1星【解析】根据题意可知:绝对值等于2的数应该是±2.【答案】2的绝对值是2,-2的绝对值也是2,所以a的值应该是±2.故选C.点评:本题考查了绝对值的概念,学生要熟练掌握.【例4】若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a【难度】2星【解析】:本题考查有理数的绝对值问题,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零【答案】:解:∵a<0,∴|a|=-a.4a+7|a|=4a+7|-a|=4a-7a=-3a.选C.【例5】一个数与这个数的绝对值相等,那么这个数是()A、1,0B、正数C、非正数D、非负数【难度】1星【解析】:根据绝对值的性质进行解答即可.【答案】解:因为一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,所以一个数与这个数的绝对值相等,那么这个数是非负数.故选D .【例6】已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-3【难度】2星【解析】先根据绝对值的定义求出x 、y 的值,再由xy >0可知x 、y 同号,根据此条件求出x 、y 的对应值即可.【答案】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵xy >0,∴当x=5时,y=2,此时x-y=5-2=3;当x=-5时,y=-2,此时x-y=-5+2=-3.故选C .点评:本题考查的是绝对值的性质及有理数的加减法,熟知绝对值的性质是解答此题的关键.【例7】若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数【难度】2星【解析】本题作为选择题可用排除法进行解答,由于是分式,所以x ≠0,故可排除C 、D ;再根据x 的取值范围进行讨论即可.【答案】:解:∵ 是分式, ∴x ≠0,∴可排除C 、D ,∵当x >0时,原式可化为 =1,故A 选项错误.故选B .点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【例8】已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A、1-b>-b>1+a>aD、1-b>1+a>-b>aC、1+a>1-b>a>-bB、1+a>a>1-b>-b【难度】3星【解析】根据绝对值的定义,可知a>0,b<0时,|a|=a,|b|=-b,代入|a|<|b|<1,得a<-b<1,由不等式的性质得-b>a,则1-b>1+a,又1+a>1,1>-b>a,进而得出结果.【答案】∵a>0,∴|a|=a;∵b<0,∴|b|=-b;又∵|a|<|b|<1,∴a<-b<1;∴1-b>1+a;而1+a>1,∴1-b>1+a>-b>a.故选D.点评:本题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0;互为相反数的绝对值相等.【例9】已知a、b互为相反数,且|a-b|=6,则|b-1|的值为()A、2B、2或3C、4D、2或4【难度】2星【解析】根据互为相反数的两数和为0,又因为|a-b|=6,可求得b的值,代入即可求得结果判定正确选项.【答案】∵a、b互为相反数,∴a+b=0,∵|a-b|=6,∴b=±3,∴|b-1|=2或4.故选D.点评:此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值,再确定绝对值符号中代数式的正负,去绝对值符号.【例10】a<0,ab<0,计算|b-a+1|-|a-b-5|,结果为()A、6B、-4C、-2a+2b+6D、2a-2b-6【难度】2星【解析】:根据已知条件先去掉绝对值即可求解.【答案】解:∵a<0,ab<0,∴b-a+1>0,a-b-5<0,∴|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4.故选A.【例11】若|x+y|=y-x,则有()A、y>0,x<0B、y<0,x>0C、y<0,x<0D、x=0,y≥0或y=0,x≤0【难度】4星【解析】根据绝对值的定义,当x+y≥0时,|x+y|=x+y,当x+y≤0时,|x+y|=-x-y.从中得出正确答案.:【答案】解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0∴x=0,y≥0或y=0,x≤0选D.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出x,y的值是解答此题的关键.【例12】已知:x<0<z,xy>0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值()A、是正数B、是负数C、是零D、不能确定符号【难度】4星【解析】:先根据已知条件确定x、y、z的符号及其绝对值的大小,再画出数轴确定出各点在数轴上的位置,根据绝对值的性质即可去掉原式的绝对值,使原式得到化简.【答案】:解:由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=0【例11】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m,则m<0;(4)若|a|>|b|,则a>b,其中正确的有()A、(1)(2)(3)B、(1)(2)(4)C、(1)(3)(4)D、(2)(3)(4)【难度】3星【解析】:分别根据绝对值的性质、相反数的定义进行解答.【答案】解:(1)正确,符合绝对值的性质;(2)正确,符合绝对值的性质;(3)正确,符合绝对值的性质;(4)错误,例如a=-5,b=2时,不成立.故选A.(1)相反数的定义:只有符号不同的两个数,叫互为相反数;(2)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【例12】已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________【难度】3星【解析】:根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>-1,然后根据它们的取值范围去绝对值并求|c-b|-|b-a|-|a-c|的值.【答案】:解:根据图示知:b>1>a>0>c>-1,∴|c-b|-|b-a|-|a-c|=-c+b-b+a-a+c=0故答案是0.点评:本题主要考查了关于数轴的知识以及有理数大小的比较.【例13】若x<-2,则|1-|1+x||=______若|a|=-a,则|a-1|-|a-2|= ________【难度】3星【解析】根据已知x<-2,则可知1+x<0,x+2<0;再根据绝对值的定义|1-|1+x||逐步去掉绝对值可转化为-2-x根据已知|a|=-a与绝对值的定义,那么a≤0,则|a-1|-|a-2|可去掉绝对值后【答案】∵x<-2,∴1+x<0,x+2<0,则|1-|1+x||=|1-[-(1+x)]|=|2+x|=-2-x;∵|a|=-a,∴a≤0,∴a-1<0,a-2<0,,则|a-1|-|a-2|=1-a-(2-a),=1-a-2+a,=-1.故答案为:-2-x,-1.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出1+x<0、x+2<0、a≤0进而得出a-1<0、a-2<0,这些是解答此题的关键【例14】()2120a b ++-=,分别求a b ,的值【难度】3星【解析】根据平方和绝对值的非负性解决。
初一第一章的《绝对值》的几个难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
2、若a 、b 为整数,且200820081a b c a -+-=;试求:c a a b b c -+-+-的值。
3、解方程:2218x x -+-=。
4、已知:关于x 的方程1x ax -=,同时有一个正根和一个负根,求整数a 的值。
5、已知:a 、b 、c 是非零有理数,且a +b +c =0;求:a b c abc a b c abc+++。
6、设abcde 是一个五位数,其中a 、b 、c 、d 、e 是阿拉伯数字,且a <b 〈c 〈d ,试求y a b b c c d d e =-+-+-+-的最大值。
7、求关于x 的方程21(01)x a a --=<<所有解的和.8、若1x 、2x 都满足条件:21234x x -++=且12x x <,则12x x -的取值范围是 .9、已知:(12)(21)(31)36x x y y z z ++--++-++=;求:x +2y +3z 的最大值和最小值。
10、解方程: ①314x x -+=; ②311x x x +--=+; ③134x x ++-=。
初一第一章的《绝对值》的几个难题(的解答):知识点:1、绝对值的定义:表示一个数的点到原点的距离就叫做这个数的绝对值。
2、绝对值的代数意义:(0)(0)a a a a a ≥⎧=⎨-<⎩ 3、绝对值的基本性质: ①非负性:0a ≥; ②ab a b =; ③(0)a a b b b =≠; ④22a a =; ⑤a b a b a b -≤+≤+; ⑥a b a b a b -≤-≤+。
难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
绝对值的专题训练知识梳理:1、概念:一般的,数轴上表示数a的点与的距离叫做a的绝对值.记作: .2、代数定义: 一个正数的绝对值是;一个负数的绝对值是;0的绝对值是;即(0);0(0);(0).a aa aa a>⎧⎪==⎨⎪-<⎩3、绝对值的性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。
(2)绝对值等于0的数只有一个,就是0。
(3)绝对值等于同一个正数的数有两个,这两个数互为相反数。
(4)互为相反数的两个数的绝对值相等。
专题训练一一、选择题:1、绝对值等于6在数轴上对应的点有()A. 6B. -6C. 0D. 6或-62、绝对值等于其本身的数有()A. 1个B. 0个C. 2个D. 无数个3、下列各式中,等号不正确的是()A.88-= B.88-=-- C.88-= D.88--=4、在数轴上数a到原点的距离等于9,则a的值为()A. 9B. -9C. 9±D. 05、下列说法不正解的是()A.如果a的绝对值比它本身大,则a一定是负数。
B.如果两个数不相等,那么它们的绝对值也必不相等。
C.两个负有理数,绝对值大的离原点远。
D.两个负有理数,大的离原点近。
二、填空题:6、+10= ,-1.9= ,-=π .7、--3= ,+-0.39= ,-+18= ,-+22=() .8、 -7的绝对值是 ,绝对值等于7的数是 .9、绝对值最小的数是 ,绝对值等于本身的数为 .10、绝对值小于4的所有整数有 .11、绝对值等于5的数有 个,它们是 .12、绝对值不大于1的整数是 .13、在23-2-2-234,,中,绝对值最小的数是 ,离原点最远的是 . 14、1-8的倒数是 . 15、若=3a ,则=a ;若9a -=,则a = .专题训练二一、选择题:1、若0x x +=,则x 一定是( )A. 非负数B. 0C. 非正数D. 负数2、若x y =,则x,y 的关系是( )A. x=yB. x=-yC. x+y=0或x-y=0D. x=0且y=03、若-2a =,则a 的值为( )A. 2B. -2C. 0D. 2±4、一个数a 在数轴上的对应点在原点左边,且6a =,则a 的值为( )A. 6B. 6或-6C. -6D. 以上都不对5、若1a a=,则a 是( ) A. 正数 B. 是有理数 C. 正数或负数 D. 是正整数6、若0a ≥,那么( )A. 0a >B. 0a ≠C. 0a <D. a 为任意数7、若-=-8a ,则a 的值为( )A. 8±B. 8C. -8D. 08、如图,下列各式正确的是( )A. b 10-<B. a b >C. 11a a -=-D. b a a b -=-二、填空题:9、 2--= ,2= 1= ,= ,3.14π-= ,-= .10、若20,50a a -=-=,则a b += .11、若12a -<<时,则2a += ,3a -= .12、若x y <,则x y -= ,+y x -= .13、若a a -=,则a = ,a π-= .三、计算14、若实数a,b 满足3360a b -+-=,求2a-3b 的值.b -1 0 a 115、若4+7+30--+=,求-2x+3y-5z的值.x y z16、若a,b满足()2-++=,求20202021110a b+的值.a b绝对值的专题训练答案知识梳理:1、原点a2、它本身它的相反数0专题训练一:1、D2、C3、D4、C5、B6、10 1.9 π7、-3 0.39 -18 -228、7 7±9、0 0,110、-3,-2,-1,0,1,2,311、两5±12、-1,0,113、-2,3 -2 414、815、39±±,专题训练二:1、C2、C3、D4、C5、A6、D7、A8、D9、-3.14π10、711、a+2 3-a12、y-x y-x13、0 π14、解得a=1, b=6 原式=-615、解得x=4 y=7 z=-3 原式=2816、解得a=1 b=-1 原式=0。
绝对值的题目及答案绝对值是数学中的一个重要概念,指数值与零点的距离,一般用两个竖线表示。
在日常生活中,绝对值常用于计算温度、距离等物理量,也可用于求解方程、不等式等数学问题。
下面列举几个绝对值的题目及答案:题目一:求 |-5| + |3|解答:根据绝对值的定义,|-5| = 5,|3| = 3,所以 |-5| + |3| = 5 + 3 = 8。
题目二:求解方程 |2x - 1| = 5解答:根据绝对值的定义,当 2x - 1 > 0 时,|2x - 1| = 2x - 1;当 2x - 1 < 0 时,|2x - 1| = -(2x - 1) = -2x + 1。
根据以上推理,可以列出如下的方程:2x - 1 = 5 时,解得 x = 3。
-2x + 1 = 5 时,解得 x = -2。
所以方程 |2x - 1| = 5 的解为 x = 3 或 x = -2。
题目三:求解不等式 |x - 3| < 4解答:根据绝对值的定义,当 x - 3 > 0 时,|x - 3| = x - 3;当 x - 3 < 0 时,|x - 3| = -(x - 3) = -x + 3。
根据以上推理,可以列出如下的不等式:x - 3 < 4 时,解得 x < 7。
-x + 3 < 4 时,解得 x > -1。
所以不等式 |x - 3| < 4 的解为 -1 < x < 7。
除了上述题目外,还有很多与绝对值相关的问题,如求绝对值函数的图像、讨论绝对值不等式的解集等等。
在解决这些问题时,需要深入理解绝对值的概念,掌握相关的计算方法,才能做出准确的答案。
综上所述,绝对值是数学中重要的概念之一,广泛应用于各种问题中。
通过练习多个绝对值的题目,不仅可以提高自己的数学水平,还能训练自己的思维能力和解决问题的能力。
因此,在学习数学时,应该多关注绝对值,并勤加练习。
第一讲和绝对值有关的问题
一、知识结构框图:
数
二、绝对值的意义:
(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;
③零的绝对值是零。
也可以写成:
()
()
() ||0
a a
a a
a a
⎧
⎪⎪
=⎨
⎪
-
⎪⎩
当为正数
当为0
当为负数
说明:(Ⅰ)|a|≥0即|a|是一个非负数;
(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题
例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于( A )A.-3a B. 2c-a C.2a-2b D. b
解:| a | + | a+b | + | c-a | - | b-c
|=-a-(a+b)+(c-a)+b-c=-3a
分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++
的值( C )
A .是正数
B .是负数
C .是零
D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如图所示:
所以
分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?
分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。
解:设甲数为x ,乙数为y 由题意得:y x 3=,
(1)数轴上表示这两数的点位于原点两侧:
若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6
(2)数轴上表示这两数的点位于原点同侧:
若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12
若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12
例4.(整体的思想)方程x x -=-20082008 的解的个数是( D )
A .1个
B .2个
C .3个
D .无穷多个
分析:这道题我们用整体的思想解决。
将x-2008看成一个整体,问题即转化为求方程a a -=的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D 。
0)()(=--+-+=--+++y x z y z x y x z y z x
1)1(+=--x x 2010
20081861641421⨯++⨯+⨯+⨯ 例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.
()()()()()()
1111112220072007ab a b a b a b ++++++++++ 分析:利用绝对值的非负性,我们可以得到:|a b -2|=|a -1|=0,解得:a=1,b=2 于是()()()()()()1111112220072007ab a b a b a b ++++++++++
200920082009
11200912008141313121212009
2008143132121=-=-++-+-+=⨯++⨯+⨯+=
在上述分数连加求和的过程中,我们采用了裂项的方法,巧妙得出了最终的结
果.同学们可以再深入思考, 如果题目变成求 值,你有办法求解吗?有兴趣的同学可以在课下继续探究。
例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.
并回答下列各题:
(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:____相等 . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的
距离
可以表示为 .
分析:点B 表示的数为―1,所以我们可以在数轴上找到点B 所在的位置。
那么
点A 呢?因为x 可以表示任意有理数,所以点A 可以位于数轴上的任意位置。
那么,如何求出A 与B 两点间的距离呢? 结合数轴,我们发现应分以下三种情况进行讨论。
当x<-1时,距离为-x-1, 当-1<x<0时,距离为x+1, 当x>0,距离为x+1
综上,我们得到A 与B 两点间的距离可以表示为1+x
(3)结合数轴求得23x x -++的最小值为 5 ,取得最小值时x 的取值范
围为 -3≤x_≤2______. 分析:2-x 即x 与2的差的绝对值,它可以表示数轴上x 与2之间的距离。
)3(3--=+x x 即x 与-3的差的绝对值,它也可以表示数轴上x 与-3之间的距离。
如图,x 在数轴上的位置有三种可能:
图1 图2 图3 图2符合题意
(4) 满足341>+++x x 的x 的取值范围为 x<-4或x>-1
分析: 同理1+x 表示数轴上x 与-1之间的距离,4+x 表示数轴上x 与-4之
间的距离。
本题即求,当x 是什么数时x 与-1之间的距离加上x 与-4之间的距离会大于3。
借助数轴,我们可以得到正确答案:x<-4或x>-1。
说明:借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题。
这种相互转化在解决某些问题时可以带来方便。
事实上,B A - 表示的几何意义就是在数轴上表示数A 与数B 的点之间的距离。
这是一个很有用的结论,我们正是利用这一结论并结合数轴的知识解决了(3)、(4)这两道难题。
四、 小结
1.理解绝对值的代数意义和几何意义以及绝对值的非负性
2.体会数形结合、分类讨论等重要的数学思想在解题中的应用。