2019-2020学年山东省德州市七年级上学期期中数学试卷
- 格式:docx
- 大小:47.27 KB
- 文档页数:8
人教版2019-2020学年七年级上学期期中考试数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下面选项中符合代数式书写要求的是()A.ay·3B.C.D.a×b÷c2 . 一件工作,甲单独做需a天完成,乙单独做需b天完成,如果两人合作7天,完成的工作量是()A.B.7(a-b)C.7(a+b)D.3 . 下列说法错误的是()A.﹣xy的系数是﹣1B.3x3﹣2x2y2﹣y3的次数是4C.当a<2b时,2a+b+2|a﹣2b|=5bD.多项式中x2的系数是﹣34 . 在0,2,,-5这四个数中,最大的数是()A.0B.2C.D.-55 . 下列计算正确的是()A.a+2a=3B.C.D.6 . 2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为()A.B.C.D.7 . -的相反数是()A.2016B.﹣2016C.D.-8 . 若△ABC三条边的长度分别为m,n,p,且,则这个三角形为A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9 . 下列各组运算中,结果为负数的是()A.-(-3)B.(-3)×(-2)C.-|-3|D.10 . 下列各式符合代数式书写格式的为()A.B.C.D.二、填空题11 . 若数轴上点A与点B的距离是2018,点B表示的数为7,则点A表示的数是_______.12 . 单项式﹣x3y的系数是_____.13 . 张老师在黑板上写出以下四个结论:①−3的绝对值为;②一个负数的绝对值一定是正数;③若=−a,则a一定是负数;④一个五棱柱的截面最多是七边形. 认为张老师写的结论正确的有_______.(填序号)14 . 如果,那么代数式的值为______.15 . 金砖五国成员国巴西的首都巴西利亚、新西兰的首都惠灵顿与北京的时差如下表:城市惠灵顿巴西利亚时差/h+4﹣11若现在的北京时间是11月16日8:00,请从A,B两题中任选一题作答.A.那么,现在的惠灵顿时间是11月_____日_____B.那么,现在的巴西利亚时间是11月_____日_____.16 . 单项式x2y的系数是_____;次数是______.17 . 李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款________元.18 . 若a、b为实数,且满足|a-2|+=0,则a=______ ,b=______.三、解答题19 . 计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4).20 . 已知:,且。
……内………………外………… 学校:__山东省2019-2020学年上学期期末原创卷七年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七上全册。
第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.比–1小2的数是 A .3B .1C .–2D .–32.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为 A .2.18×106B .2.18×105C .21.8×106D .21.8×1053.我市冬季里某一天的最低气温是–10℃,最高气温是5℃,这一天的温差为 A .–5℃B .5℃C .10℃D .15℃4.下列各组中的两项属于同类项的是A .2a b 与2abB .2a 与3a -C .3a 与3xD .23与2a5.下列图形中__________可以折成正方体.A .B .C .D .6.如果x y =,那么下列各式中正确的是 A .11ax ay -=+B .x ya a=C .a x a y -=-D .x a y a -=+7.如图,AO ⊥BO 于点O ,∠AOC =∠BOD ,则∠COD 等于A .80︒B .90︒C .95︒D .100︒8.已知x =2是2x +a =5的解,则a 的值为 A .1B .32C .–1D .239.角5218︒'的补角等于 A .3742︒'B .3818︒'C .12742︒'D .12842︒'10.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是A .AD +BD =ABB .BD –CD =CBC .AB =2ACD .AD =12AC 11.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为A .4B .6C .12D .812.某工程甲单独完成要45天,乙单独完成要30天.若乙先单独干22天,剩下的由甲单独完成,则甲、乙一共用几天可以完成全部工作?设甲、乙一共用x 天完成,则符合题意的方程是A .222214530x -+= B .222213045x ++=C .222214530x ++=D .2213045x x -+= 第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.如图,将长方形ABCD 绕AB 边旋转一周,得到的几何体是__________.………内………………此………外………………14.点A在数轴上的位置如图所示,则点A表示的数的相反数是__________.15.如图,O为直线AB上一点,∠COB=29°30′,则∠1=__________.16.某品牌手机的进价为1200元,按定价的八折出售可获利14%,则该手机的定价为__________.17.已知a2+2a=1,则3a2+6a+2的值为__________.18.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第__________次移动到的点到原点的距离为2018.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)(1)2+(–1)2019+(2+1)(–2–1)–|–3×13|;(2)777(5)98222222⎛⎫⨯-+-⨯-⨯⎪⎝⎭.20.(本小题满分6分)解方程:(1)–2x+9=3(x–2);(2)12x–2=926x-.21.(本小题满分6分)先化简再求值:2(x3–2y2)–(x–2y)–(x–3y2+2x3),其中x=–3,y=–2.22.(本小题满分8分)如图,在平面内有A,B,C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B,C),连接线段AD;(3)数数看,此时图中线段的条数.23.(本小题满分8分)某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?24.(本小题满分10分)若“△”表示一种新运算,规定a△b=a×b–(a+b).(1)计算:–3△5;(2)计算:2△[(–4)△(–5)];(3)(–2)△(1+x)=–x+6,求x的值.25.(本小题满分10分)如图,O为直线AB上一点,OD平分AOC∠,90DOE∠=︒.(1)若50AOC∠=︒,求COE∠和∠BOE的度数;(2)猜想:OE是否平分BOC∠?请直接写出你猜想的结论.26.(本小题满分12分)2018年9月7日,财政部和国税总局发布了《关于2018年第四季度个人所得税减除费用和税率适用问题的通知》,通知规定:我国自2018年10月1日起,个人所得税起征点从3500元提高到5000元.月收入不超过5000元的部分不收税;月收入超过5000元但不超过8000元的部分征收3%的个人所得税……,例如:某人月收入6000元,他应缴纳个人所得税为(6000–5000)×3%=30(元).按此通知精神完成下面问题:(1)某人2018年10月月收入为5860元,他应缴纳个人所得税多少元?(2)当月收入超过5000元而又不超过8000元时,写出应缴纳个人所得税y(元)与月收入x(元)之间的关系式;(3)如果某人2019年1月缴纳个人所得税81元,那么此人本月收入是多少元?27.(本小题满分12分)观察下列等式:第1个等式:a1=114⨯=13×(11–14);第2个等式:a2=147⨯=13×(14–17);第3个等式:a3=1710⨯=13×(17–110);第4个等式:a4=11013⨯=13×(110–113);…请解答下列问题:(1)按以上规律列出第5个等式:a5=__________=__________;第n(n为正整数)个等式:a n=__________=__________;(2)求a1+a2+a3+a4+…+a2019的值.2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】D【解析】–1–2=–3,故选D . 2.【答案】A【解析】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A . 3.【答案】D【解析】5−(−10)=5+10=15(℃).故选D . 4.【答案】B【解析】A .a 2b 与ab 2中所含字母的指数不同,不是同类项,故A 错误; B .2a 与–3a 中所含字母相同,相同字母的指数也相同,是同类项,故B 正确; C .a 3与x 3中所含字母不同,不是同类项,故C 错误; D .32与a 2中所含字母不同,不是同类项,故D 错误. 故选B . 5.【答案】B【解析】A ,C ,D 围成几何体时,有两个面重合,故不能围成正方体;只有B 能围成正方体.故选B . 6.【答案】C【解析】此题考查等式的性质;在等式的两边同时加上或减去同一个数仍是等式;在等式的两边同时乘以或除以(一个不为零)同一个数仍是等式;所以此题中A 错误:应该为11ax ay -=-或11ax ay +=+才正确;B 错误,因为等式两边同时除的数a 不知是否为零,所以错误;C 正确,同时乘以–1然后在同时加上a ;D 错误,应该为x a y a -=-或x a y a +=+才正确,故选C . 7.【答案】B【解析】∵∠AOC =∠BOD ,∴∠AOB =∠COD ,∵AO ⊥BO ,∴∠AOB =∠COD =90°.故选B . 8.【答案】A【解析】将x =2代入方程得:4+a =5,解得:a =1,故选A .9.【答案】C【解析】5218︒'的补角等于:180°–5218︒'=12742︒'.故选C . 10.【答案】C【解析】由图可得,AD +BD =AB ,故选项A 中的结论成立,BD –CD =CB ,故选项B 中的结论成立,∵点C 是线段AB 上一点,∴AB 不一定时AC 的二倍,故选项C 中的结论不成立, ∵D 是线段AC 的中点,∴12AD AC =,故选项D 中的结论成立, 故选C . 11.【答案】D【解析】长方体的高是1,宽是3–1=2,长是6–2=4,长方体的容积是4×2×1=8.故选D . 12.【答案】A【解析】设甲、乙共用x 天完成,则甲单独干了(x –22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的145,乙每天完成全部工作的130.根据等量关系列方程得:2245x -+2230=1,故选A .13.【答案】圆柱【解析】将长方形ABCD 绕AB 边旋转一周,得到的几何体是圆柱体,故答案为:圆柱. 14.【答案】–2【解析】∵点A 在数轴上表示的数是2,∴点A 表示的数的相反数是–2.故答案为:–2. 15.【答案】150.5°【解析】∵1180BOC ∠+∠=,∴180293018029.51118050.5BOC ︒︒'︒︒∠-=︒=∠﹣=﹣=. 故答案为:150.5°. 16.【答案】1710元【解析】设手机的定价为x 元,由题意得,0.8x –1200=1200×14%,解得:x =1710. 该手机的售价为1710元.故答案为:1710元. 17.【答案】5【解析】当a 2+2a =1时,原式=3(a 2+2a )+2=3+2=5,故答案为:5. 18.【答案】1345【解析】第1次点A 向左移动3个单位长度至点B ,则B 表示的数,1–3=–2; 第2次从点B 向右移动6个单位长度至点C ,则C 表示的数为–2+6=4;………内……………… 此………外………………第3次从点C 向左移动9个单位长度至点D ,则D 表示的数为4–9=–5; 第4次从点D 向右移动12个单位长度至点E ,则点E 表示的数为–5+12=7; 第5次从点E 向左移动15个单位长度至点F ,则F 表示的数为7–15=–8; …;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:–12(3n +1),当移动次数为偶数时,点在数轴上所表示的数满足:322n +. 故当移动次数为奇数时,–12(3n +1)=–2018,解得:n =1345, 当移动次数为偶数时,32=20182n +,n =40343(不合题意). 故答案为:1345.19.【解析】(1)()()()2019121212||133+-++-⨯---()()21331=+-+⨯-- ()()2191=+-+--=2+(–1)+(–9)–19=-;(3分)(2)()777598222222⎛⎫⨯-+⨯-⨯ ⎪⎝⎭- ()()()759822=⨯-+-+-⎡⎤⎣⎦ ()72222=⨯- 7=-.(6分)20.【解析】(1)去括号得:–2x +9=3x –6,移项合并得:–5x =–15,解得:x =3;(3分)(2)去分母得:3x –12=9x –2, 移项合并得:–6x =10, 解得:x =–53.(6分) 21.【解析】2(x 3–2y 2)–(x –2y )–(x –3y 2+2x 3)=2x 3–4y 2–x +2y –x +3y 2–2x 3=–y 2–2x +2y ,(3分)当x =–3,y =–2时,原式=–(–2)2–2×(–3)+2×(–2)=–4+6–4=–2.(6分) 22.【解析】(1)如图,直线AC ,线段BC ,射线AB 即为所求;(3分)(2)如图,线段AD 即为所求;(4分)(3)由题可得,图中线段有AC 、AB 、AD 、BD 、DC 、BC 共6条.(8分) 23.【解析】设生产螺栓的工人有x 名,则生产螺母的工人有(28–x )名,根据题意得:12x ×2=18(28–x ),(3分) 解得:x =12.(5分)当x =12时,28–x =16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.(8分)24.【解析】()()()135353515217-=-⨯--+=--=-;(3分)()()()2245⎡⎤--⎣⎦()()()24545⎡⎤=-⨯----⎣⎦229=()229229=⨯-+ 27.=(7分)(3)根据题意可得()()21216x x x -+--++=-+, 解得:72x =-(10分)25.【解析】(1)∵OD 平分∠AOC ,∴∠COD =∠AOD =11502522AOC ∠=⨯︒=︒. ∵∠DOE =90°,∴∠COE =∠DOE –∠COD =90°–25°=65°,∴∠BOE =180°–∠AOD –∠DOE =180°–25°–90°=65°;(5分)(2)结论:OE 平分∠BOC .理由如下: 设2AOC α∠=.∵OD 平分AOC ∠,2AOC α∠=,∴12AOD COD AOC α∠=∠=∠=. 又∵90DOE ∠=︒,∴90COE DOE COD α∠=∠-∠=︒-. 又∵1801809090BOE DOE AOD αα∠=︒-∠-∠=︒-︒-=︒-, ∴COE BOE ∠=∠,即OE 平分BOC ∠.(10分) 26.【解析】(1)(5860–5000)×3%=25.8(元).应缴纳个人所得税=25.8(元);(4分) (2)y =(x –5000)×3%=0.03x –150, 即y =0.03x –150(5000≤x ≤8000);(8分)(3)把y =81代入y =0.03x –150,得0.03x –150=81,解答x =7700, 此人本月收入是7700元.(12分) 27.【解析】(1)按以上规律知第5个等式为a 5=11316⨯=13×(111316-), 第n 个等式a n =1(32)(31)n n -+=13×(113231n n --+),故答案为:11316⨯,13×(111316-),1(32)(31)n n -+,13×(113231n n --+).(8分)(2)a 1+a 2+a 3+a 4+…+a 2019 =111447+⨯⨯+1710⨯+…+1(320192)(320191)⨯-⨯⨯+=13×(1–14)+13×(1147-)+13×(11710-)+…+13×(1160556058-)=13×(1–14+14–11710-+…+16055–16058) =13×(1–16058) =13×60576058 =20196058.(12分)。
2020年山东省德州市中考数学试卷和答案解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.(4分)|﹣2020|的结果是()A.B.2020C.﹣D.﹣2020解析:根据绝对值的性质直接解答即可.参考答案:解:|﹣2020|=2020;故选:B.点拨:此题考查了绝对值,掌握绝对值的性质是解题的关键,是一道基础题.2.(4分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:A、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B、是中心对称图形但不是轴对称图形.故此选项符合题意;C、既是轴对称图形,又是中心对称图形.故此选项不合题意;D、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.点拨:此题主要中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(4分)下列运算正确的是()A.6a﹣5a=1B.a2•a3=a5C.(﹣2a)2=﹣4a2D.a6÷a2=a3解析:利用整式的四则运算法则分别计算,可得出答案.参考答案:解:6a﹣5a=a,因此选项A不符合题意;a2•a3=a5,因此选项B符合题意;(﹣2a)2=4a2,因此选项C不符合题意;a6÷a2=a6﹣2=a4,因此选项D不符合题意;故选:B.点拨:考查整式的意义和运算,掌握运算法则是正确计算的前提.4.(4分)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图解析:根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.参考答案:解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.点拨:本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.(4分)为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:一周做饭45678次数人数7612105那么一周内该班学生的平均做饭次数为()A.4B.5C.6D.7解析:利用加权平均数的计算方法进行计算即可.参考答案:解:==6(次),故选:C.点拨:本题考查加权平均数的意义和计算方法,理解加权平均数的意义是正确解答的前提.6.(4分)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米解析:根据多边形的外角和即可求出答案.参考答案:解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64(米).故选:C.点拨:本题主要考查了利用多边形的外角和定理求多边形的边数.任何一个多边形的外角和都是360°.7.(4分)函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.解析:根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.参考答案:解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.点拨:本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.(4分)下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.4解析:根据平行四边形的判定、菱形的判定、正方形和矩形的判定判断即可.参考答案:解:①一组对边平行且这组对边相等的四边形是平行四边形,原命题是假命题;②对角线互相垂直且平分的四边形是菱形,是真命题;③一个角为90°且一组邻边相等的平行四边形是正方形,原命题是假命题;④对角线相等的平行四边形是矩形,是真命题;故选:B.点拨:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.(4分)若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2解析:分别求出每个不等式的解集,根据不等式组的解集为x≤2可得关于a的不等式,解之可得.参考答案:解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(4分)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24﹣4πB.12+4πC.24+8πD.24+4π解析:设正六边形的中心为O,连接OA,OB首先求出弓形AmB 的面积,再根据S阴=6•(S半圆﹣S弓形AmB)求解即可.参考答案:解:设正六边形的中心为O,连接OA,OB.由题意,OA=OB=AB=4,∴S 弓形AmB=S扇形OAB﹣S△AOB=﹣×42=π﹣4,∴S 阴=6•(S半圆﹣S弓形AmB)=6•(•π•22﹣π+4)=24﹣4π,故选:A.点拨:本题考查正多边形和圆,扇形的面积,弓形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.(4分)二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小解析:根据二次函数的图象和性质分别对各个选项进行判断即可.参考答案:解:∵抛物线的对称轴为直线x=1,a<0,∴点(﹣1,0)关于直线x=1的对称点为(3,0),则抛物线与x轴的另一个交点坐标为(3,0),点(﹣2,y1)与(4,y1)是对称点,∵当x>1时,函数y随x增大而减小,故A选项不符合题意;把点(﹣1,0),(3,0)代入y=ax2+bx+c得:a﹣b+c=0①,9a+3b+c =0②,①×3+②得:12a+4c=0,∴3a+c=0,故B选项不符合题意;当y=﹣2时,y=ax2+bx+c=﹣2,由图象得:纵坐标为﹣2的点有2个,∴方程ax2+bx+c=﹣2有两个不相等的实数根,故C选项不符合题意;∵二次函数图象的对称轴为x=1,a<0,∴当x≤1时,y随x的增大而增大;当x≥1时,y随x的增大而减小;故D选项符合题意;故选:D.点拨:本题考查了二次函数的图象与性质、二次函数图象上点的坐标特征等知识;熟练掌握二次函数的图象和性质是解题的关键.12.(4分)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202解析:观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.参考答案:解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.点拨:考查了规律型:图形的变化类,观察图形,发现后一个图案比前一个图案多2(n+3)枚棋子是解题的关键.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.(4分)﹣=.解析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.参考答案:解:原式=3﹣=2.故答案为:2.点拨:此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.14.(4分)若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是120度.解析:根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.参考答案:解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为:120.点拨:此题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.(4分)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为y=.解析:直接利用位似图形的性质得出A′坐标,进而求出函数解析式.参考答案:解:∵点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′,∴A′坐标为:(﹣4,2)或(4,﹣2),∵A'恰在某一反比例函数图象上,∴该反比例函数解析式为:y=.故答案为:y=.点拨:此题主要考查了位似变换以及待定系数法求反比例函数解析式,正确得出对应点坐标是解题关键.16.(4分)菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的周长为20.解析:解方程得出x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,即可得出菱形ABCD的周长.参考答案:解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣9x+20=0,因式分解得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,∴菱形ABCD的周长=4AB=20.故答案为:20.点拨:本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB是解决问题的关键.17.(4分)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.解析:直接利用轴对称图形的性质结合概率求法得出答案.参考答案:解:如图所示:当分别将1,2位置涂黑,构成的黑色部分图形是轴对称图形,故新构成的黑色部分图形是轴对称图形的概率是:=.故答案为:.点拨:此题主要考查了利用轴对称设计图案以及几何概率,正确掌握轴对称图形的性质是解题关键.18.(4分)如图,在矩形ABCD中,AB=+2,AD=.把AD 沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E 顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是﹣2;②弧D'D″的长度是π;③△A′AF≌△A′EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是①②④.解析:由折叠的性质可得∠D=∠AD'E=90°=∠DAD',AD=AD',可证四边形ADED'是正方形,可得AD=AD'=D'E=DE=,AE =AD=,∠EAD'=∠AED'=45°,由勾股定理可求EF的长,由旋转的性质可得AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,可求A'F=﹣2,可判断①;由锐角三角函数可求∠FED'=30°,由弧长公式可求弧D'D″的长度,可判断②;由等腰三角形的性质可求∠EAA'=∠EA'A=52.5°,∠A'AF=7.5°,可判断③;由“HL”可证Rt△ED'G≌Rt△ED''G,可得∴∠D'GE=∠D''GE=52.5°,可证△AFA'∽△EFG,可判断④,即可求解.参考答案:解:∵把AD沿AE折叠,使点D恰好落在AB边上的D′处,∴∠D=∠AD'E=90°=∠DAD',AD=AD',∴四边形ADED'是矩形,又∵AD=AD'=,∴四边形ADED'是正方形,∴AD=AD'=D'E=DE=,AE=AD=,∠EAD'=∠AED'=45°,∴D'B=AB﹣AD'=2,∵点F是BD'中点,∴D'F=1,∴EF===2,∵将△AED′绕点E顺时针旋转α,∴AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,∴A'F=﹣2,故①正确;∵tan∠FED'===,∴∠FED'=30°∴α=30°+45°=75°,∴弧D'D″的长度==π,故②正确;∵AE=A'E,∠AEA'=75°,∴∠EAA'=∠EA'A=52.5°,∴∠A'AF=7.5°,∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AFA'=120°≠∠EA'G,∴△AA'F与△A'GE不全等,故③错误;∵D'E=D''E,EG=EG,∴Rt△ED'G≌Rt△ED''G(HL),∴∠D'GE=∠D''GE,∵∠AGD''=∠A'AG+∠AA'G=105°,∴∠D'GE=52.5°=∠AA'F,又∵∠AFA'=∠EFG,∴△AFA'∽△EFG,故④正确,故答案为:①②④.点拨:本题是四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,锐角三角函数,弧长公式,等腰三角形的性质,旋转的性质,相似三角形的判定和性质等知识,灵活运用这些性质进行推理证明是本题的关键.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)先化简:(),然后选择一个合适的x 值代入求值.解析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.参考答案:解:===,把x=1代入.点拨:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为36%;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.解析:(1)用“89.5~99.5”的人数除以它们所占的百分比可得到调查的总人数;59.5~69.5”这一范围的人数占总参赛人数的百分比,即可得出答案;(2)求出“69.5~74.5”这一范围的人数为15﹣8=7(人),“79.5~84.5”这一范围的人数为18﹣8=10(人);补全图2频数直方图即可:(3)求出成绩由高到低前40%的参赛选手人数为50×40%=20(人),由88>84.5,即可得出结论;(4)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.参考答案:解:(1)本次比赛参赛选手共有:(8+4)÷24%=50(人),“59.5~69.5”这一范围的人数占总参赛人数的百分比为×100%=10%,∴79.5~89.5”这一范围的人数占总参赛人数的百分比为100%﹣24%﹣10%﹣30%=36%;故答案为:50,36%;(2)∵“69.5~79.5”这一范围的人数为50×30%=15(人),∴“69.5~74.5”这一范围的人数为15﹣8=7(人),∵“79.5~89.5”这一范围的人数为50×36%=18(人),∴“79.5~84.5”这一范围的人数为18﹣8=10(人);补全图2频数直方图:(3)能获奖.理由如下:∵本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为50×40%=20(人),又∵88>84.5,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.点拨:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(10分)如图,无人机在离地面60米的C处,观测楼房顶部B 的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.解析:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD =60°,解直角三角形即可得到结论.参考答案:解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°==,∴AD==20,∴BE=AD=20,在Rt△BCE中,tan∠CBE=tan30°==,∴CE=20=20,∴ED=CD﹣CE=60﹣20=40,∴AB=ED=40(米),答:楼房的高度为40米.点拨:此题考查了解直角三角形的应用﹣仰角俯角问题,用到的知识点是俯角的定义、特殊角的三角函数值,关键是作出辅助线,构造直角三角形.22.(12分)如图,点C在以AB为直径的⊙O上,点D是半圆AB 的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.解析:(1)连接OD,根据圆周角定理得到∠AOD=AOB=90°,根据平行线的性质得到∠ODH=90°,于是得到结论;(2)连接CD,根据圆周角定理得到∠ADB=∠ACB=90°,推出△ABD是等腰直角三角形,得到AB=10,解直角三角形得到AC==8,求得∠CAD=∠DBH,根据平行线的性质得到∠BDH =∠OBD=45°,根据相似三角形的性质即可得到结论.参考答案:(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.点拨:本题考查了切线的判定和性质,圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(12分)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?解析:(1)设超市B型画笔单价为a元,则A型画笔单价为(a﹣2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.参考答案:解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a﹣2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.点拨:本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.24.(12分)问题探究:小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD 是中线,求AD的取值范围.她的做法是:延长AD到E,使DE =AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是:SAS;(2)AD的取值范围是1<AD<5;方法运用:(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF 并延长交AC于点E,使AE=EF,求证:BF=AC.(4)如图3,在矩形ABCD中,=,在BD上取一点F,以BF为斜边作Rt△BEF,且=,点G是DF的中点,连接EG,CG,求证:EG=CG.解析:(1)由“SAS”可证△BED≌△CAD;(2)由全等三角形的性质可得AC=BE=4,由三角形的三边关系可求解;(3)延长AD至H,使AD=DH,连接BH,由“SAS”可证△BHD ≌△CAD,可得AC=BH,∠CAD=∠H,由等腰三角形的性质可得∠H=∠BFH,可得BF=BH=AC;(4)延长CG至N,使NG=CG,连接EN,CE,NF,由“SAS”可证△NGF≌△CGD,可得CD=NF,∠CDB=∠NFG,通过证明△BEC ∽△FEN,可得∠BEC=∠FEN,可得∠BEF=∠NEC=90°,由直角三角形的性质可得结论.参考答案:解:(1)∵AD是中线,∴BD=CD,又∵∠ADC=∠BDE,AD=DE,∴△BED≌△CAD(SAS),故答案为:SAS;(2)∵△BED≌△CAD,∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴2<2AD<10,∴1<AD<5,故答案为:1<AD<5;(3)如图2,延长AD至H,使AD=DH,连接BH,∵AD是△ABC的中线,∴BD=CD,又∵∠ADC=∠BDH,AD=DH,∴△ADC≌△HDB(SAS),∴AC=BH,∠CAD=∠H,∵AE=EF,∴∠EAF=∠AFE,∴∠H=∠BFH,∴BF=BH,∴AC=BF;(4)如图3,延长CG至N,使NG=CG,连接EN,CE,NF,∵点G是DF的中点,∴DG=GF,又∵∠NGF=∠DGC,CG=NG,∴△NGF≌△CGD(SAS),∴CD=NF,∠CDB=∠NFG,∵=,=,∴tan∠ADB=,tan∠EBF=,∴∠ADB=∠EBF,∵AD∥BC,∴∠ADB=∠DBC,∴∠EBF=∠DBC,∴∠EBC=2∠DBC,∵∠EBF+∠EFB=90°,∠DBC+∠BDC=90°,∴∠EFB=∠BDC=∠NFG,∠EBF+∠EFB+∠DBC+∠BDC=180°,∴2∠DBC+∠EFB+∠NFG=180°,又∵∠NFG+∠BFE+∠EFN=180°,∴∠EFN=2∠DBC,∴∠EBC=∠EFN,∵=,且CD=NF,∴∴△BEC∽△FEN,∴∠BEC=∠FEN,∴∠BEF=∠NEC=90°,又∵CG=NG,∴EG =NC,∴EG=GC.点拨:本题是四边形综合题,考查了全等三角形的判定和性质,矩形的性质,锐角三角函数,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.25.(14分)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.探究:(1)线段PA与PM的数量关系为PA=PM,其理由为:线段垂直平分线上的点与这条线段两个端点的距离相等.(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:M的坐标…(﹣2,0)(0,0)(2,0)(4,0)…P的坐标…(﹣2,﹣2)(0,﹣1)(2,﹣2)(4,﹣5)…猜想:(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是抛物线.验证:(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.应用:(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标y D的取值范围.解析:(1)由题意可得GH是AM的垂直平分线,由线段垂直平分线的性质可求解;(2)由(1)可知:PA=PM,利用两点距离公式可求点P坐标;(3)依照题意,画出图象;(4)由两点距离公式可得﹣y=,可求y关于x的函数解析式;(5)由两点距离公式可求BC=OB=OC,可证△BOC是等边三角形,可得∠BOC=60°,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,可得∠BEC=30°,则当点D在点E下方时,∠BDC<30°,求出点E的纵坐标即可求解.参考答案:解:(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,∴GH是AM的垂直平分线,∵点P是GH上一点,∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;(2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)∵PA=PM,∴﹣a=,∴a=﹣2,∴点P(﹣2,﹣2),当点M(4,0)时,设点P(4,b),(b<0)∵PA=PM,∴﹣b=,∴b=﹣5,∴点P(4,﹣5),故答案为:(﹣2,﹣2),(4,﹣5);(3)依照题意,画出图象,猜想曲线L的形状为抛物线,故答案为:抛物线;(4)∵PA=PM,点P的坐标是(x,y),(y<0),∴﹣y=,∴y=﹣x2﹣1;(5)∵点B(﹣1,),C(1,),∴BC=2,OB==2,OC==2,∴BC=OB=OC,∴△BOC是等边三角形,∴∠BOC=60°,如图3,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,∴∠BEC=30°,设点E(m,n),∵点E在抛物线上,∴n=﹣m2﹣1,∵OE=OB=2,∴=2,∴n 1=2﹣2,n2=2+2(舍去),如图3,可知当点D在点E下方时,∠BDC<30°,∴点D的纵坐标y D的取值范围为y D<2﹣2.点拨:本题是二次函数综合题,考查了二次函数的性质,圆的有关知识,两点距离公式等知识,利用数形结合思想解决问题是本题的关键.。
2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)2022的相反数是()A.B.﹣C.2022D.﹣20222.(4分)同学们,在我们的周围存在很多数字,比如我们德州的区号是0534,我们夏津的邮政编码是253200,253200用科学记数法表示为()A.2.523×105B.25.32×104C.0.2532×106D.2.532×106 3.(4分)2022年夏津的冬天来得比以往早了一些,据天气预报,11月25日,最高气温是13℃,最低气温是﹣3℃,则这一天的温差是()A.10℃B.16℃C.﹣16℃D.﹣10℃4.(4分)下列四个数中,最小数的是()A.0B.﹣1C.D.25.(4分)如果盈利100元记为+100元,那么﹣90元表示()A.亏损10元B.盈利90元C.亏损90元D.盈利10元6.(4分)当a为任意有理数时,下列代数式的值一定为正数的是()A.a B.a+2C.2a D.a2+27.(4分)在数轴上与原点距离为8的点表示的数是()A.8B.﹣8C.±8D.0.88.(4分)下列式子中成立的是()A.﹣|﹣5|>4B.﹣(﹣5.5)<5C.﹣|﹣4|=4D.﹣3<|﹣3| 9.(4分)用四舍五入按要求对0.05019分别取近似值,其中错误的是()A.0.1精确到0.1B.0.05精确到百分位C.0.05精确到千分位D.0.0502精确到0.000110.(4分)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为()A.m+6B.C.D.11.(4分)下列去括号正确的是()A.a+(﹣2b+c)=a+2b+c B.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2c D.a﹣2(﹣2b+c)=a+4b﹣c12.(4分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,…,如此下去,则第2020个图中共有正方形的个数为()A.2021B.2020C.6058D.6061二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)在|﹣44|,+0.002,π,0,﹣110这五个数中,整数共有个.14.(4分)单项式的次数是.15.(4分)若|m﹣2|+(2n+4)2=0,则m+n=.16.(4分)如果与2x2y n+1是同类项,则mn的值.17.(4分)用“☆”定义新运算:对于任意有理数a、b,都有a☆b=b2﹣2a,例7☆4=42﹣2×7=2,那么(﹣5)☆(﹣3)=.18.(4分)一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,已知小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3.若小球按以上规律跳了2n次时,它落在数轴上的点P2n,所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.三、解答题(本大题共78分)19.(20分)计算:(1)﹣23+32﹣67+48;(2);(3);(4).20.(8分)化简:(1)3x2y﹣2x2y+x2y;(2)3a2﹣2a+2(a2﹣a).21.(8分)有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a﹣b|+|b+c|﹣|a|.22.(8分)先化简,后求值:2(5ab﹣4b2)﹣3(3ab﹣2b2)+2b2,其中a=2,b=﹣.23.(10分)已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B“看成“2A+B”,算得结果C=4a2b ﹣3ab2+4abc.(1)计算B的表达式;(2)小强说正确结果的大小与c的取值无关,对吗?请说明理由;(3)若a=,b=,求正确结果的代数式的值.24.(12分)中国少年先锋队建队72周年之际,我校组织初一年级学生前往西山国家森林公园“无名英雄纪念广场”举行少先队建队仪式.通过庄严的仪式,激发全体少先队员的爱国热情,增强少先队员的荣誉感和集体主义精神.建队仪式的同时,学校安排了“定向越野”活动,引导学生在活动中强健体魄,挑战自我,磨练意志,增强团队合作意识和班集体凝聚力.活动中,各班分成8个小组,每个小组途经13个点位,其中5个游戏点,达标成绩为60分钟.下面是某班8个小组学生的时间记录如下:(其中“+”表示成绩大于60分钟,“﹣”表示成绩小于60分钟)﹣13,+5,﹣8,﹣4,+10,﹣5,﹣3,﹣6.阅读上述材料,回答问题:(1)这个班最快的一组比最慢的一组少用多少分钟?(2)这个班8个小组的达标率为多少?(3)这个班8个小组的平均成绩为多少分钟?25.(12分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)2022的相反数是()A.B.﹣C.2022D.﹣2022【分析】直接根据相反数的概念解答即可.【解答】解:2022的相反数等于﹣2022,故选:D.2.(4分)同学们,在我们的周围存在很多数字,比如我们德州的区号是0534,我们夏津的邮政编码是253200,253200用科学记数法表示为()A.2.523×105B.25.32×104C.0.2532×106D.2.532×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【解答】解:253200=2.532×105.故选:A.3.(4分)2022年夏津的冬天来得比以往早了一些,据天气预报,11月25日,最高气温是13℃,最低气温是﹣3℃,则这一天的温差是()A.10℃B.16℃C.﹣16℃D.﹣10℃【分析】根据温差=等于最高气温﹣最低气温,列式求解即可.【解答】解:这一天的温差是13﹣(﹣3)=13+3=16℃.故选:B.4.(4分)下列四个数中,最小数的是()A.0B.﹣1C.D.2【分析】根据有理数的相关概念直接作答.【解答】解:易得,故选:B.5.(4分)如果盈利100元记为+100元,那么﹣90元表示()A.亏损10元B.盈利90元C.亏损90元D.盈利10元【分析】“正”和“负”是表示互为相反意义的量,如果向北走记作正数,那么向北的反方向,向南走应记为负数;如果盈利记为正数,那么亏损表示负数.【解答】解:把盈利100元记为+100元,那么﹣90元表示亏损90元,故选:C.6.(4分)当a为任意有理数时,下列代数式的值一定为正数的是()A.a B.a+2C.2a D.a2+2【分析】根据非负数的性质举特例判断即可.【解答】解:A.a=0时,|a|=0,0既不是正数也不是负数,故本选项不合题意;B.a=﹣2时,a+2=0,0既不是正数也不是负数,故本选项不合题意;C.a<0时,2a<0,是负数,故本选项不合题意;D.∵a2≥0,∴a2+2>0,是正数,故本选项符合题意.故选:D.7.(4分)在数轴上与原点距离为8的点表示的数是()A.8B.﹣8C.±8D.0.8【分析】根据数轴的性质即可求解【解答】解:在数轴上与原点距离为8的点表示的数是±8,故选:C.8.(4分)下列式子中成立的是()A.﹣|﹣5|>4B.﹣(﹣5.5)<5C.﹣|﹣4|=4D.﹣3<|﹣3|【分析】利用绝对值的代数意义,即可求解.【解答】解:A.因为﹣5<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣5<4,不符合题意;B.去括号后原式=5.5>5,不符合题意;C.因为﹣4<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣4<4,不符合题意;D.因为﹣3<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣3<3,符合题意;故选:D.9.(4分)用四舍五入按要求对0.05019分别取近似值,其中错误的是()A.0.1精确到0.1B.0.05精确到百分位C.0.05精确到千分位D.0.0502精确到0.0001【分析】根据近似数的精确度的定义逐一判断即可得.【解答】解:A、0.1精确到0.1,正确;B、0.05精确到百分位,正确;C、0.05精确到百分位,此选项错误;D、0.0502精确到0.0001,正确;故选:C.10.(4分)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为()A.m+6B.C.D.【分析】利用题干中的数量关系分别表示出参加文艺类社团的人数和参加科技类社团的人数,将参加三类社团的人数相加即可得出结论.【解答】解:∵参加文艺类社团的人数比参加体育类社团的人数多6人,∴参加文艺类社团的人数为:(m+6)人.∵参加科技类社团的人数比参加文艺类社团人数的多2人,∴参加科技类社团的人数为:(m+6)+2=(m+5)人.∴参加三类社团的总人数为:m+(m+6)+(m+5)=(m+11)人.故选:D.11.(4分)下列去括号正确的是()A.a+(﹣2b+c)=a+2b+c B.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2c D.a﹣2(﹣2b+c)=a+4b﹣c【分析】A、B直接利用去括号法则,C、D注意利用乘法分配律.【解答】解:A、根据去括号法则可知,a+(﹣2b+c)=a﹣2b+c,故此选项错误;B、根据去括号法则可知,a﹣(﹣2b+c)=a+2b﹣c,故此选项正确;C、根据去括号法则可知,a﹣2(﹣2b+c)=a+4b﹣2c,故此选项错误;D、根据去括号法则可知,a﹣2(﹣2b+c)=a+4b﹣2c,故此选项错误.故选:B.12.(4分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,…,如此下去,则第2020个图中共有正方形的个数为()A.2021B.2020C.6058D.6061【分析】根据图形的变化发现规律即可求解.【解答】解:图①中的正方形剪开得到图②,图②中共有3×1+1=4个正方形;将图②中一个正方形剪开得到图③,图③中共有3×2+1=7个正方形;将图③中一个正方形剪开得到图④,图④中共有3×3+1=10个正方形……发现规律:第n个图中共有正方形的个数为:3(n﹣1)+1=3n﹣2则第2020个图中共有正方形的个数为3×2020﹣2=6058.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)在|﹣44|,+0.002,π,0,﹣110这五个数中,整数共有3个.【分析】根据有理数的分类即可求出答案.整数包括正整数、0和负整数.【解答】解:|﹣44|=44,∴在|﹣44|,+0.002,π,0,﹣110这五个数中,整数有|﹣44|,0,﹣110,共3个.故答案为:3.14.(4分)单项式的次数是5.【分析】根据单项式中所有字母的指数之和是单项式的次数进行作答即可【解答】解:单项式的次数是2+3=5,故答案为:5.15.(4分)若|m﹣2|+(2n+4)2=0,则m+n=0.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:根据题意得:m﹣2=0,2n+4=0,解得:m=2,n=﹣2,则m+n=2﹣2=0.故答案为:0.16.(4分)如果与2x2y n+1是同类项,则mn的值0.【分析】根据同类项的定义,列方程求解即可.【解答】解:∵与2x2y n+1是同类项,∴m=2,n+1=1,∴m=2,n=0,∴mn=0,故答案为:0.17.(4分)用“☆”定义新运算:对于任意有理数a、b,都有a☆b=b2﹣2a,例7☆4=42﹣2×7=2,那么(﹣5)☆(﹣3)=19.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:(﹣5)☆(﹣3)=(﹣3)2﹣2×(﹣5)=9﹣(﹣10)=9+10=19.故答案为:19.18.(4分)一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,已知小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3.若小球按以上规律跳了2n次时,它落在数轴上的点P2n,所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是2.【分析】数轴上点的运动位置问题,可以转化为“有理数”的加法问题来处理.即p0﹣1+2﹣3+4﹣5+…=n+2.【解答】解:根据题意,可以得到方程p0﹣1+2﹣3+4﹣5+…+2n=n+2.得p0+1×n=n+2,解得p0=2.故答案为:2.三、解答题(本大题共78分)19.(20分)计算:(1)﹣23+32﹣67+48;(2);(3);(4).【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据乘法分配律进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可.【解答】解:(1)原式=﹣23+32﹣67+48=﹣90+80=﹣10;(2)原式=﹣12+(﹣12)=﹣24;(3)原式==﹣3+6﹣9+12=6;(4)原式==﹣9﹣(﹣2)=﹣7.20.(8分)化简:(1)3x2y﹣2x2y+x2y;(2)3a2﹣2a+2(a2﹣a).【分析】(1)直接合并同类项即可得答案;(2)先去括号,再合并同类项即可.【解答】解:(1)3x2y﹣2x2y+x2y=(3﹣2+1)x2y=2x2y;(2)3a2﹣2a+2(a2﹣a)=3a2﹣2a+2a2﹣2a=5a2﹣4a.21.(8分)有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b<0,a+b=0,a﹣c>0,b﹣c<0;(2)化简:|a﹣b|+|b+c|﹣|a|.【分析】(1)根据数轴得出b<c<0<a,|a|=|b|>|c|,求出b<0,a+b=0,a﹣c>0,b ﹣c<0即可;(2)先去掉绝对值符号,再合并即可.【解答】解:(1)∵从数轴可知:b<c<0<a,|a|=|b|>|c|,∴b<0,a+b=0,a﹣c>0,b﹣c<0,故答案为:<,=,>,<;(2)|a﹣b|+|b+c|﹣|a|=a﹣b﹣b﹣c﹣a=﹣2b﹣c.22.(8分)先化简,后求值:2(5ab﹣4b2)﹣3(3ab﹣2b2)+2b2,其中a=2,b=﹣.【分析】根据整式的加减进行化简后,代入值计算即可.【解答】解:原式=10ab﹣8b2﹣9ab+6b2+2b2=ab,当a=2,b=﹣时,原式=2×(﹣)=﹣1.23.(10分)已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B“看成“2A+B”,算得结果C=4a2b ﹣3ab2+4abc.(1)计算B的表达式;(2)小强说正确结果的大小与c的取值无关,对吗?请说明理由;(3)若a=,b=,求正确结果的代数式的值.【分析】(1)由2A+B=C,可求出B所表示的代数式;(2)求出B所表示的代数式,再计算2A﹣B的结果即可;(3)代入求值即可.【解答】解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;(2)2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;因正确结果中不含c,所以小强的说法对,正确结果的取值与c无关;(3)将a=,b=,代入(2)中的代数式,得:8a2b﹣5ab2=8×()2×﹣5××()2=﹣=0.24.(12分)中国少年先锋队建队72周年之际,我校组织初一年级学生前往西山国家森林公园“无名英雄纪念广场”举行少先队建队仪式.通过庄严的仪式,激发全体少先队员的爱国热情,增强少先队员的荣誉感和集体主义精神.建队仪式的同时,学校安排了“定向越野”活动,引导学生在活动中强健体魄,挑战自我,磨练意志,增强团队合作意识和班集体凝聚力.活动中,各班分成8个小组,每个小组途经13个点位,其中5个游戏点,达标成绩为60分钟.下面是某班8个小组学生的时间记录如下:(其中“+”表示成绩大于60分钟,“﹣”表示成绩小于60分钟)﹣13,+5,﹣8,﹣4,+10,﹣5,﹣3,﹣6.阅读上述材料,回答问题:(1)这个班最快的一组比最慢的一组少用多少分钟?(2)这个班8个小组的达标率为多少?(3)这个班8个小组的平均成绩为多少分钟?【分析】(1)用记录中最大的数减去最小的数即可;(2)根据非正数是达标成绩,根据达标人数除以总人数,可得达标率;(3)根据平均数的意义,可得答案.【解答】解:(1)10﹣(﹣13)=10+13=23(分钟),故这个班最快的一组比最慢的一组少用23分钟;(2)﹣13,﹣8,﹣4,﹣5,﹣3,﹣6是达标成绩,达标率为=75%;(3)60+(﹣13+5﹣8﹣4+10﹣5﹣3﹣6)÷8=60﹣3=57(分钟),答:这个班8个小组的平均成绩为57分钟.25.(12分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为4;(2)如果点P到点M、点N的距离相等,那么x的值是1;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.。
2023-2024学年第一学期期中学习成果阶段展示数学试题(全卷满分150分,考试时间为120分钟)注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或计算步骤.第Ⅰ卷(选择题共48分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记为零分.1.如图是小伟国庆期间的微信支付情况,-100表示的意思是()零钱明细:微信红包10月2日14:39-100余额:669.27微信转账10月1日13:20+100余额:769.27A .发出100元红包B .余额100元C .收入100元D .抢到100元红包2.2023年7月2日,在一度落后的情况下,中国女篮经过顽强拼搏,击败日本队夺得亚洲杯的冠军.这个振奋人心的消息掀起了校园篮球热,某中学开学后购买了一批篮球,随机检测了4个,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最不接近标准的球是()A .B .C .D .3.34.865取近似数精确到十分位,正确的是()A .35B .35.0C .34.87D .34.94.和是同类项,则的值为()A .-1B .-5C .5D .15.下列说法正确的是()A .-2不是单项式B .表示负数335mx y 2201nx y -m n +a -C .多项式的次数是4D .是三次二项式6.在式子π,中,属于整式的有()A .6个B .5个C .7个D .4个7.如图,王老师在黑板上书写了一个正确的整式加减运算等式,随后用手盖住了一个二次三项式,则盖住的部分是()第7题图A .B .C .D .8.已知a 、b 互为相反数,c 、d互为倒数,,则的值为()A .9B .1C .-1D .-99.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是45千米/时,水流速度是a 千米/时,1h 后两船相距()km .A .90B .4aC .2aD .18010.科技的力量离不开复杂的程序,现在请同学们体会一个小小的程序设计.按图中程序运算,如果输入0,则输出的结果是()第10题图A .8B .2C .4D .111.若,则的值不可能是()A .0B .1C .2D .-212.已知a 、b 、c 是有理数,它们在数轴上的对应点的位置如图所示.有下列四个结论:①;②;③;④,其中正确的结论有()第12题图A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题共102分)二、填空题:本大题共6小题,共记24分,只要求填写最后结果,每小题填对4分.13.据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团251x xy x --+222x y xy -+22213,,,1,0,1x ab a x x m ++-+281xx --283xx -+223xx -+221xx --2x =252023a bcd x +-+0mn ≠m nm n+()()()1110a b c ---<a b b c a c -+-=-()()()0a b b c c a +++>1a bc <-员7358万,数据7358万用科学记数法表示为______.14.单项式的系数是______. 15.已知,y 是-2的相反数,且,则______.16.定义新运算:对于任意有理数a ,b ,都有,例如:,那么的值是______.17.若关于x 、y 的两个多项式中不含二次项,则的值为______.18.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:图中的数1,5,12,22…称为五边形数,则第7个五边形数是______.第18题图三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分8分)在数轴上表示下列各数,并按从小到大的顺序用“<”连接起来:-4,,,0,20.(本题满分12分)计算:(1)(2)(3)(4)21.(本题满分10分)先化简再求值:;其中x 、y 满足.22.(本题满分10分)某海域巡逻艇为了维护边境秩序,需要沿南北方向海域来回巡视,约定向北为正方向,某天早晨从A 岛出发,中午到达灯塔B ,当天上午的行驶记录如下(单位:海里):.(1)试问灯塔B 在A 岛的哪个方向?它们相距多少海里?223x y -3x =x y <()2022x y +=221a b a ab ⊕=-+()()221222119⊕-=-⨯⨯-+=()23-⊕22224mx nxy x xy x y +++-++6212m n --2-()3.5--112-()()()20141813--++---()113333⎛⎫-⨯÷-⨯ ⎪⎝⎭()731246412⎛⎫-+-⨯- ⎪⎝⎭()4232922⎡⎤---+-÷⎣⎦()()22372427x xy x xy -+--++()2210x y ++-=20,10,15,17,6,11,15,16+-+--+--(2)如果巡逻艇每海里耗油3升,那么该次共耗油多少升?23.(本题满分12分)如图,学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为米,宽比长少米.第23题图(1)用a 、b 表示长方形停车场的宽;(2)求护栏的总长度;(3)若,每米护栏造价80元,求建此停车场所需的费用.24.(本题满分12分)某商店从批发市场购进50个A 品牌的排球,进价为每个a 元,售价为每个b 元.(1)全部售出50个排球的总利润为______元;(总利润=总售价-总进价)(2)若商店在成功售出30个排球后,决定将剩余20个排球按售价8折出售,全部售完后的总利润为多少元?请列式计算;(3)若商店同时出售A 、B 两种品牌的排球,B 品牌每个售价比A 品牌多10元,小红准备买三个排球,恰好商店举行优惠活动“买三免一”,即任意买三个排球(不限品牌)则价格最低的一个排球免费,小红有哪几种购买方式?付款金额分别是多少?25.(本题满分14分)阅读以下材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把看成一个整体,则(1)尝试应用:把看成一个整体,合并的结果是______;(2)尝试应用:已知,求的值;(3)拓广探索:已知.求代数式的值.()23a b +()a b -30,10a b ==()a b +()()()()()()424213a b a b a b a b a b +-+++=-++=+()2a b -()()()222357a b a b a b ---+-221x y -=2362022x y --1,2xy x y xy +=--=-()()2223x xy y xy x xy xy ⎡⎤⎡⎤+--+--⎣⎦⎣⎦2023-2024学年度第一学期期中教学质量检测七年级数学试卷(答案)一.选择题:本大题共12小题,每题4分,共48分1~5 ABDCD6~10 BDCAC11~12 BC二.填空题:本大題共6小题,每题4分,共24分13. 14. 15. 1 16. 1717.-2 18. 70三.解答题:本大题共7小题,共78分19.(本题满分8分)数轴略20.(本题满分12分,每小题3分)(1)-39(2)9(3)12(4)321.(本题满分10分)因为,所以,即当时,原式22.(本题满分10分)(1)(海里),则灯塔B 在A 岛的南边;它们相距18海里;(2)(升),即该次共耗油330升.23.(本题满分12分)77.35810⨯13-()14102 3.52-<-<<-<--()()22372427xxy x xy -+--++22378414x xy x xy =-++--21157x xy =--()2210x y ++-=20,10x y +=-=2,1x y =-=2,1x y =-=211(2)5(2)17⨯--⨯-⨯-=4410747=+-=20101517611151618-+--+--=-()2010151761115163++-+++-+-+++-+-⨯()2010151761115163=+++++++⨯1103330=⨯=(1)依题意得:米;(2)护栏的长度;答:护栏的长度是:米;(3)由(2)知,护栏的长度是,则依题意得:(元)答:若,,每米护栏造价80元,建此车场所需的费用是18400元24.(本题满分12分)(1)元(2)答:全部售完后实际盈利比按原价售卖的盈利少元.(3)A 种排球的售价为每个b 元,B 种排球的售价为每个元,小红买3个排球的分式有4种:①购买A 种排球3个,付款为2b 元,②购买2个A 钟排球,1个B 种排球,付款为元,③购买1个A 种排球,2个B 种排球,付款为元,④购买3个B 种排球,付款为元.25.(本题满分14分)(1)解:故答案为:(2)解:∵,∴(3)解:∵,,()()()23234a b a b a b a b a b +--=+-+=+()()2423411a b a b a b =+++=+()411a b +411a b +()43011108018400⨯+⨯⨯=30a =10b =()5050b a -()300.82050b b a+⨯-301650b b a =+-4650b a=-()4650b a -()10b +()()10210b b b ++=+()()210220b b +=+()()210220b b +=+()()()222357a b a b a b ---+-()()()223575a b a b =-+-=-()25a b -221x y -=()223620223220223120222019x y x y --=--=⨯-=-1xy x +=-2y xy -=-∴,∴,2xy y -=()()2223x xy y xy x xy xy +--+-⎡⎤⎡⎤⎣⎦-⎦⎣()()222231x xy xy=+---⎤⎦-⎡⎣()2831x xy xy=+---2833x xy xy=+-+-()25x xy =++()2153x =-+=。
德州市二○二○年初中学业水平考试数学试题第Ⅰ卷(选择题共48分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.2020-的结果是()A.12020 B.2020C.12020-D.-20202.下列图形中,是中心对称图形但不是轴对称图形的是()A.B. C. D.3.下列运算正确的是()A.651a a -= B.235a a a ⋅= C.22(2)4a a-=- D.62a a a÷=4.如图1是用5个相同的正方体搭成的立体图形,若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:一周做饭次数45678人数7612105那么一周内该班学生的平均做饭次数为()A.4B.5C.6D.76.如图,小明从A 点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A 时,共走路程为()A.80米B.96米C.64米D.48米7.函数ky x=和2y kx =-+(0k ≠)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.8.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.49.若关于x 的不等式组2242332x x x x a--⎧>⎪⎨⎪->--⎩的解集是2x <,则a 的取值范围是()A.2a ≥ B.2a <- C.2a > D.2a ≤10.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.2434πB.1234πC.38π+D.34π+11.二次函数2y ax bx c =++的部分图象如图所示,则下列选项错误的是()A.若()12,y -,()25,y 是图象上的两点,则12y y >B.30a c +=C.方程22ax bx c ++=-有两个不相等的实数根D.当0x ≥时,y 随x 的增大而减小12.下面是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202第Ⅱ卷(非选择题共102分)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.273=_________.14.若一个圆锥的底面半径是2cm ,母线长是6cm ,则该圆锥侧面展开图的圆心角是_________度.15.在平面直角坐标系中,点A 的坐标是(2,1)-,以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A '.若点A '恰在某一反比例函数图象上,则该反比例函数的解析式为_________.16.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为_________.17.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是_________.18.如图,在矩形ABCD 中,32AB =+,3AD =把AD 沿AE 折叠,使点D 恰好落在AB 边上的D '处,再将AED '∆绕点E 顺时针旋转α,得到A ED '''∆,使得EA '恰好经过BD '的中点F .A D '''交AB 于点G ,连接AA '.有如下结论:①A F '62-;②弧D D '''的长度是5312;③A AF A EG ''∆∆≌;④AA F EGF '∆∆∽.上述结论中,所有正确的序号是_________.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.先化简:2124244x x x x x x x -+-⎛⎫-÷⎪--+⎝⎭,然后选择一个合适的x 值代入求值.20.某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有_________人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为_________;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.21.如图,无人机在离地面60米的C 处,观测楼房顶部B 的俯角为30°,观测楼房底部A 的俯角为60°,求楼房的高度.22.如图,点C 在以AB 为直径的O 上,点D 是半圆AB 的中点,连接AC ,BC ,AD ,BD ,过点D 作//DH AB 交CB 的延长线于点H .(1)求证:直线DH 是O 的切线;(2)若10AB =,6BC =,求AD ,BH 的长.23.小刚去超市购买画笔,第一次花60元买了若干支A 型画笔,第二次超市推荐了B 型画笔,但B 型画笔比A 型画笔的单价贵2元,他又花100元买了相同支数的B 型画笔.(1)超市B 型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B 型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B 型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B 型画笔x 支,购买费用为y 元,请写出y 关于x 的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B 型画笔,则能购买多少支B 型画笔?24.问题探究:小红遇到这样一个问题:如图1,ABC ∆中,6AB =,4AC =,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到E ,使DE AD =,连接BE ,证明BED CAD ∆∆≌,经过推理和计算使问题得到解决.请回答:(1)小红证明BED CAD ∆∆≌的判定定理是:___________________________;(2)AD 的取值范围是__________________;方法运用:(3)如图2,AD 是ABC ∆的中线,在AD 上取一点F ,连结BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.(4)如图3,在矩形ABCD 中,12AB BC =,在BD 上取一点F ,以BF 为斜边作Rt BEF ∆,且12EF BE =,点G 是DF 的中点,连接EG ,CG ,求证:EG CG =.25.如图1,在平面直角坐标系中,点A 的坐标是(0,2)-,在x 轴上任取一点M ,连接AM ,分别以点A 和点M 为圆心,大于12AM 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,过点M 作x 轴的垂线l 交直线GH 于点P .根据以上操作,完成下列问题.探究:(1)线段PA 与PM 的数量关系为_________,其理由为:__________________.(2)在x 轴上多次改变点M 的位置,按上述作图方法得到相应点P 的坐标,并完成下列表格:M 的坐标…(2,0)-(0,0)(2,0)(4,0)…P 的坐标…(0,1)-(2,2)-…猜想:(3)请根据上述表格中P 点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L ,猜想曲线L 的形状是_________.验证:(4)设点P 的坐标是(,)x y ,根据图1中线段PA 与PM 的关系,求出y 关于x 的函数解析式.应用:(5)如图3,点(B -,C ,点D 为曲线L 上任意一点,且30BDC ∠<︒,求点D 的纵坐标D y 的取值范围.德州市二○二○年初中学业水平考试数学试题参考解答及评分意见一、选择题:(本大题共12小题,每小题4分,共48分)题号123456789101112答案BBBDCCDBAADC二、填空题:(本大题共6小题,每小题4分,共24分)13.14.120;15.8y x -=;16.20;17.1618.①②④.三、解答题:(本大题共7小题,共78分)19.解:原式2124244x x x x x x x -+-⎛⎫⎛⎫=-÷⎪ ⎪--+⎝⎭⎝⎭2(1)(2)(2)4(2)(2)(2)x x x x xx x x x x ⎡⎤-+--=-÷⎢⎥---⎣⎦2224(2)(2)4x x x x x x x --+-=⋅--24(2)(2)4x x x x x --=⋅--2x x-=求值:略20.解:(1)5036%;(2)如图(3)能获奖.理由:因为本次参赛选手共50人,所以前40%的人数为5040%20⨯=(人)由频数直方图可得84.5~99.5这一范围人数恰好88420++=人,又8884.5>,所以能获奖.(4)设前四名获奖者分别为男1,男2,女1,女2,由题意可列树状图为:由树状图可知共有12种等可能的结果,恰好选中一男一女为主持人的结果有8种,所以P (一男一女为主持人)82123==.答:恰好选中一男一女为主持人的概率为23.21.解:过点B 作BE CD ⊥交CD 于点E ,由题意知,30CBE ∠=︒,60CAD ∠=︒.在Rt ACD ∆中,tan tan 603CDCAD AD∠=︒==∴2033AD ==∴3BE AD ==在Rt BCE ∆中,3tan tan 303CE CBE BE ∠=︒==∴3203203CE ==∴602040ED CD CE =-=-=∴40AB ED ==(米)答;这栋楼高为40米22.证明:(1)连接OD∵AB 是O 的直径,D 是半圆AB 的中点∴1902AOD AOB ∠=∠=︒∵//DH AB∴90ODH ∠=︒∴OD DH ⊥∴DH 是O 的切线(2)连接CD ∴AB 是O 的直径∴90ADB ∠=︒,90ACB ∠=︒又D 是半圆AB 的中点∴ AD DB=∴AD DB=∴ABD ∆是等腰直角三角形∵10AB =∴10sin 10sin 45102AD ABD =∠=︒=⨯=∵10AB =,6BC =∴在Rt ABC ∆中8AC ==∵四边形ACBD 是圆内接四边形∴180CAD CBD ∠+∠=︒∵180DBH CBD ∠+∠=︒∵CAD DBH∠=∠由(1)知90AOD ∠=︒,45OBD ∠=︒∴45ACD ∠=︒∵//DH AB∴45BDH OBD ∠=∠=︒∵ACD BDH ∠=∠∴ACD BDH ∆∆∽∴AC ADBD BH =,即52BH=解得254BH =22.解:(1)设超市B 型画笔单价a 元,则A 型画笔单价为(2)a -元,由题意列方程得,601002a a =-解得5a =经检验,5a =是原方程的解答:超市B 型画笔单价为5元(2)由题意知,当小刚购买的B 型画笔支数20x ≤时,费用为0.95 4.5y x x =⨯=当小刚购买的B 型画笔支数20x >时,费用为200.95(20)0.85410y x x =⨯⨯+-⨯⨯=+所以 4.5,120410,20x x y x x ≤≤⎧=⎨+>⎩其中x 是正整数(3)当4.5270x =时,解得60x =,因为6020>,故不符合题意,舍去.当410270x +=时,65x =,符合题意答:小刚能购买65支B 型画笔.24.解:(1)SAS(2)15AD <<(3)证明:延长AD 至点A ',使A D AD'=∵AD 是ABC ∆的中线∴BD CD=在ADC ∆和A DB '∆中AD A D ADC A DB CD BD '=⎧⎪'∠=∠⎨⎪=⎩∴ADC A DB'∆∆≌∴CAD A '∠=∠,AC A B '=又∵AE EF=∵CAD AFE∠=∠∴A AFE '∠=∠又∵AFE BFD∠=∠∴BFD A '∠=∠∴BF A B '=,又∵A B AC'=∵BF AC =(4)证明:延长CG 至点H 使HG CG =,连接HF 、CE 、HE ∵G 为FD 的中点∴FG DG=在HGF ∆和CGD ∆中HG CG HGF CGD FG DG =⎧⎪∠=∠⎨⎪=⎩∴HGF CGD∆∆≌∴HF CD =,HFG CDG∠=∠在Rt BEF ∆中,∵12EF BE =∴1tan 2EBF ∠=又矩形ABCD 中,12AB BC =∴12AB AD =∴1tan 2ADB ∠=,∴EBF ADB∠=∠又//AD BC∴ADB DBC∠=∠∴EBF ADB DBC∠=∠=∠又EFD ∠为BEF ∆的外角∴EFD EBF BEF∠=∠+∠即90EFH HFD EBF ∠+∠=∠+︒∵90ADB BDC ∠+∠=︒∴EFH HFD EBF ADB BDC∠+∠=∠+∠+∠∴2EFH EBF ∠=∠即EFH EBC∠=∠在EFH ∆和EBC ∆中12EF BE =,12HF BC =∴EF HF BE BC=又EBC EFH∠=∠∴EFH EBC∆∆∽∴FEH BEC∠=∠∴HEC CEF BEF CEF∠+∠=∠+∠∴90HEC BEF ∠=∠=︒∴CEH ∆是直角三角形∵G 为CH 的中点∴12EG CH =即EG CG =.25.解:(1)PA PM=线段垂直平分线上的点与这条线段两个端点的距离相等(2)M 的坐标…(2,0)-(0,0)(2,0)(4,0)…P 的坐标…(2,2)--(0,1)-(2,2)-(4,5)-…(3)草图见图2;形状:抛物线(4)如图1,过点P 作PE y ⊥轴于点E ,||PA PM y ==,|2|AE OE OA y =-=+,||PE x =在Rt PAE ∆中,222PA AE PE=+即222|||||2|y x y =++化简,得2114y x =--所以y 关于x 的函数解析式为2114y x =--.(5)连接OB ,OC ,易得2OB OC ==,又2BC =∴OBC ∆为等边三角形,∴60BOC ∠=︒当30BDC ∠=︒时,在BDC ∆的外接圆上,弧BC 所对的圆心角为60°其圆心在BC 的垂直平分线y 轴上,∴BDC ∆的外接圆圆心为坐标原点O ,设(,)D a b ,则2OD =,即2222a b +=①又点D 在该抛物线上∴2114b a =--②由①②联立解得:1223b =-,2223b =+(舍去)数形结合可得,当30BDC ∠<︒时,点D 的纵坐标D y 的取值范围为0223y <-。
)))))、)9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费 元(用含a 、b 的式子表示). 10.2xy-的系数是a ,次数是b ,则a +b = . 11.若313m x y +与126n x y +是同类项,则m +n = .12.把多项式x 2-2-3x 3+5x 按x 的升幂排列为 . 13.已知多项式3x 2-4x 的值为9,则6x 2-8x -6的值为 .14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤ y 时,x ★y = x 2;x >y 时,x ★y = y . 则(-2★-4)★1的值为 .15.计算:(-3. 14)+(+4. 96)+(+2. 14)+(-7. 96).16.计算:(-3)2-60 ÷22×110+|-2|.17.计算:2x2y3+(-4 x2y3)-(-3 x2y3). 18.计算:(3a2-2a)-2(a2-a-1).19.已知A = 3x2+4xy,B = x2+3xy-y2,求2B-A.20.先化简,再求值:5x2-[3x-2(2x-3)+7x2],其中x=1 2 .得分评卷人四、解答题(每小题7分,共28分)21.小明做了如下一道有理数混合运算的题目:﹣34÷(﹣27)-[(﹣2)×(﹣43)+(﹣2)]3= 81÷(﹣27)-[ 83+(-8)]= ……思考:(1)请用圆圈圈出小明第一步计算中的错误;(2)正确的解答这道题.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的整式的卡片,规则是两位同学的整式相减等于第三位同学的整式,则实验成功. 甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉琪发现丙减甲可以使实验成功,请求出丙的整式.甲乙丙(第22题)2x2-3x-1x2-2x+3+223.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,15 个站点如图所示. 某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束. 约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,-2,-6,+8,+3,-4,-9,+8. (1)请通过计算说明A 站是哪一站;(2)若相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?(第23题)24.如图,长为50 cm ,宽为x cm 的大长方形被分割为8小块,除阴影A 、B 外,其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm.(1)由图可知,每个小长方形较长的一边长是 cm (用含a 的代数式表示); (2)当x = 40时,求图中两块阴影A 、B 的周长和. (第24题)红咀子南部新城市政府卫星广场繁荣路工农广场东北师大儿童公园人民广场胜利公园长春站长春站北一匡街庆丰路北环25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒). (1)当t = 0.5时,求点Q 到原点O 的距离; (2)当t = 2.5时,求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.(第25题)QP OA26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30). 经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒,现有甲、乙两家体育用品商店有如下优惠方案:方案一:甲商店:买一支网球拍送一筒网球;方案二:乙商店:网球拍与网球均按定价90%付款.(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x的代数式表示);(2)若x = 10,请通过计算说明学校采用以上哪个方案较为优惠;(3)已知x = 100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以更省钱,请直接写出比方案一省多少钱?名校调研系列卷·七年上期中测试 数学(人教版)参考答案一、1. A 2. C 3. B 4. D 5. C 6. B 二、填空题:7. > 8. 5.619. (4a +10b ) 10.11. 312. -2+5x +x 2-3x 313. 1214. 16三、15. 解:原式=(-3. 14+2. 14)+(+4. 96-7. 96)= -1-3 =-4. 16. 解:原式= 9-60×14×110+2 = 9-32+2 =192. 17. 解:原式= 2x 2y 3-4x 2y 3+3x 2y 3 = x 2y 3. 18. 解:原式= 3a 2-2a -2a 2+2a +2 = a 2+2.四、19. 解:2B -A =2(x 2+3xy -y 2)-(3x 2+4xy )= 2x 2+6xy -2y 2-3x 2-4xy =-x 2+2xy -2y 2 .20. 解:5x 2-[3x -2(2x -3)+7x 2] = 5x 2-(3x -4x +6+7x 2)= 5x 2-3x +4x -6-7x 2=-2x 2+x -6.当x =12时,原式=-2×(12)2+12-6 =12 +12-6 =-6. 21. 解:(1) ; (2)﹣34÷(﹣27)- [(﹣2)×(﹣43)+(﹣2)]3=-81÷(﹣27)-(83-2)3 = 3-(23)3 = 3-827=19227.22. 解:(1)根据题意,得:2x 2-3x -1-(x 2-2x +3)= 2x 2-3x -1-x 2+2x -3 = x 2-x -4,则甲减乙不能是实验成功;(2)根据题意,得,丙表示的整式为2x 2-3x -1+ x 2-2x +3 = 3x 2-5x +2.五、23. 解:(1)+5-2-6+8+3-4-9+8= 3,答:A 站是工农广场站;(2)(5+2+6+8+3+4+9+8)×1. 3 = 45×1. 3 = 58. 5(千米), 答:这次王红志愿服务期间乘坐地铁行进的路程是58. 5千米.24. 解:(1)(50-3a );(2)2 [50-3a +(x -3a )]+2 [3a +x -(50-3a )]= 2(50+x -6a )+2(6a +x -50) = 100+2x -12a +12a +2x -100 = 4x .当x = 40时,原式= 4×40 = 160 .32= 81÷(-27)-[83+(-8)]= ……六、25. 解:(1)当t = 0. 5时,AQ = 4t = 4×0. 5= 2,∵OA = 8,∴OQ = OA-AQ = 8-2 = 6,∴点Q到原点O的距高为6;(2)当t = 2. 5时,点Q运动的距离为4t = 4×2. 5 = 10,∴OQ =10-8 = 2,∴点Q到原点O的距离为2;(3)当点Q到原点O的距离为4时,∵OQ = 4,∴当点Q向左运动时,OA = 8,则AQ = 4,∴t = 1,∴OP = 2;当点Q向右运动时,OQ = 4,∴点Q运动的距离是8+4 = 12,∴运动时间t=12÷4 = 3,∴OP = 2×3 = 6,∴点P到原点O的距离为2或6.26. 解:(1)甲商店购买需付款30×100+(x-30)×20 = 20x+30×(100-20)=(20x+2400)元;乙商店购买需付款100×90%×30+20×90%×x =(18x+2700)元.故答案为:(20x+2400),(18x+2700);(2)当x = 100时,甲商店需20×100+2400 = 4400(元);乙商店需18×100+2700 = 4500(元);所以甲离店购买合算;(3)先在甲商店购买30支球拍,送30筒球需3000元,差70筒球在乙商店购买需1260元,共需4260元,4400-4260 = 140(元),比方案一省140元钱.。
2021-2022学年山东省德州市禹城市七年级(上)期中数学试卷1.如果升降机下降10米记作−10米,那么上升15米记作米.( )A. −15B. +15C. +10D. −102.“全民行动,共同节约”,我国13亿人口如果都响应国家号召每人每年节约1度电,一年可节约电1300000000度,这个数用科学记数法表示,正确的是( )A. 1.30×109B. 1.3×109C. 0.13×1010D. 1.3×10103.2021的相反数的倒数是( )A. 12021B. −2021 C. ±2021 D. −120214.下列代数式书写规范的是( )A. a×2B. 112a C. (5÷3)a D. 2a35.下列各组中,不是同类项的是( )A. 0.5a2b与3ab2B. 2x2y与−2x2yC. 5与13D. −2x12与−3x126.下列结论中,正确的是( )A. 单项式3xy27的系数是3,次数是2 B. 单项式m的次数是1,没有系数C. 单项式−xy2z的系数是−1,次数是4D. 多项式2x2+xy+3是三次三项式7.下列运算正确的是( )A. 3a2−a=2aB. a−(1−2a)=a−1C. −5(1−a2)=−5−5a2D. a3+7a3−5a3=3a38.在0,17,0.3,2π,−23%,2021这六个数中,非正数有个.( )A. 2B. 3C. 4D. 09.将式子12+4−5−6写成和的形式( )A. 12+4+5+6B. −12−4+(−5)+(−6)C. 12+4+(−5)+(−6)D. 12+4−(−5)−(+6)10.a,b是有理数,它们在数轴上的对应点的位置如图所示,则下列结论中,错误的是( )A. a>0,−b>0B. ab<0C. a+b>0D. b<−a<a<−b11.若ab≠0,则a|a|+|b|b的值不可能是( )A. 2B. 0C. −2D. 112.如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是( )A. 3B. 27C. 9D. 113.按四舍五入法对圆周率π取近似数时,精确到千分位可以表示为______.14.在数轴上,与表示−3的点距离为5的数是______.15.当k=______时,多项式x−2kxy+3y−5+4xy中不含二次项.16.已知:|x|=3,|y|=5,且x>y,则3x−y2的值为______.17.已知x=2y+3,则代数式4x−8y+9的值是______.18.某学校在一次数学活动课中,举行用火柴摆“摆金鱼“活动,如图所示:按照上面的规律,摆第n个“金鱼”需要用火柴的根数为______.19.计算:(1)(−12)+(+8)−(+3)−(−5).(2)(14+16−12)×(−12).(3)−14−(1−0.5)×13×[1−(−2)2].20.(1)已知a,b互为相反数,c,d互为倒数,且|m|=3,求m+cd−a+bm2的值.(2)有理数a,b,c在数轴上的位置如图所示,且|a|>|b|.试化简代数式|a−c|−|a−b|+|b|+ |2a|.21.先化简,再求值.(1)−2y3+(3xy2−x2y)−2(xy2−y3).其中x,y满足(x+1)2+|y−2|=0.(2)求−(A+3B)+2(A−B)的值.其中A=x3−5x2,B=x2−11x+6.其中x=−1.22.中秋国庆长假后,京沪高速公路养护小组,采车沿南北向公路巡视绘护,如果约定向北为正向南为负,当天的行驶记录如下(单位:千米):+12,−9,−16,+7,−6,+11,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5L/km,则这次养护共耗油多少升?23.我们规定“△”是一种数学运算符号,两数a、b通过“△”运算是a−b+ab,即a△b= a−b+ab,例如:3△5=3−5+3×5(1)求:2△(−3)的值;(2)求:(−5)△[1△(−2)]的值.24.如图所示,某公司打算将一长方形空地美化,并在左右两边各修一个半圆形的花坛,其余部分(图中阴影部分)种草.已知长方形的长为a米,宽为b米,半圆半径为r米(2r<b).(结果保留π)(1)用代数式表示阴影部分的面积.(2)如果种草每平方米花费100元,修建花坛每平方米花费200元,求该公司美化空地的总费用.(用含a,b,r,π的式子表示)(3)当a=50,b=40,r=10时,请问该公司美化空地的总费用为多少元?25.如图,在数轴上点A,B,C表示的数分别为−2,1,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)请直接写出AB,BC,AC的长度;(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,①七秒后,D表示的数为______,E表示的数为______,F表示的数为______.②试探索:EF−DE的值是否随着时间t的变化而变化?请说明理由.(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C点出发,设点M、N同时出发,运动时间为t秒.试探究:经过多少秒后,点M、N两点间的距离为14个单位.答案和解析1.【答案】B【解析】解:如果升降机下降10米记作−10米,那么上升15米记作+15米.故选:B.根据正数和负数表示相反意义的量,升降机下降为负,则可得升降机上升为正.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:1300000000度,这个数用科学记数法表示1.3×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为正整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同,据此解答即可.此题考查用科学记数法表示绝对值较大的数.3.【答案】D.【解析】解:2021的相反数是−2021,−2021的的倒数是−12021故选:D.根据相反数和倒数的定义,即可求解.本题考查了相反数和倒数的定义,熟记概念是解题的关键.4.【答案】D【解析】【分析】本题考查代数式书写,熟练掌握代数式的书写要求是解题的关键.根据代数式书写要求即可判断.【解答】解:A.应写为:2a,故A不正确;a,故B不正确;B.应写为:32C.应写为:53a,故C不正确;D.正确.故选D.5.【答案】A【解析】解:A.0.5a2b与3ab2所含字母相同,但相同字母的指数不同,不是同类项,故此选项符合题意;B.2x2y与−2x2y所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;C.5与13是同类项,故此选项不符合题意;D.−2x12与−3x12所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意.故选:A.根据同类项的定义(所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项)即可作出判断.本题考查了同类项,掌握同类项的定义是解答本题的关键.6.【答案】C【解析】【分析】此题主要考查了单项式和多项式,熟练掌握相关的定义是解题关键,根据单项式的次数与系数定义和多项式次数与项数定义分别判断得出即可.【解答】解:A、单项式3xy 27的系数是37,次数是3,故此选项错误;B、单项式m的次数是1,系数是1,故此选项错误;C、单项式−xy2z的系数是−1,次数是4,故此选项正确;D、多项式2x2+xy+3是二次三项式,故此选项错误.故选C.7.【答案】D【解析】解:A、不是同类项不能合并,故A错误;B、a−(1−2a)=a−1+2a=3a−1,故B错误;C、−5(1−a2)=−5+5a2,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,去括号:括号前是负数去括号全变号,括号前是正数,去括号不变号,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变,去括号:括号前是负数去括号全变号,括号前是正数,去括号不变号.8.【答案】A【解析】解:0,1,0.3,2π,−23%,2021这六个数中,非正数有2个:70,−23%.故选:A.,0.3,2π,−23%,2021这根据有理数的分类方法,可得:非正数包括负数和0,据此判断出0,17六个数中,非正数有多少个即可.此题主要考查了有理数的含义和分类,要熟练掌握,解答此题的关键是要明确:非正数包括负数和0.9.【答案】C【解析】解:将式子12+4−5−6写成和的形式为:12+4+(−5)+(−6).故选:C.有理数减法法则:减去一个数,等于加上这个数的相反数.即:a−b=a+(−b).本题考查了有理数的减法,掌握有理数的减法法则是解答本题的关键.10.【答案】C【解析】解:由数轴可得b<0<a,|b|>|a|,则a>0,−b>0,故选项A不合题意;ab<0,故选项B不合题意;a+b<0,故选项C符合题意;b<−a<a<−b,故选项D不合题意;故选:C.根据数轴可得b<0<a,|b|>|a|,根据有理数的加减法法则可得ab<0,a+b<0,−a+b<0,依此即可求解.此题主要考查了数轴和有理数的加减法,关键是掌握异号两数相加,取绝对值较大加数的符号,再用大绝对值减去小绝对值.11.【答案】D【解析】解:①当a、b同号时,原式=1+1=2;或原式=−1−1=−2;②当a、b异号时,原式=−1+1=0.则a|a|+|b|b的值不可能的是1.故选:D.由于ab≠0,则有两种情况需要考虑:①a、b同号;②a、b异号;然后根据绝对值的性质进行化简即可.此题考查的是绝对值的性质,能够正确的将a、b的符号分类讨论,是解答此题的关键.12.【答案】D【解析】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环,∵(2020−2)÷2=1009,∴第2020次输出结果与第4次输出结果一样,∴第2020次输出的结果为1,故选:D.分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环.本题考查数字的变化规律;能够通过所给例子,找到循环规律是解题的关键.13.【答案】3.142【解析】解:用四舍五入法对3.14159…取近似数,精确到千分位为3.142,故答案为:3.142.对万分位数字四舍五入即可.本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.【答案】2或−8【解析】解:当点在表示3的点的左边时,此时数为:−3+(−5)=−8,当点在表示3的点的右边时,此时数为:−3+(+5)=2,故答案为:2或−8.分为两种情况:当点在表示−3的点的左边时,当点在表示−3的点的右边时,列出算式求出即可.本题考查了数轴的应用,关键是能根据题意列出算式,注意有两种情况.15.【答案】2【解析】解:∵多项式x−2kxy+3y−5+4xy中不含二次项,∴−2k+4=0,∴k=2;故答案为:2.先确定出二次项的系数,再根据在多项式中不含哪项,即哪项的系数为0,即可得出答案.此题考查了多项式,在多项式中不含哪项,即哪项的系数为0,两项的系数互为相反数,合并同类项时为0.16.【答案】−16或−34【解析】解:∵|x|=3,|y|=5,且x>y,∴x=±3,y=−5,∴当x=3,y=−5时,3x−y2=3×3−(−5)2=9−25=−16,当x=−3,y=−5时,3x−y2=3×(−3)−(−5)2=−9−25=−34,故答案为:−16或−34.根据|x|=3,|y|=5,且x>y,可以求得x、y的值,然后代入所求式子计算即可.本题考查有理数混合运算,解答本题的关键是求出x、y的值.17.【答案】21【解析】解:因为x=2y+3,所以x−2y=3,则代数式4x−8y+9=4(x−2y)+9 =4×3+9 =21,故答案为:21.直接将已知代数式变形进而代入原式求出答案.此题主要考查了代数式求值,正确将原式变形是解题关键.18.【答案】2+6n【解析】解:由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.故答案为2+6n.观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图n的火柴棒的根数为2n+6.本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.19.【答案】解:(1)(−12)+(+8)−(+3)−(−5)=(−12)+8+(−3)+5=−2;(2)(14+16−12)×(−12)=14×(−12)+16×(−12)−12×(−12)=−3+(−2)+6=1;(3)−14−(1−0.5)×13×[1−(−2)2]=−1−12×13×(1−4)=−1−12×13×(−3)=−1+12=−12.【解析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算乘方、然后计算括号内的式子,然后算括号外的乘法、最后算减法即可.本题考查有理数混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.20.【答案】解:(1)∵a,b互为相反数,c,d互为倒数,且|m|=3,∴a+b=0,cd=1,m=±3,当m=3时,m+cd−a+bm2=3+1−032=3+1−0=4;当m=−3时,m+cd−a+bm2=−3+1−0(−3)2=−3+1−0=−2;由上可得,m+cd−a+bm2的值是4或−2;(2)由数轴可得,c<a<0<b,|c|>|a|>|b|,∴|a−c|−|a−b|+|b|+|2a|=a−c−(b−a)+b−2a=a−c−b+a+b−2a=−c.【解析】(1)根据a,b互为相反数,c,d互为倒数,且|m|=3,可以得到a+b=0,cd=1,m=±3,然后代入所求式子计算即可;(2)根据数轴可以得到c<a<0<b,|c|>|a|>|b|,然后将所求式子的绝对值去掉,然后化简即可.本题考查有理数混合运算、数轴,解答本题的关键是求出a+b=0,cd=1,m=±3,会去绝对值的方法.21.【答案】解:(1)∵(x+1)2+|y−2|=0,∴x+1=0,y−2=0,解得:x=−1,y=2,原式=−2y3+3xy2−x2y−2xy2+2y3=xy2−x2y,当x=−1,y=2时,原式=−1×22−(−1)2×2=−4−2=−6;(2)∵A=x3−5x2,B=x2−11x+6,∴−(A+3B)+2(A−B)=−A−3B+2A−2B=A−5B=(x3−5x2)−5(x2−11x+6)=x3−5x2−5x2+55x−30=x3−10x2+55x−30,当x=−1时,原式=(−1)3−10×(−1)2+55×(−1)−30=−1−10−55−30=−96.【解析】(1)原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值;(2)原式去括号合并后,把A与B代入化简得到最简结果,把x的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.22.【答案】解:(1)+12−9−16+7−6+11−8+5=−4(千米),∴养护小组最后到达的地方在出发点的南边,距出发点4千米;(2)(+12+9+16+7+6+11+8+5)×0.5=74×0.5=37(升),∴这次养护共耗油37升.【解析】(1)根据有理数的加法,可得答案;(2)由有理数的加法和绝对值的意义,可求总的路程,根据单位耗油量乘以路程=耗油量.本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际意义.23.【答案】解:(1)∵a△b=a−b+ab,∴2△(−3)=2−(−3)+2×(−3)=2+3+(−6)=−1;(2)(−5)△[1△(−2)]=(−5)△[1−(−2)+1×(−2)]=(−5)△(1+2−2)=(−5)△1=(−5)−1+(−5)×1=(−5)−1+(−5)=−11.【解析】本题考查有理数的混合运算,属于新定义问题,解答本题的关键是明确新定义的运算规则.(1)根据a△b=a−b+ab,可以求得所求式子的值;(2)根据a△b=a−b+ab,先计算[1△(−2)],继而再次利用新定义规则即可求得所求式子的值.24.【答案】解:(1)S阴影部分=S长方形−S圆形=ab−πr2(平方米);(2)由单价、数量、总价的关系可得,100(ab−πr2)+200×(πr2)=100ab+100πr2(平方米);(3)当a=50,b=40,r=10时,100ab+100πr2=100×50×40+100π×100=(200000+10000π)元.【解析】(1)由长方形、圆形面积的计算方法,根据面积之间的关系对称答案;(2)求出种草面积,花坛面积,再根据单价、数量、总价的关系进行计算即可;(3)将a、b、r的值,代入计算即可.本题考查列代数式,代数式求值,掌握长方形、圆形面积的计算方法,理解图形中面积之间的和差关系是解决问题的前提.25.【答案】−91541【解析】解:(1)AB=1−(−2)=3,BC=6−1=5,AC=6−(−2)=8.(2)根据题意,点D、E、F表示的数分别为−2−t、1+2t、6+5t,①当t=7时,−2−t=−2−7=−9,1+2t=1+2×7=15,6+5t=6+5×7=41,∴点D、E、F表示的数分别为−9、15、41,故答案为:−9,15,41.②不变化,理由:根据题意可知,6+5t>1+2t,1+2t>−2−t,∴EF=(6+5t)−(1+2t)=5+3t,DE=(1+2t)−(−2−t)=3+3t,∴EF−DE=(5+3t)−(3+3t)=2,∴EF−DE的值不随时间t的变化而变化.(3)当点M向右运动,点N向左运动时,根据题意得(−2+3t)−(6−2t)=14,;解得t=225当点M、点N都向右运动,根据题意得(−2+3t)−(6+2t)=14,解得t=22;当点M 向左运动,点N 向右运动,根据题意得(6+2t)−(−2−3t)=14,解得t =65;当点M 、点N 都向左运动,根据题意得(6−2t)−(−2−3t)=14,解得t =6,综上所述,经过225秒或22秒或65秒或6秒,点M 、N 两点间的距离为14个单位.(1)用较大的数减去较小的数,即可得到这两个数对应的点之间的距离,用这种方法分别求出AB 、BC 、AC 的长;(2)①点D 、E 、F 表示的数分别为−2−t 、1+2t 、6+5t ,求出当t =7时每个代数式的值即可;②可求出EF =5+3t ,DE =3+3t ,再计算EF −DE 的结果会发现,这个结果为常数,可知EF −DE 的值不随t 的变化而变化;(3)当点M 、N 向右运动时,它们表示的数分别为−2+3t 、6+2t ,当点M 、N 向左运动时,它们表示的数分别为−2−3t 、6−2t ,再按点M 、N 相向运动、背向运动、都向右运动、都向左运动分类讨论,分别列方程求出相应的t 值即可.此题考查解一元一次方程、列一元一次方程解应用题、数轴、列代数式、数轴上的动点问题的求解等知识与方法,根据行程问题的基本数量关系和具体问题中的数量关系列方程是解题的关键.。
德州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)的相反数的倒数是()A .B .C .D .2. (2分) (2019九上·重庆开学考) 按如图所示的运算程序,能使输出k的值为1的是()A . x=1,y=2B . x=2,y=1C . x=2,y=0D . x=1,y=33. (2分) (2019七上·永登期末) 已知﹣25a2mb和7b3﹣na4是同类项,则m+n的值是()A . 2B . 3C . 4D . 64. (2分)已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A . 1B . 5C . -5D . -15. (2分) (2020七上·商河期末) 下列说法正确是()A . 若AB=BC,则点B为线段AC的中点B . 射线AB和射线BA是同一条射线C . 两点之间的线段就是两点之间的距离D . 两点确定一条直线6. (2分)下列说法中,正确的有()①-22=(-2)2成立②若∠1+∠2+∠3=180°,则∠1、∠2、∠3互补③连接两点的线段叫做两点的距离④若点B是线段AC的中点,则AB=BCA . 1个B . 2个C . 3个D . 4个7. (2分)(2017·个旧模拟) 下列说法正确的是()A . 了解某班同学的身高情况适合用全面调查B . 数据2、3、4、2、3的众数是2C . 数据4、5、5、6、0的平均数是5D . 甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定8. (2分) (2020七下·萧山期末) 如图,,,,则等于A .B .C .D .9. (2分)下列说法错误的()A . 相反数等于本身的数只有0B . 平方后等于本身的数只有0、1C . 立方后等于本身的数是-1、0、1D . 绝对值等于本身的数只有110. (2分)按一定的规律排列的一列数依次为:,,,,,…,按此规律排列下去,这列数中的第7个数是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分) (2019七上·宽城期末) 用代数式表示:a的2倍与3的和是________.12. (2分)(2020·辽阳模拟) 据统计,2020年中国人口数量约为1424000000人,将1424000000人用科学记数法表示为________人.13. (1分)方程x﹣5=0的解是x=________.14. (1分) (2019七上·萧山月考) 已知线段AB=12,P是线段AB的三等点,Q是直线AB上一个动点,若AQ=PQ+BQ,则线段AQ的长为________15. (1分) (2016七上·大同期末) 一种药品现在售价56.10元,比原来降低了15%,原售价为________元.16. (1分)某地发生自然灾害后七年级一班的50名同学进行了爱心捐款活动,又捐5元、10元、20元的,还有捐50元和100元的,如图反映了不同捐款额的人数比例,那么该班同学共捐款元________ .17. (1分) (2019九下·柳州模拟) 已知,则x+y=________.18. (1分) (2019七上·静宁期末) 如果数轴上的点A对应的数为-1,那么数轴上与点A相距3个单位长度的点所对应的有理数为________.三、解答题 (共6题;共45分)19. (10分) (2018七上·鄞州期中) 计算:(1)(2)(3)(4)20. (10分) (2019七上·滕州月考) 计算(1)(2)(3)(4)21. (5分) (2019七上·如皋期末) 先化简,再求值:,其中,.22. (5分)从某个整式减去多项式ab﹣2bc+3ac,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.23. (5分) (2015七下·孝南期中) 如图,已知OE,OF分别平分∠AOC,∠BOC,若∠EOF=45°,试判断OA 与OB的位置关系,并说明理由.24. (10分)(2016·泰安) 某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共45分)19-1、19-2、19-3、19-4、20-1、20-2、20-3、20-4、21-1、22-1、23-1、24-1、24-2、。
2019-2020年七年级上学期9月份月考数学试卷教师寄语:亲爱的同学们,考试只是老师了解你掌握知识多少的一种方式,请你放松心情,认真、细心答题,相信你定能在这里展示出你的风采!一、选择题(每小题3分,共计30分)1.下列四个式子中,是方程的是( )(A )2x -6 (B )2x +y=5 (C )-3+1=-2 (D )3264= 2.下列方程中,解为2x =的方程是( )(A )24=x (B ) 063=+x (C ) 021=x (D )0147=-x3.下列等式变形正确的是( )(A )如果12S ab =,那么2Sb a = (B )如果162x =,那么3x =(C )如果mx my =,那么x y = (D )如果33x y -=-,那么0x y -=4.将(32)2(21)x x +--去括号正确的是( )(A )3221x x +-+ (B )3241x x +-+(C )3242x x +-- (D )3242x x +-+5.若关于x 的一元一次方程k(x+4)-2k-x=5的解为x=-3,则k 的值是( )(A )-2 (B )2 (C )51(D )51-6.在解方程21x --332x +=1时,去分母正确的是( )(A )3(x -1)-2(2+3x )=1 (B )3(x -1)-2(2x +3)=6(C) 3x -1-4x +3=1 (D )3x -1-4x +3=67.某小组分若干本书,若每人分一本,则余一本,若每人分给2本,则缺3本,那么共有图书() (A )6本 (B )5本 (C )4本 (D )3本8.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩( )(A )不盈不亏 (B )盈利10元 (C )亏损10元 (D )盈利50元.9.已知1+x +23y x ()—+=0,那么2y x )(+的值是( ) (A )0 (B )1 (C )9 (D )4 10.如图所示,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于( )个正方体的质量.(A )12 (B )16(C )20 (D )24二、填空题(每小题3分,共计30分)11.方程052=+x 的解是=x .12.若x=-3是方程3(x-a )=7的解,则a= .13.若方程04x )2a (1a =+--是关于x 的一元一次方程,则a=_______.14.当n = 时,多项式2217n x y +2513x y -可以合并成一项. 15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了 道题.16.如果关于x 的方程3x+4=0与方程3x+4k=18的解相同,则k= .17.有一列数,按一定规律排成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1 701,这三个数中最小数为 .18.甲队有31人,乙队有26人,现另调24人分配给甲、乙两队,使甲队的人数是乙队人数的2倍,则应分配给甲队 人.19.A 、B 两地相距64千米,甲从A 出发,每小时行14千米,乙从B 地出发,每小时行18千米,若两人同时出发相向而行,则需_________小时两人相距16千米.20.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.三、解答题(21题8分,22题10分,23题6分,24题8分,25题8分,26题10分,27题10分,共计60分)(第10题图)21.解方程(每小题4分,共8分)(1)52682x x -=-; (2) 37322x x +=-.22.解方程(每小题5分,共10分)(1)2(10)5+2(1)x x x x -+=-; (2)53210232213+--=-+x x x .23.(本题6分)已知:方程2=+k x 的解比方程k k x 2321=+-的解大1,求k 的值.24.(本题8分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?25. (本题8分) 有一些相同的房间需要粉刷墙面,一天3名一级技工可粉刷8个房间,结果其中有50平方米墙面没来得及粉刷;同样时间内5名二级技工可粉刷了10间房之外,还多刷了40平方米的墙.已知每名一级技工比二级技工一天多粉刷10平方米的墙面,求每个房间需要粉刷的墙面面积.26.(本题10分)某商场经销甲、乙两种商品,甲种商品每件进价20元,售价35元;乙种商品每件进价30元,售价50元.(1)若该商场同时购进甲、乙两种商品共100件,且使这100件商品的总利润(利润=售价进价)为1800元,需购进甲、乙两种商品各多少件?(2)在“十一”期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过500元售价一律打九折超过500元售价一律打八折按上述优惠条件,若小李第一天只购买甲种商品一次性付款210元,第二天只购买乙种商品打折后一次性付款440元,那么这两天他在该商场购买甲、乙两种商品一共多少件?27.(本题10分)十一黄金周(7天)期间,萧红中学7年3班某同学计划租车去旅行,在看过租车公司的方案后,认为有以下两种方案比较适合(注:两种车型的油耗相同):周租金(单位:元)免费行驶里程(单位:千米)超出部分费用(单位:元/千米)A型1740 100 1.5B型2640 220 1.2解决下列问题:(1)如果此次旅行的总行程为800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米(x是正整数),请通过计算说明如何根据旅行行程选择省钱的租车方案.答案一、选择题:1.B2.D3.D4.D5.A6.B7.B8.B9.B 10.C二、填空题:11.-2.5 12.-16/3 13.-2 14.2 15.2216.5.5 17.-2187 18.23 19.1.5或2.5 20.180三、解答题:21.(1)x=4 (2)x=522. (1)x=-4/3 (2)x=7/1623.由方程(1)得X=2-K 由(2)得X=6K-6由题知:2-K=6K-6+1 得K=124.解:设应该安排X名工人生产螺钉2000(22-X)=2×1200XX=1022-10=12(人)答:25.解:设每个房间需要粉刷X平方米(8X-50)÷3=(10X+40)÷5+10X=52 答:26.(1)设该商场购进甲种商品a件,则购进乙种商品(100-a)件. 根据题意得(35-20)a+(50-30)(100-a)=1800--------------------------------------------2分解得,a=40,100-a=60. ------------------------------------------------------------2分答:(2)根据题意得,第一天只购买甲种商品不享受优惠条件∴210÷35=6(件)--------------------------------------------------------------------2分第二天只购买乙种商品有以下两种可能:①:若购买乙商品打九折,440÷90%÷50=889(件),不符合实际,舍去;②:购买乙商品打八折,440÷80%÷50=11(件)-------------------------------2分∴一共可购买甲、乙两种商品6+11=17(件)---------------------------------2分27.(1)1740+(800-100)×1.5=2790----------------------2分2640+(800-220)×1.2=3336-------------------2分∵3336>2790∴选择A型号车划算------------------------1分(2)1740+1.5×(X-100)=1.5X+1590--------------------------1分2640+1.2×(X-220)=1.2X+2376--------------------------1分1.5X+1590=1.2X+2376X=2620------------------------------------2分当X>2620时,选择B型号车划算当X=2620时,选择A、B型号车均可当X<2620时,选择A型号车划算--------------------------------------1分。
2019-2020学年山东省德州市七年级上学期期中数学试卷
一、选择题(每题4分,共48分)
1.(4分)|﹣3|﹣(﹣1)2的值是()
A.﹣2B.4C.2D.﹣4
【解答】解:|﹣3|﹣(﹣1)2
=3﹣1
=2,
故选:C.
2.(4分)近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()
A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012
【解答】解:将1256.77亿用科学记数法可表示为1.3×1011.
故选:B.
3.(4分)有理数﹣|﹣2|,﹣22019,﹣(﹣1),0,﹣(﹣2)2中,负数的个数有()A.2个B.3个C.4个D.5个
【解答】解:∵﹣|﹣2|=﹣2<0,﹣22019<0,﹣(﹣1)=1>0,0=0,﹣(﹣2)2=﹣4<0,
∴负数有﹣|﹣2|,﹣22019,﹣(﹣2)2,
即在有理数﹣|﹣2|,﹣22019,﹣(﹣1),0,﹣(﹣2)2中,负数有3个,
故选:B.
4.(4分)若数轴上,点A表示﹣1,AB距离是3,点C与点B互为相反数,则点C表示()A.﹣2B.2C.﹣4或2D.4或﹣2
【解答】解:∵点A表示﹣1,AB距离是3,
∴点B表示﹣4或2,
∵点B和点C所表示的数互为相反数,
∴点C表示的数是4或﹣2,
故选:D.
5.(4分)下列代数式中,值一定是正数的是()
A.x4B.﹣x2+1C.|﹣x+1|D.(﹣x)2+1
【解答】解:A 、x 4≥0,0不是正数,故这个选项不符合题意;
B 、当x =±1时,﹣x 2+1的值为0,0不是正数,故这个选项不符合题意;
C 、当x =1时,|﹣x +1|的值为0,0不是正数,故这个选项不符合题意;
D 、无论x 是何值,代数式(﹣x )2+1的值都是正数,故这个选项符合题意.
故选:D .
6.(4分)下列判断中错误的是( )
A .1﹣a ﹣ab 是二次三项式
B .﹣a 2b 2c 是单项式
C .a+b 2是多项式
D .34πr 2中,系数是34 【解答】解:A 、1﹣a ﹣ab 是二次三项式,正确,不合题意;
B 、﹣a 2b 2c 是单项式,正确,不合题意;
C 、a+b 2
是多项式,正确,不合题意; D 、34πr 2
中,系数是:34π,故此选项错误,符合题意.
故选:D .
7.(4分)若x =2是关于x 的方程2x +3m ﹣1=0的解,则m 的值为( )
A .﹣1
B .0
C .1
D .13 【解答】解:∵x =2是关于x 的方程2x +3m ﹣1=0的解,
∴2×2+3m ﹣1=0,
解得:m =﹣1.
故选:A .
8.(4分)设x ,y ,c 是实数,正确的是( )
A .若x =y ,则x +c =y ﹣c
B .若x =y ,则xc =yc
C .若x =y ,则x c =y c
D .若x 2c =y 3c ,则2x =3y
【解答】解:A 、两边加不同的数,故A 不符合题意;
B 、两边都乘以c ,故B 符合题意;
C 、c =0时,两边都除以c 无意义,故C 不符合题意;
D 、两边乘6c ,得到,3x =2y ,故D 不符合题意;
故选:B .
9.(4分)已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,a +b <0,有以下。