2013届初三数学课时专题训练--直线与圆的位置关系解析
- 格式:doc
- 大小:1.76 MB
- 文档页数:26
直线与圆的位置关系知识点及例题Prepared on 22 November 2020直线与圆的位置关系一、知识点梳理1、直线与圆的位置关系:图形名称相离相切相交判定d>r d=r d<r交点个数无1个2个例1、下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③ B.①② C.②③ D.③例2、过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.例3、以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.例4、下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线例5.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切2、切线的判定:(1)根据切线的定义判定:即与圆有一个公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定:即与圆心的距离等于半径的直线是圆的切线. (3)根据切线的判定定理来判定:即经过半径的外端并且垂直于这条半径的直线是圆的切线.判定切线时常用的辅助线作法:(1)若直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证明直线和半径垂直.(2)当直线与圆并没有明确有公共点时,辅助线的作法是“过圆心向直线作垂线”再证明圆心到直线的距离等于圆的半径.例6、判断下列命题是否正确(1)经过半径的外端的直线是圆的切线(2)垂直于半径的直线是圆的切线;(3)过直径的外端并且垂直于这条直径的直线是圆的切线;(4)和圆有一个公共点的直线是圆的切线;(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.例7.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,•那么⊙P与OB的位置关系是()A.相离 B.相切 C.相交 D.相交或相切例8、如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.例9、如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=12,求⊙O的直径.例10、如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.例11、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.3、切线的性质:1、经过切点的半径垂直于圆的切线,经过切点垂直于切线的直线必经过圆心对于切线的性质可分解为:过圆心、过切点、垂直于切线这三个条件中任意两个作为条件,就可以推出第三个作为结论4、切线长定理:切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.例12、如图1,PA、PB是⊙O的两条切线、A、B为切点。
专题12.3直线与圆的位置关系(精讲精析篇)提纲挈领点点突破热门考点01 圆的方程1.圆的定义:在平面内,到定点的距离等于定长的点的轨迹叫做圆. 2.圆的标准方程(1) 若圆的圆心为C(a,b ),半径为r ,则该圆的标准方程为:222()()x a y b r -+-=. (2) 方程222()()x a y b r -+-=表示圆心为C(a,b ),半径为r 的圆. 3.圆的一般方程(1)任意一个圆的方程都可化为:220x y Dx Ey F ++++=.这个方程就叫做圆的一般方程. (2) 对方程:220x y Dx Ey F ++++=.①若2240D E F +->,则方程表示以(2D -,)2E -为圆心,F E D 42122-+为半径的圆; ②若0422=-+F E D ,则方程只表示一个点(2D -,)2E -;③若0422<-+F E D ,则方程不表示任何图形.4.点00()A x y ,与⊙C 的位置关系(1)|AC |<r ⇔点A 在圆内⇔22200()()x a y b r <-+-; (2)|AC |=r ⇔点A 在圆上⇔22200()()x a y b r =-+-;(3)|AC |>r ⇔点A 在圆外⇔22200()()x a y b r >-+-.A .4B .5C .6D .7【答案】A 【解析】设圆心(),C x y,则()()22341x y -+-=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345+=,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号, 故选:A.【答案】2220x y x +-= 【解析】设圆的方程为220x y Dx Ey F ++++=,圆经过三点(0,0),(1,1),(2,0),则:01104020F D E F D F =⎧⎪++++=⎨⎪+++=⎩,解得:200D E F =-⎧⎪=⎨⎪=⎩,则圆的方程为2220x y x +-=.(1)若直线l 与圆C 相切,且直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)求与圆C 和直线50x y --=都相切的最小圆的方程. 【答案】(1)x +y +1=0,或者x +y ﹣3=0(2)22319()()222x y -++= 【解析】(1)设直线的方程为x +y =k ,圆C :x 2+y 2+2x ﹣4y +3=0的标准方程为(x +1)2+(y ﹣2)2=2,若直线l 与圆C 相切,d ==|1﹣k |=2,得k =﹣1或者3,所以直线l 的方程为x +y +1=0,或者x +y ﹣3=0;(2)根据题意,由于5d ==,所以直线x ﹣y ﹣5=0与圆C 相离,所求最小的圆心一定在过圆C 的圆心(﹣1,2)的直线y =﹣x +1上,且到直线x ﹣y ﹣5=0设最小的圆心为(a ,1﹣a ),所以2d ===,|2a ﹣6|=3, 得92a =,或者32a =,根据题意32a =, 所以最小的圆的方程为22319()()222x y -++=.【总结提升】1.求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.2.求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00{x g x y h x ==代入()00,0f x y =.本题就是利用方法④求M 的轨迹方程的.热门考点02 圆的方程综合应用1. 圆的标准方程为:222()()x a y b r -+-=2.圆的一般方程:220x y Dx Ey F ++++=(2240D E F +->). 3.点000(,)P x y 到直线:0l Ax By C ++=的距离:d =.【典例4】(2016高考天津文)已知圆C 的圆心在x轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=,则圆C 的方程为__________. 【答案】22(2)9.x y -+=【解析】设(,0),(0)C a a >2,3a r =⇒===,故圆C 的方程为22(2)9.x y -+=【答案】22(3)=4x y -+ 6 【解析】 设(,)P x y ,2PA PB ==22(3)=4x y -+所以圆的半径是2.因为圆的圆心(3,0)和点(1,0)A -都在x 轴上,所以当P 运动到圆的最右端时PA 有最大值6【典例6】设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=的距离为5,求该圆的方程. 【答案】22(1)(1)2x y -+-=或22(1)(1)2x y +++=【解析】设圆心为(,)a b ,半径为r ,由条件①:221r a =+. 由条件②:222r b =,从而有:2221b a -=.|2|15a b =⇒-=.解方程组2221|2|1b a a b ⎧-=⎨-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,所以2222r b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=. 【总结提升】注意应用圆的几何性质:① 心在过切点且与切线垂直的直线上; ②圆心在任一弦的垂直平分线上.热门考点03 直线与圆相切1.直线与圆相切:直线与圆有且只有一个公共点;2.圆的切线方程的两种求法(1)代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .(2)几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k .【答案】2m =- r =【解析】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【答案】3 3- 【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C 1=,1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.故答案为:33-【总结提升】判断直线与圆的位置关系常见的方法(1)几何法:几何法:圆心到直线的距离等于半径,即d r =;(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.0∆=,方程组有一组不同的解. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 提醒:上述方法中最常用的是几何法.热门考点04 直线与圆相交及弦长1.直线与圆相交:直线与圆有两个公共点;2.几何法:圆心到直线的距离小于半径,即d r <;3.代数法:0∆>,方程组有两组不同的解. A .1 B .2 C .3 D .4【答案】B 【解析】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==. 故选:B.【答案】5 【解析】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =可得6==5r . 故答案为:5.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=, 所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==结合圆中的特殊三角形,可知AB ==【总结提升】 1.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.2.已知直线与圆的位置关系求参数的取值范围时,可根据数形结合思想利用直线与圆的位置关系的判断条件建立不等式进行解决.热门考点05 圆与圆的位置关系设两圆的圆心分别为1C 、2C ,圆心距为12d C C =,半径分别为R 、r (R r >). (1)两圆相离:无公共点;d R r >+,方程组无解.(2)两圆外切:有一个公共点;d R r =+,方程组有一组不同的解. (3)两圆相交:有两个公共点;R r d R r -<<+,方程组有两组不同的解. (4)两圆内切:有一公共点;d R r =-,方程组有一组不同的解.(5)两圆内含:无公共点;0d R r ≤<-,方程组无解.特别地,0d =时,为两个同心圆.【典例12】(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________. 【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d =≤即3k 2≤4k ,∴0≤k≤43,故可知参数k 的最大值为43.【答案】4 【解析】联立方程组22226012x y x x y ⎧++--=⎪⎨+=⎪⎩,解得110x y =⎧⎪⎨=⎪⎩223x y =-⎧⎪⎨=⎪⎩,即((,A B -,AB k =可得过(0,A 且垂直于l的直线方程为:y =+,所以0y =,解得2x =,过(B -且垂直于l的直线方程为:y =-0y =,解得2x =-, 所以224CD =+=. 故答案为4. 【总结提升】1.判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和与差的绝对值的关系,一般不用代数法. 2.两圆公共弦长的求法两圆公共弦长,先求出公共弦所在直线的方程,转化为直线与圆相交的弦长问题. 3.比较两圆半径的和、差与两圆圆心距的大小可得两圆的位置关系; 4.两圆方程相减即得公共弦方程; 5.公共弦长要通过解直角三角形获得.热门考点06 直线、圆的位置关系的综合应用A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =当直线MP l ⊥时,min MP ,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D.(1)求圆C 的标准方程;(2)若圆C 的切线l 在x 轴和y 轴上的截距相等,求切线l 的方程;(3)若圆22:()(1)2D x a y -+-=上存在点P ,由点P 向圆C 引一条切线,切点为M,且满足PM =,求实数a 的取值范围.【答案】(1)22(1)(2)2x y ++-=;(2)26y x 或26y x 或30x y +-=或10x y ++=;(3)24a -≤≤ 【解析】(1)圆C 方程可整理为:()()22125x y F ++-=- 5F ∴<∴圆C 的圆心坐标为()1,2C -,半径r =∴圆心C到直线30x y -+=的距离:1d ==∴截得的弦长为:2==,解得:3F = ∴圆C 的标准方程为:()()22122x y ++-=(2)①若直线l 过原点,可假设直线l 方程为:y kx =,即0kx y直线l 与圆相切 ∴圆心到直线距离d r ===2k =∴切线l方程为:(2y x =②若直线l 不过原点,可假设直线l 方程为:1x ya a+=,即0x y a +-= ∴圆心到直线距离d r ===1a =-或3∴切线l 方程为10x y ++=或30x y +-=综上所述,切线l方程为(2y x =或10x y ++=或30x y +-= (3)假设(),P x yPM =,即222PM PO =又直线PM 与圆C 相切,切点为M 2222222PM PC r PC PO ∴=-=-= 即:()()()22222122x yx y +=++--,整理得:()()22128x y -++=P 又在圆()()2212x a y -+-=上 ∴两圆有公共点≤24a -≤≤即a 的取值范围为:[]2,4- 【总结提升】直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形; (3)直线与圆相离时,当过圆心作直线垂线时长度最小.巩固提升1.(重庆高考真题(文))圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .22(2)1x y ++= B .22(2)1x y +-= C .22(1)(3)1x y -+-= D .22(3)1x y +-=【答案】B 【解析】∵圆心在y 轴上,C 项圆心为(1,3)不合要求,排除选项C ,又∵圆过点(1,2),可排除选项A ,D ,只有B 项符合题意,故选B .A .1B .2C .4D .46【答案】C 【解析】因为22240x y x y +--=化为()()22125x y -+-=,可知圆的圆心为1,2,半径为5,圆心到直线2550x y +-+=的距离为1225515d +⨯-+==,由勾股定理可得直线2550x y +-+=被圆22240x y x y +--=截得的弦长为2514-=,故选C.A .2x+y+5=0或2x+y ﹣5=0B .2x+y+=0或2x+y ﹣=0C .2x ﹣y+5=0或2x ﹣y ﹣5=0D .2x ﹣y+=0或2x ﹣y ﹣=0【答案】A 【解析】设所求直线方程为2x+y+b=0,则, 所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y ﹣5=0 故选:A .A .(x ﹣5)2+y 2=16B .x 2+(y ﹣5)2=9C .(x +5)2+y 2=16D .x 2+(y +5)2=9【答案】A 【解析】 设(),M x y ,由2MA MB=,得()()2222343x y x y ++=-+,可得:(x +3)2+y 2=4(x ﹣3)2+4y 2, 即x 2﹣10x +y 2+9=0整理得()22516x y -+=,故动点M 的轨迹方程为()22516x y -+=.选A . A .55B .255C .355D .455【答案】B 【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为2255d -==; 所以,圆心到直线230x y --=的距离为25. 故选:B. A .2 B .42C .6D .210【答案】C 【解析】 直线l 过圆心,所以1a =-,所以切线长2(4)14(4)216AB =-+-⨯-++=,选C.A .[]26,B .[]48,C .232⎡⎣D .2232⎡⎣【答案】A 【解析】直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB 22=点P 在圆22x 22y -+=()上 ∴圆心为(2,0),则圆心到直线距离1202222d ++==故点P 到直线x y 20++=的距离2d 的范围为2,32则[]22122,62ABPSAB d d ==∈ 故答案选A. A .53-或53- B .35或32- C .23-或23- D .54-或54- 【答案】D 【解析】由光的反射原理知,反射光线的反向延长线必过点()2,3-,设反射光线所在直线的斜率为k ,则反身光线所在直线方程为:()32y k x +=-,即:230kx y k ---=. 又因为光线与圆相切,()()22321x y ++-=1=,整理:21225120k k ++=,解得:43k =-,或34k =-,故选D . A .4 B .2CD .1【答案】D 【解析】()223x y +-看成是点(),x y 和点()0,3之间的距离的平方,而点(),M x y 为圆224x y +=上任意一点,所以圆心()0,0到点()0,3的距离为3,圆的半径2r,故圆上的点(),M x y 到()0,3的距离最小值为321-=, 所以其最小距离的平方也为1. 故选:D. A .1 B .-1 C .2 D .-2【答案】A 【解析】因为直线0x y a ++=平分圆222410x y x y +-++=, 又圆的标准方程为22(1)(2)4x y -++=, 所以直线经过圆心(1,2)-,120a -+=所以1a =, 故选:A .A.01m ≤<B.01m ≤≤C .2121m --<<-D .021m <≤-【答案】A 【解析】曲线方程22y x x =--可化为:()222020x x y x ++=-≤≤即()()221120x y x ++=-≤≤.故曲线C 为如图所示的半圆:当直线y x m =-+与半圆相切时,圆心()1,0-到该直线的距离1012md -+-==,所以12m =-+12m =-(舍).当直线y x m =-+过原点时,0m =,因为直线与半圆有两个不同的交点, 故021m ≤<.故选:A.A .22(2)(1)5x y -+-=B .22(2)(1)5x y -+-=C .22(2)(1)5x y -++=D .22(2)(1)5x y -++=【答案】A 【解析】 将221:240C xy x y +--=的方程化为标准式的22(1)(2)5x y -+-=,则圆1C 的圆心坐标为()1,2,5,又圆1C :22(1)(2)5x y -+-=与圆2C 关于直线y x =对称,则圆2C 的圆心坐标为()2,152C 的方程是22(2)(1)5x y -+-=,故选:A. A .23 B .4C .33D .不确定【答案】D 【解析】由对于任意角θ,都有cos (2)sin 1x y θθ+-=,则点()02P ,到直线cos (2)sin 1x y θθ+-=的距离为2211cos sin θθ=+,即此直线为以()02,为圆心,1为半径的圆的切线, 当三条切线如图所示时,则正三角形ABC 的面积 123312S =⨯⨯=, 即存在直线:cos (2)sin 1l x y θθ+-=围成的正多边形的面积为33,即选项A,B,C 错误, 故选D.【答案】4 【解析】 因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为415.(广东高考真题(文))以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是________________. 【答案】22154202x y x y +-+-= 【解析】圆心到直线的距离21622D r --===x -2)2+(y +1)2=252 【答案】92【解析】圆22240x y x y +--=可化为22(1)(2)5x y -+-=, 则圆心为()1,2,半径为5r =又因为直线()+6=00,0ax by a b ->>被圆22240x y x y +--=截得的弦长为252r =,所以直线()+6=00,0ax by a b ->>过圆心,即260a b +-=, 化为26,0,0a b a b +=>> ,6222a b ab ∴=+≥当且仅当2a b =时取等号,9,2ab ab ∴≤∴的最大值为92,故答案为92.。
中考数学辅导之—直线和圆的位置关系(二)一、学习目标1、理解切线长的概念,掌握切线长定理并会运用它解决有关问题。
2、理解弦切角的概念,掌握弦切角定理及其推论,并会运用它们解决有关问题,通过弦切角定理的证明,进一步了解分情况证明数学命题的思想和方法。
3、能结合具体图形,准确地表述相交弦定理、切割线定理及其推论的题设和结论,并能应用它们解有关的计算和证明题,会作两条线段的比例中项。
二、基本内容及应注意的问题1、“切线长”是切线上一条线段的长度,具有数量的特征;而“切线”是一条直线,它是向两方无限延展的,不可以度量长度。
2、切线长定理包含两个结论,如图(1)所示,PA、PB切⊙O于点A、B,则有:(1)“切线长相等”,即PA=PB。
(2)“圆心和这点的连线平分两切线的夹角”,即:PO平分∠APB;根据PA=PB,PO平分∠APB,可得点A、B关于直线OP对称,从而有OP垂直平分AB、=以及∆OAC∽∆APC∽∆OPA等结论,由此可得,切线长定理是证明线段相等、角相等、弧相等、线段成比例,垂直关系的重要依据。
3、讲过切线长定理以后,已知一条切线时,通常有如下五个性质可用:(1)切线和圆有且只有一个公共点;(2)切线和圆心的距离等于该圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心。
若已知一个圆的两条切线相交,则又多了“切线长相等”的性质;若已知一个圆的两条切线互相平行,则可得出“圆上两个切点的连线为直径”的性质。
4、弦切角有两个基本特征:(1)顶点在圆上,实际上就是角的顶点是圆的一条切线的切点;(2)一边和圆相交,另一边和圆相切,实际上就是角的一边是过切点的一条弦(所在的直线),角的另一边是切线上以切点为端点的一条射线。
5、弦切角定理与圆周角定理的证明思路类似,都分三种情况,而且在证明过程中利用了圆周角的推论。
在学习时一定要注意与圆周角定理对比,注意它们的内在联系。
九年级数学直线与圆的位置关系练习题及答案一、单选题1. 给定直线l :3x-4y=12,圆C:(x-1)^2+(y+3)^2=25,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点2. 若直线l的方程为x-2y+1=0,圆C的方程为(x-3)^2+(y+4)^2=16,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点3. 在直角坐标系中,直线l:y=2x+1与圆C:(x-4)^2+(y+2)^2=36的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点二、填空题1. 直线y=3x+2与圆(x-1)^2+(y-3)^2=16的位置关系可以用___________表示。
2. 若直线l :2x+3y=6与圆C:(x-2)^2+(y-3)^2=9相交于点A(1,2),则点A到直线l的距离为_________。
三、解答题1. 已知直线l的方程为y=2x-1,圆C的方程为(x-2)^2+(y-1)^2=r^2,求当r=3时,l与C的位置关系。
2. 某圆C的圆心坐标为(3,-2),半径为4,直线l的方程为2x-y=5,则求l与C的位置关系并证明。
答案:一、单选题1. C2. A3. D二、填空题1. 相交于两点2. 3三、解答题1. 当r=3时,圆C的方程为(x-2)^2+(y-1)^2=9。
将直线l的方程代入圆C的方程,得到4x^2-4x+1+4x-4+y^2-2y+1=9,简化后为4x^2+y^2-2y-3=0。
该方程与圆C相交于两个点,故位置关系为相交于两点。
2. 圆C的圆心坐标为(3,-2),半径为4。
直线l的斜率为2,l的方程可以改写为y=2x-5,将直线l的方程代入圆C的方程,得到(x-3)^2+(2x-5+2)^2=16。
化简后得到5x^2-35x+60=0,解得x=2和x=6。
将x的值代入直线l的方程,得到相应的y值,分别为y=-1和y=7。
状元廊学校数学思维方法讲义之十三 年级:九年级第13讲 直线和圆的位置关系圆的知识在平面几何中乃至整个初中教学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何知识的综合运用,又是在学习了点和圆的位置关系的基础上进行的,在几何证明与计算中,将起到重要的作用,是中考必考查点。
【知识纵横】§Ⅰ直线和圆的位置关系:设圆的半径为r ,圆心到直线的距离为d .⑴直线与圆相交⇔d __ ____ r ; ⑵直线与圆相切⇔d __ ____ r ; ⑶直线与圆相离⇔d __ ____r 。
§Ⅱ圆的切线:1.一个定义:与圆只有一个公共点的直线叫做圆的__ ___;这个公共点叫做__ ___; 2.两种判定:⑴若圆心到直线的距离等于半径,则该直线是圆的切线;⑵经过直径的一端,并且垂直于这条直径的直线是圆的切线;3.判定直线和圆的位置,一般考虑如下“三步曲”:一“看”:看看题目中有没有告诉我们直线和圆有几个公共点;二“算”:算算圆心到直线的距离d 和圆的半径为r 之间的大小关系,然后根据上述关系作出判断;三“证明”: 证明直线是否经过直径的一端,并且与该直径的位置关系是否垂直。
4.四条性质:切线有许多重要性质 ⑴圆心到切线的距离等于圆的_ ____; ⑵过切点的半径垂直于_ ____;⑶经过圆心,与切线垂直的直线必经过___ __; ⑷经过切点,与切线垂直的直线必经过____ _。
5.弦切角定义 :顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角; 定理 :弦切角等于它所夹的弧所对的圆周角.推论 :a )两个弦切角所夹的弧相等,这两个弦切角也相等;b )弦切角的度数等于它所夹弧度数的一半。
【典例精析】考点1: 直线和圆的位置关系【例1】1、如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设OP x =,则x 的取值范围是__________.2、射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 (单位:秒).变式一:1、如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =43D在线段AC 上(不与点A 、C 重合),过点D 作DE ⊥AC 交AB 边于点E . (1)当点D 运动到线段AC 中点时,DE = ;(2)点A 关于点D 的对称点为点F ,以FC 为半径作⊙C ,当DE = 时,⊙C 与直线AB 相切.2、如图,在直角梯形ABCD 中,已知AD ∥BC ,∠C =90°,且AB >AD+ BC ,AB 是⊙O 直径,则直线CD 与⊙O 的位置关系为_____ _.考点2: 圆的切线的性质基本运用【例2】已知直线PD 垂直平分⊙O 的半径OA 于点B ,PD 交⊙O 于点C 、D ,PE 是⊙O 的切线,E 为切点,连结AE ,交CD 于点F . (1)若⊙O 的半径为8,求CD 的长; (2)证明:PE =PF ;(3)若PF =13,sinA =513,求EF 的长.O AD变式二:如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.考点3:切线的判定定理运用【例4】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.【例5】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=14,求BN的长.变式三:如图,Rt ABC△中,90ABC∠=°,以AB为直径作O⊙交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是O⊙的切线;(2)连接OC交DE于点F,若OF CF=,求tan ACO∠的值.EDOAB C12NGEOBMCEBAOFD【思维拓展】【例6】如图,P A为⊙O的切线,A为切点,直线PO交⊙O与点E,F,过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=12,求cos∠ACB的值.【例7】已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=22,求证:CD是⊙O的切线;(2)当OC>22CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.变式四:如图,在边长为2的正方形ABCD中,以点D为圆心、DC为半径作AC,点E在AB上,且与A、B两点均不重合,点M在AD上,且ME=MD,过点E作EF⊥ME,交BC于点F,连接DE、MF.(1)求证:EF是AC所在⊙D的切线;(2)当MA=34时,求MF的长;(3)试探究:△MFE能否是等腰直角三角形?若是,请直接写出MF的长度;若不是,请说明理由.ACM【课后测控】1、如图1,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .2、如图2,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .图1 图2 图33、如图,在Rt △AOB 中,OA =OB =3,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .4、如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上。
专题12直线与圆的位置关系压轴题八种模型全攻略【考点导航】目录【典型例题】 (1)【考点一判断直线和圆的位置关系】 (1)【考点二已知直线和圆的位置关系求半径的取值】 (3)【考点三已知直线和圆的位置关系求圆心到直线的距离】 (5)【考点四判断或补全使直线为切线的条件】 (7)【考点五证明某直线是圆的切线】 (9)【考点六切线的性质定理】 (13)【考点七切线的性质与判定的综合应用】 (15)【考点八直角三角形周长、面积与内切圆半径的关系】 (22)【过关检测】 (26)【典型例题】【考点一判断直线和圆的位置关系】A.相离B.相交【答案】C⊥于点C,根据直角三角形的性质,可得【分析】过点P作PC OB∵30O ∠=︒,6OP =,∴132PC OP ==,∵以点P 为圆心的圆的半径为3,∴以点P 为圆心,半径为3的圆与OB 的位置关系是相切.【变式训练】2.(2022秋·九年级单元测试)已知O 的半径是3,点P 在O 上,如果点P 到直线l 的距离是6,那么O 与直线l 的位置关系是()A .相交B .相离C .相切或相交D .相切或相离【答案】D【分析】根据圆心到直线的距离d 与圆的半径r 之间的大小关系解答.【详解】如图,当点P 与1P 重合时,O 与直线l 相切;当点P 与1P 不重合时,O 与直线l 相离,∴O 与直线l 的位置关系是相切或相离.故选:D .【点睛】此题考查直线与圆的位置关系,掌握数形结合是解题的关键.【考点二已知直线和圆的位置关系求半径的取值】【变式训练】【答案】15r ≤≤【分析】过M 作MH AC ⊥于H ,根据直角三角形的性质得到关系即可得到结论.∵2CM =,30ACB ∠=︒,∴112HM CM ==,∵5AM =,M 与线段AC 有交点,【考点三已知直线和圆的位置关系求圆心到直线的距离】【变式训练】【答案】1544PC <≤或3PC =【分析】根据题意可得PC 的最小值为圆Q ,由直线与圆的位置关系,圆与圆的位置关系即可解决问题.∴PM AD ⊥,在直角梯形ABCD 中,∵AD BC ∥,∴90ABC A ∠=∠=︒,∴四边形ABPM 是矩形,∴3PM AB PC ===,【考点四判断或补全使直线为切线的条件】【点睛】本题主要考查切线判定,直角三角形中【变式训练】【答案】1【考点五证明某直线是圆的切线】(1)求证:CD 是O (2)若60BCD ∠=︒,直径【答案】(1)见解析(2)53【分析】(1)连接OD (SAS ODC OBC ≌∵OA OD =,∴ODA OAD ∠=∠.∵AD OC ∥,【变式训练】1.(2023秋·云南昭通·九年级统考期末)如图,O 的半径为2,点A 是O 的直径BD 延长线上的一点,C 为O 上的一点,AD CD =,30A ∠=︒.(1)求证:直线AC 是O 的切线;∵AD CD =,30A ∠=︒∴30ACD ∠=︒∴60CDB ∠=︒∵OD OC=作CH BD ⊥于点H ,则DH =(1)求证:AF是圆O的切线;==,连接(2)点G在CE上,且BC CD CG【答案】(1)见解析(2)7【分析】(1)根据四边形ABCD内接于圆∵BC CD =,∴ BCCD =∴BOC COD ∠=∠,又OB OD=∴BN DN=【考点六切线的性质定理】【答案】3【分析】连接OC ,根据切线的性质得到90OCP ∠=︒,再根据30︒所对的直角边是斜边的一半计算即可;【详解】如图,连接OC ,∵PC 是O 的切线,∴OC CP ⊥,即90OCP ∠=︒,又30P ∠=︒,O 的半径为3,∴26OP CO ==,∴PB 633=-=.故答案是3.【点睛】本题主要考查了切线的性质,直角三角形的性质,准确计算是解题的关键.【变式训练】【答案】30【分析】根据切线的性质得到【详解】解:BC AB BC ∴⊥,【答案】26︒/26度【分析】利用圆周角定理,切线的性质定理和三角形的内角和定理解答即可.【详解】解:AB 是O 的直径,OA PA ∴⊥,【考点七切线的性质与判定的综合应用】例题:(2023秋·江苏·九年级专题练习)如图,Rt ABC △中,90ACB ∠=︒,点O 在边AC 上,以点O 为圆心,OC 为半径的圆交边AC 于点D ,交边AB 于点E ,且BC BE =.(1)求证:AB 是O 的切线.(2)若24AE =,15BE =,求O 的半径.【答案】(1)见解析(2)O 的半径为10.【分析】(1)连接OE ,连接BO ,通过证明()SSS BOE BOC △≌△即可进行求证;在OBC △和OBE △中,OE OC BE BC BO BO =⎧⎪=⎨⎪,∵15BE =,24AE =,∴15BC BE ==,AB BE =+∴22239AC AB BC =-=-∴O 的半径为10.【点睛】本题主要考查了切线的判定和性质,勾股定理,解题的关键是掌握经过半径外端且垂直于半径的直线是圆的切线.【变式训练】(1)求证:点E 是BF (2)若EC OC =,O 【答案】(1)见解析(2)32【分析】(1)连接BC 等量代换可得EF =(2)解:若EC OC =∴ABF △是等腰直角三角形.O 半径为3,6AB ∴=,∴26AF AB == BC AF⊥(1)求证:AC 是半O 的切线;(2)若CO AO =,4BC =,求半【答案】(1)见解析AD CD,⊥∴∠= ,90D∴∠+∠= .CAD ACO90∠ ,AOD ∠=∠AOD CAD∴∠=∠,BOC CAD的切线;(1)求证:PC为O(2)若22=,12PC BOPB=,直接写出半径的长.【答案】(1)见解析(2)3OC∠,平分ABEBC∴∠=∠,ABC CBDQ,OC OB=∴∠=∠,ABC OCB,PCA CBD∠=∠∴∠=∠,PCA OCB是直径,AB∴∠=︒,ACB90ACO OCB∴∠+∠=︒,90∴∠+∠=︒,PCA ACO90∴∠=︒,PCO90OC PC,∴⊥是半径,OC∴是OO的切线;PC(2)解:连接OC,如图,==,设OB OC r,=PC OB22∴=,22PC r【考点八直角三角形周长、面积与内切圆半径的关系】例题:(2023·甘肃陇南·校考一模)如图,O 与90A ∠=︒的Rt ABC △的三边AB BC AC 、、分别相切于点D 、E 、F ,若103BE CF ==,,则O 的半径为()A .5B .4C .3D .2【答案】D 【分析】连接OD OF ,,首先根据切线长定理得到10BD BE ==,3CE CF ==,然后证明出四边形ADOF 是正方形,然后设AD AF x ==,根据勾股定理求解即可.【详解】如图,连接OD OF ,,∵AC AB CB 、、与O 相切,∴10BD BE ==,3CE CF ==,AD AF =,OD AB ⊥,OF AC ⊥,∴90ADO AFO ∠=∠=︒,∵90BAC ∠=︒,∴四边形ADOF 是矩形,∴矩形ADOF 是正方形,∴AD OD =,设AD AF x ==,Rt ABC △中,10AB BD AD x =+=+,3AC CF AF x =+==,13BC BE CE =+=,由勾股定理得,222AB AC BC +=,∴()()22210313x x +++=,∴12215x x ==-,(舍去),∴2OD =,故选:D .【点睛】此题考查了三角形的内切圆,切线长定理,勾股定理等知识,解题的关键是熟练掌握以上知识点.【变式训练】【答案】1【分析】根据内切圆的性质先证明四边形,,AF AE BF BD CD CE ===,设OD 的方程,即可求解.【详解】解:∵圆是ABC 的内切圆,的半径.(1)求O△的外心,连接(2)若Q是Rt ABC【答案】(1)1(2)5OQ=2∵O 是ABC 的内切圆,分别切边∴OD BC ⊥,OE AC ⊥,OF 在Rt ABC △中,90C ∠=︒,BC ∴225AB BC AC =+=.【过关检测】一、单选题1.(2022秋·湖南长沙·九年级校联考期末)在平面直角坐标系中,以点()3,4-为圆心,3为半径的圆()A .与x 轴相交,与y 轴相切B .与x 轴相离,与y 轴相切C .与x 轴相离,与y 轴相交D .与x 轴相切,与y 轴相离【答案】B【分析】由已知点()3,4-可求该点到x 轴,y 轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d 为直线与圆的距离,r 为圆的半径,则有若d r <,则直线与圆相交;若d r =,则直线于圆相切;若d r >,则直线与圆相离.【详解】解:点()3,4-到x 轴的距离为4,大于半径3,点()3,4-到y 轴的距离为3,等于半径3,故该圆与x 轴相离,与y 轴相切,故选:B .【点睛】本题考查的是直线与圆的位置关系以及点到坐标轴的距离,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.2.(2022秋·福建福州·九年级统考期中)《九章算术》中“今有勾七步,股二十四步,问勾中容圆径几何?”其意思为:今有直角三角形,勾(短直角边)长为7步,股(长直角边)长为24步,问该直角三角形(内切圆)的直径是多少?()A .3步B .5步C .6步D .8步【答案】C【分析】设三角形ABC ,由勾股定理可求得直角三角形的斜边,设内切圆的半径为r ,由1()2ABC S AB BC CA r =++⋅ 可求得半径,则可求得直径.【详解】解:设三角形为ABC ,90C ∠=︒,7AC =,24BC =,A .40︒B .50【答案】A 【分析】连接OC ,由CE 为圆的度数,即可求出E ∠的度数.∵CE 为圆O 的切线,∴OC CE ⊥,∴90OCE ∠=︒,∵25CDB ∠=︒,A.27︒B.18【答案】A【分析】根据垂直的定义及平行线的判定可知答.【详解】解:连接OC,【点睛】本题考查了垂直的定义,平行线的性质,切线的性质,等腰三角形的性质,掌握平行线的性质及切线的性质是解题的关键.5.(2023秋·江苏·九年级专题练习)如图,在恰好与以OB为半径作圆,O是()A.23B【答案】D【分析】连接OD,根据切线的性质得到∠平分线的定义得到OBDAB x=,根据直角三角形的性质即可得到结论.3的半径,AC是OOD∴⊥,OD AC,OD OB=∴=,OBD ODB∠,BDQ平分ABC二、填空题【答案】30︒/30度【分析】连接OB ,根据圆周角定理得到906030D ︒︒∠=-=︒.∵30BCE ∠=︒,∴260BOD C ∠=∠=︒,∵BD 是O 的切线,【答案】15°/15度【分析】如图,连接OA ,OC 明50D B ∠=∠=︒,再利用三角形的外角和的性质可得答案.∴65DAE AEC D ∠=∠-∠=︒-故答案为:15︒.【点睛】本题考查的是平行四边形的性质,圆周角定理的应用,切线的性质,四边形的内角和定理的应用,【答案】15d <</51d >>【分析】分两种情况讨论: 求解,即可得到答案.【详解】解:P 的圆心P 的坐标为【点睛】本题考查了平移的性质,直线与圆的位置关系,解题关键是掌握当圆与直线相切时,点到圆心的距离等于圆的半径.9.(2023秋·江苏·九年级专题练习)已知P 到O 的切线长为8cm ,那么【答案】1【分析】先根据勾股定理求出3AB=,由切线长定理得∵O 为Rt ABC △的内切圆,∴OD AB OF AC OD OF ⊥⊥=,,,∴90ODA A OFA ∠︒=∠=∠=,∴四边形ADOF 是正方形,三、解答题11.(2022秋·安徽芜湖·九年级校考阶段练习)如图,AB 是O 的直径,点E 在弦AC 的延长线上,过点E 作ED AE ⊥交O 于点D ,若AD 平分BAC ∠.(1)求证:ED 是O 的切线;(2)若6AC =,10AB =,求AE 的长.【答案】(1)见解析(2)8【分析】(1)如图所示,连接OD ,根据等边等角和角平分线的定义证明EAD ODA ∠=∠,进而证明AE OD ∥,由ED AE ⊥,得到ED OD ⊥,据此即可证明结论;(2)连接BC 交OD 于G ,根据圆周角定理可得90ACB ∠=︒,根据垂径定理可得BG CG =,根据勾股定理求出BC 的长,进而求出OB BG 、,再求出OG 的长,根据矩形的判定与性质求出CE 的长,即可求出AE 的长.【详解】(1)证明:如图所示,连接OD ,∵OA OD =,∴OAD ODA ∠=∠,∵AD 平分BAC ∠,∴EAD DAO∠=∠∴EAD ODA ∠=∠,∴AE OD ∥,∵ED AE ⊥,∴ED OD⊥∴OD BC ⊥,∴G 为BC 的中点,即BG 又∵610AC AB ==,,∴根据勾股定理得:BC 1(1)求证:AF 是O 的切线;(2)若6BC =,10AB =,求O 【答案】(1)见解析(2)390ACB ∠=︒,D 是AB 的中点,∴12CD AD AB ==,∴CAD ACD ∠=∠,2BDC CAD ACD CAD ∠=∠+∠=∠1FAC BDC ∠=∠(1)若PF PB =,求证:PB (2)如果106AB BC ==,,求【答案】(1)见解析(2)4【分析】(1)根据等边对等角以及对顶角相等可以证得的切线;(1)求证:直线DE是O(2)求证:AB AM=;(3)若2ME=,30∠=︒,求BF的长.F【答案】(1)见解析;(2)见解析;(3)4.∵OD OA =,∴ODA OAD ∠=∠,∵AD 平分CAB ∠,∴∠OAD =∠DAC ,∴ODA DAC ∠=∠,∴OD AC ∥,∵DE AC ⊥,∴DE OD ^,∵OD 是O 的半径,∴直线DE 是O 的切线;(2)∵OB OD =,∴OBD ODB ∠=∠,∵OD AC∥∴ODB M ∠=∠,∴OBD M ∠=∠,∴AB AM=(3)∵DE AC ⊥,∴90AEF MED ∠=∠=︒∵30F ∠=︒,∴90903060EAF F ∠=︒-∠=︒-︒=︒,∵AM AB =,∴ABM 是等边三角形,∴60M ∠=︒,∴180180609030MDE M MED ∠=︒-∠-∠=︒-︒-︒=︒,的切线;(1)求证:PC为O(2)求证:2=;BD PA(3)若83PC=,求AE的长.【答案】(1)见详解(2)见详解60BAC ∠=︒ ,且OA OC =,60OCA OAC ∴∠=∠=︒.AP AC = ,且P PCA BAC ∠+∠=∠30P PCA ∴∠=∠=︒.90PCO PCA ACO ∴∠=∠+∠=︒.CD 平分ACB ∠,且90ACB ∠=︒45ACD BCD ∴∠=∠=︒.AD BD ∴=.在Rt ADB 中,222AD BD AB +=2AD BD AB ∴==,。
直线与圆的位置关系【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.切线的定义:直线与圆有唯一的公共点时,这条直线叫做圆的切线,这个唯一的公共点叫做切点.此时直线与圆的位置关系称为相切.2.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.3.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点进阶:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的性质定理和判定定理1.切线的性质定理:圆的切线垂直于过切点的半径.要点进阶:切线的性质定理中要注意:圆的切线是与过切点的半径垂直,不是与任意半径都垂直.2.切线的判定定理:过半径外端且垂直于半径的直线是圆的切线.要点进阶:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、直线与圆的位置关系例1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离类型二、切线的判定与性质例2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.例3.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.例4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.O C B A举一反三:【变式1】如图,在△ABC 中,∠CAB=90°,∠CBA=50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED=EA . (1)求∠DOA 的度数;(2)求证:直线ED 与⊙O 相切.举一反三:【变式2】如图所示,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 等于( )A .2B .3C .22D .23类型三、三角形的内切圆例5.如图,已知O 是△ABC 的内心,∠A=50°,求∠BOC 的度数.O C BA【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【巩固练习】一、选择题1.已知:如图,PA ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB=65°,则∠APB 等于( ) A .65° B .50° C .45° D .40°2.如图,AB 是⊙O 的直径,直线EC 切⊙O 于B 点,若∠DBC=α,则( ) A .∠A=α B .∠A=90°-α C .∠ABD=α D .∠α2190o-=ABD第1题图 第2题图3.设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 应满足的条件是( )A.d=3B. d <3C. d≤3D.d>34.如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP 的度数为( )A .40°B . 35°C . 30°D . 45°5.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA=( ) A.30° B.45° C.60° D.67.5°6.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°二、填空题7.如图,AB是⊙O的直径,BC切⊙O于点B,AC交⊙O于点D.若AC=5,BC=3,则⊙O的半径为_______.8.如图,⊙O的切线PC交直径AB的延长线于点P,C为切点.若∠P=30°,⊙O的半径为1,则PB的长为______________.9.在△ABO中,OA=OB=2cm,⊙O的半径为1cm,当∠ABO=时,直线AB与⊙O相切.10.如图所示,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=________.OCB A 11.如图所示,已知△ABC ,AC =BC =6,∠C =90°,O 是AB 的中点,⊙O 与AC 、BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G ,则CG =________.12.木工师傅可以用角尺测量并计算出圆的半径r .用角尺的较短边紧靠O ,并使较长边与O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边8cm AB .若读得BC 长为cm a ,则用含a 的代数式表示r 为 .三、解答题13. 如图,已知⊙O 是边长为2的等边△ABC 的内切圆,求⊙O 的面积.14. AB 是⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于D 点,过D 作⊙O 的切线DE 交BC 于E.求证:CE=BE.15.如图,AB是⊙O的弦,OC⊥OA,交AB与点P,且PC=BC,求证:BC是⊙O的切线.。
【知识梳理】1、点与圆的位置关系:设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
2、直线和圆的位置关系:直线和圆有三种位置关系,具体如下:知识点梳理:直线与圆的位置关系______ ______ ______ 图形公共点的个数______ ______ 0公共点的名称交点______ 无直线名称割线______ 无d与r的关系d________r d________r d________r 【经典例题1】在矩形ABCD 中,AB=5,BC=12,点 A 在⊙B 上.如果⊙D 与⊙B 相交,且点 B 在⊙D 内,那么⊙D 的半径长可以等于.(只需写出一个符合要求的数)【解析】∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在B上,∴B的半径为5,∵如果D与B相交,∴D的半径R满足8∵点B在D内,∴R>13,∴14符合要求,故答案为:14(答案不唯一).练习1-1在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为 ()A.E,F,GB.F,G,HC.G,H,ED.H,E,F练习1-2已知☉O的直径等于12,圆心O到直线l的距离恰好为一元二次方程2x2-10x+3=0的两根的和,那么直线l和☉O的位置关系是.练习1-3如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=23.将⊙P沿着与y轴平行的方向平移,使⊙P与x轴相切,则平移距离为_____.练习1-4(20上海中考)如图,在矩形ABCD 中,AB=6,BC=8,点O 在对角线AC 上,⊙O 的半径为2,如果⊙O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是 .320310<<x练习1-5如图,已知矩形ABCD 中,AB=2,BC=32,O 是AC 上一点,AO=m ,且O 的半径长为1,求:(1)线段AB 与O 没有公共点时m 的取值范围。
两圆方程作差所得方程对应的直线与两圆的位置关系简介:对于两个非同心圆的一般方程,若把它们作差,消去二次项后会得到一个二元一次方程,即得到一条直线的方程。
所得直线l 在两圆的5种位置关系下的几何意义以及l 已知两圆1C 、2C 的位置关系如何?笔者针对以上问题探讨如下: 一、预备知识:圆幂定理:二、预备知识:定义点到圆的幂与两圆的根轴 三、定理:根轴与两圆连心线垂直四、两圆相交根轴的几何意义就是公共弦所在直线 五、两圆相切(内切或外切)根轴的几何意义就是公切线 六、两圆相离根轴的几何意义与位置 七、两圆内含根轴的几何意义与位置 八、结论:正文对于两个非同心圆的一般方程,若把它们作差,消去二次项后会得到一个二元一次方程,即得到一条直线的方程。
设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,把这两个圆的方程作差,消去二次项后,得到的一条直线方程为0)()()(:212121=-+-+-F F y E E x D D l 。
现在我想探讨的问题是:所得直线l 在两圆的5种位置关系下的几何意义以及l 已知两圆1C 、2C 的位置关系如何?笔者针对以上问题探讨如下:一、预备知识:圆幂定理:1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
3.割线定理:从圆外一点P 引两条割线与圆分别交于A 、B ;C 、D ,则有 PA·PB=PC·PD。
统一归纳为圆幂定理:过任意不在圆上的一点P 引两条直线L1、L2,L1与圆交于A 、B (可重合,即切线),L2与圆交于C 、D (可重合),则有PA·PB=PC·PD。
4.圆幂定理推论:设圆半径为r ,圆心为O , 若P 在圆外,则()()()22222PA PB PC PD PO r PO r PO r PO r ==+-=-=-=切线长;若P 在圆内,()()2222PA PB PC PD r PO r PO r PO PO r ==--=-=-。
2013届初三数学课时专题训练直线与圆的位置关系一、选择题1、如图AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =45°, 则下列结论正确的是( )A. AD =21BC B. AD =21AC C. AC >AB D. AD >DC2、如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是 A .2 B .1 C.22- D.2(第1小题图) (第2小题图) (第3小题图) (第4小题图) 3、如图,点P 为弦AB 上一点,连结OP ,过PC 作PC ⊥OP ,PC 交⊙O 于C ,若AP=4, PB=2, 则PC 的长是( ) A .2B .2C .22D .34、如图,BC 是⊙O 直径,点A 为CB 延长线上一点,AP 切⊙O 于点P ,若AP=12,AB ∶BC=4∶5, 则⊙O 的半径等于( ) A .4B .5C .6D .75、如图7,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB , BB ′⊥AB ,且AA ′=AP ,BB ′=BP , 连结A ′B ′,过点P 从点A 移到点B 时,A ′B ′的中点的位置( ) A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动 C .在弧AMB 上移动 D .保持固定不移动 6、如图,直线y =+x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与 点O 。
若将圆P 沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P ′的个数是( )A .2B .3C .4D . 57、如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M,N 两点. 若点M 的坐标是(2,-1),则点N 的坐标是( ) A .(2,-4) B. (2,-4.5) C.(2,-5) D.(2,-5.5)(第5小题图) (第6小题图) (第7小题图) (第8小题图)8、如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B .点M 和点N 分别是l 1和l 2上的动点, MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误..的是( ).29、如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1) 10、如图为△ABC 和一圆的重迭情形,此圆与直线BC 相切于C 点,且与AC 交于另一点D 。
若∠A=70︒,∠B=60︒,则C D 的度数为( ) (A) 50 (B) 60 (C) 100 (D) 120 。
11、如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是 A .1B .1 C.2D .3 (第9小题图) (第10小题图) (第11小题图) (第12小题图)12、如图,在Rt △ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离B .相切C .相交D .相切或相交13、如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 边AB ,BC 都相切,点E ,F 分别在边AD ,DC 上.现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE =2, 则正方形ABCD 的边长是( ) A .3B .4C .2+D .14、一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN =60︒,则OP =( )A .50 cmB .253cmC .3350cm D .503cm 15、如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是( )①AD ⊥BC ②∠EDA =∠B ③OA =12AC ④DE 是⊙O 的切线 A .1 个 B .2个 C .3 个 D .4个(第13小题图) (第14小题图) (第15小题图) (第16小题图) (第17小题图)16、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于( )A .20°B .30°C .40°D .50°17、如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与 半圆O 1相切,则图中阴影部分的面积是 AB D OC B C AA B D18、如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC ∥OD ,AB =2,OD =3,则BC 的长为( )A .23B .32 CD19、如图,PA 、PB 是O 的切线,切点分别是A 、B ,如果∠P =60°,那么∠AOB 等于( ) A.60°B.90°C.120°D.150°20、如图PA 、PB 是⊙O 的切点,AC 是⊙O 的直径,∠P =40°,则∠BAC 得度数是( ) A.10° B.20° C.30° D.40°(第18小题图) (第19小题图) (第20小题图) (第21小题图) (第22小题图) 21、如图,PA 是O ⊙的切线,切点为A ,∠APO=30°,则O ⊙的半径为( )A .1BC .2D .422、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30°B .45°C .60°D .67.5°23、如图,在Rt △ABC 中,∠ABC =90°,AB =8cm,BC =6cm ,分别以A,C 为圆心,以2AC 的长为半径作圆, 将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为( )cm 2.A .2524π4-B .25π4C .524π4-D .2524π6-24、如图,点B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线l 上取一点p ,使∠APB=30°,则满足条件的点有几个 ( )A.3个个 D.不存在(第23小题图) (第24小题图) (第26小题图) (第27小题图) (第28小题图) 25、在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( )A.与x 轴相切,与y 轴相切B.与x 轴相切,与y 轴相C.与x 轴相交,与y 轴相切D.与x 轴相交,与y 轴相26、如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M 、M 两点,若点M 的坐标是(-4,-2),则点N 的坐标为( ) A .(-1,-2)B .(1,2)C .(-1.5,-2)D .(1.5,-2)27、如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是( ) A .13 B .5 C . 3 D .228、如图,已知⊙是以数轴的原点为圆心,半径为1的圆,,点在数轴上运动,Al二、填空题1.与直线L 相切于已知点的圆的圆心的轨迹是______.2.在△ABC 中,∠A=40°,∠B=80°,I 是△ABC 的内心,则∠AIB=______,∠BIC=______,∠CIA=_______. 3.已知直角三角形的两直角边长分别为5和12,则它的外接圆半径R=______,内切圆半径r=______. 4.如图,割线PAB 、PCD 分别交⊙O 于AB 和CD ,若PC=2,CD=16,PA ∶AB=1∶2,则AB=______. 5.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,P 为切点,设AB=12,则两圆构成圆环面积为______.(第4小题图) (第5小题图) (第8小题图) (第9小题图) (第10小题图) 6、圆外切等腰梯形的底角是30°,中位线长为a ,则圆半径长为______.7、PA 、 PB 是⊙O 的切线,切点是A 、B ,∠APB=50°,过A 作⊙O 直径AC ,连接CB ,则∠PBC=______. 8、如图3,PE 是⊙O 的切线,E 为切点,PAB 、PCD 是割线,AB=35,CD=50,AC ∶DB=1∶2,则PA=______. 9、如图,⊙O 是边长为2的等边三角形ABC 的内切圆,则图中阴影部分的面积为 .10、如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是BAC 上一点,则∠D =_______________ 11、如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .12、如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,BC =4cm ,则切线AB = cm.(第11小题图) (第12小题图) (第13小题图) (第14小题图) 13、如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x的图象上,则图中阴影部分的面积等于 .14、如图,PA ,PB 是⊙O 是切线,A ,B 为切点, AC 是⊙O 的直径,若∠BAC=25°,则∠P= ____度. 15、如图,已知AB 是⊙O 的直径,PB 是⊙O 的切线,PA 交⊙O 于C ,AB =3cm ,PB =4cm ,则BC = . 16、如图,点A 、B 、C 在⊙O 上,切线CD 与OB 的延长线交于点D ,若∠A =30°,CD =32,则⊙O(第15小题图) (第16小题图)(第17小题图) (第18小题图) 17、如图,已知AD 为⊙O 的切线,⊙O 的直径AB =2,弦AC =1,则∠CAD = .18、如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上.①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是_______;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________. 第19题图D19、如图,在ABC △中,120AB AC A BC =∠==,°,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 20、如图,在△ABC 中,AB =AC =5cm ,cosB 35=.如果⊙O,且经过点B 、C , 那么线段AO = cm .21、已知正方形纸片ABCD 的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA7恰好与6)0相切于点A ′(△EFA′与⊙0除切点外无重叠部分),延长FA′交CD 边于点G ,则A′G 的长是(第19小题图) (第20小题图) (第21小题图) (第22小题图) (第23小题图) 22、如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .23、如图, 已知△ABC ,6==BC AC ,︒=∠90C .O 是AB 的中点,⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G . 则CG = . 24、如图,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移 个单位时,它与x 轴相切.25、如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P=40°,则∠BAC=_____.26、如图,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为 cm .(第24小题图) (第25小题图) (第26小题图) (第27小题图) 27、如图,⊙O 的直径为20cm ,弦cm AB 16=,AB OD ⊥,垂足为D .则AB 沿射线OD 方向平移 cm 时可与⊙O 相切.28、如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB=90°,CD ⊥AB,垂足为D ,半圆(量角器)的圆心与点D 重合,没得CE =5cm ,将量角器沿DC 方向平移2cm ,半圆(量角器)恰与△ABC 的边AC 、BC 相切,如图②,则AB 的长为 cm.(精确到0.1cm )图① 图② (第29小题图)29、如图,已知直线AB 是⊙O 的切线,A 为切点,OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°,则30、如图,木工师傅可以用角尺测量并计算出圆的半径r .用角尺的较短边紧靠O ,并使较长边与O 相切于点C .假设角尺的较长边足够长,角尺的顶点B ,较短边8cm AB .若读得BC 长为cm a ,则用含a 的代数式表示r 为 .31、如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设CD 、CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .32、如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点,若两圆的半径分别为3cm 和5cm ,则AB 的长为 cm 。