湖北省孝感高级中学高一数学上学期期中试题新人教A版
- 格式:doc
- 大小:285.00 KB
- 文档页数:6
高中数学学习材料鼎尚图文*整理制作命题人:幸 芹 考试时间:120分钟一、选择题(本大题共10个小题,每小题5分,共50分,在每小题所给的四个选项中,只有一项是符合题目要求的)1. 函数()45x f x x -=-的定义域为( ) A.[)4,+∞ B. [)5,+∞ C.[)()4,55,+∞ D.(][),44,5-∞2. 下列函数中与函数y x =为相同函数的是( ) A.()2y x = B. 33y x = C. 2y x = D. 2x y x = 3. 已知集合{}03,A x x x Z =≤<∈,则集合A 的子集的个数为( )A.5B. 6C.7D.84. 某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这二项运动都不喜欢,则喜欢篮球运动但不喜欢乒乓球运动的人数为( )A.17B. 18C.19D.20 5. 已知()224(1)1(1)1x x f x x x⎧--≤⎪=⎨>⎪+⎩,则()()1f f =( )A.52-B.110C.95-D. 25416. 已知0.9 1.71.7,0.9,1,a b c ===则有( )A.a b c <<B.a c b <<C. b a c <<D. b c a <<7. 函数24(01)x y a a a -=+>≠且的图像经过定点( )A.()2,4B. ()2,5C. ()3,4D.()3,58. 化简()()4433log 3log 9log 2log 8++=( )A.6B.6-C.12D.12-9. 下列函数中在区间()3,4内有零点的是( ) A. 53lg 2y x ⎛⎫=-⎪⎝⎭ B. 335=--+y x x C. 144-=+-x y e x D. ()()()3234=+-++y x x x x10. 已知函数()f x 是定义在R 上的偶函数,在(),0-∞上单调递减,且有()3=0f ,则使得()0<f x 的x 的范围为( )A.(),3-∞B. ()3,+∞C.()(),33,-∞+∞ D.()3,3-二、填空题(本大题共5个小题,每小题5分,共25分,请将各题的正确答案直接写在题目中的横线上)11. 设集合{}{}2200,07,A x x x B x x =+->=≤≤则A B =12. 已知函数()f x 是定义在R 上的奇函数,当0x >时()2=1++f x x x ,则()1=f -13. 已知幂函数3*()m y x m N -=∈的图像关于y 轴对称,且在()0,+∞上单调递减,则m =14. 已知函数()()33(1)log (1)aa x x f x x x ⎧--≤⎪=⎨>⎪⎩在R 上单调递增,则实数a 的取值范围为 15. []x 表示不超过x 的最大整数,定义函数()[]f x x x =-.则下列结论中正确的有①函数()f x 的值域为[]0,1 ②方程()12f x =有无数个解 ③函数()f x 的图像是一条直线 ④函数()f x 是R 上的增函数三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16. (本题满分12分)已知{}{}24,,6,1,9A a B a a ==-+,若{}9AB =,求a 的值17.(本题满分12分)已知函数1272-+-=x x y 的定义域是A, 函数2(0)1a y a x =>+在[0,2]上的值域为B 。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!12021-2022年湖北孝感高一数学上学期期中试卷及答案一、 单项选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知集合,则( ){|24},{|3782}A x N x B x x x =∈≤<=-≥-A B =I A. B. C. D. {|34}x x ≤<{|2}x x ≥{3}{|23}x x ≤≤2. 下列函数中与函数是同一函数的是( )()1f x x =-A . B. 2()1x f x x =-21()1x g x x -=+C. D.()f x =()1g x =-3. 设,则下列命题正确的是( ),a b R ∈A.若,则 B.若,则 a b ≠22a b ≠0a b <<22a b <C.若,则 D.若,则 ||a b >22a b >||a b >22a b >4. 不等式的解集是( )235+20x x -+<A. B. C. D.1(,(2,)3-∞-+∞U 1(,2)3-2(,1)(,)3-∞-+∞U 2(1,3-5. 命题“”的否定是( ) 001xx x ∃><-,A. B.001x x x ∃>≥-,001xx x ∀><-,C. D.001x x x ∃≤<-,001xx x ∀>≥-,6. 已知函数的定义域为,则的定义域为( ) (+1)f x [1,2](23)f x -+A. B. C. D.[1,2]1[0,2[1,1]-1[,1]27. 已知函数,则( )2,1()(1),1x x f x f x x +≤⎧=⎨->⎩((4))f f =A. 3B. 4C. 5D. 68. 已知函数在区间的最小值为,则函数在31()8()f x ax x a R x=+-+∈[,]a b 10-()f x 区间的最大值为( )[,]b a --A. 10B.C.26D.与有关10-a 二、多项选择题(本大题共4小题,每小题5分,共20分。
2024-2025学年湖北省孝感第一高级中学高一(上)入学数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一次函数y =x +2与y =2x−1的图象交点组成的集合是( )A. {3,5}B. {x =3,y =5}C. {(3,5)}D. {(5,3)}2.把x 2−1+2xy +y 2分解因式的结果是( )A. (x +1)(x−1)+y(2x +y)B. (x +y +1)(x−y−1)C. (x−y +1)(x−y−1)D. (x +y +1)(x +y−1)3.已知全集U =R ,集合A ={0,1,2,3,4},B ={x|(x +1)(x−1)(x−2)=0},则图中阴影部分所表示的集合为( )A. {0,3,4}B. {0,1,3,4}C. {0,2,3,4}D. {3,4}4.已集合A ={x|ax +3=0},B ={x|x 2=9},若A ⊆B ,则实数a 的取值集合是( )A. {1}B. {−1,1}C. {−1,0,1}D. {0,1}5.设三角形的三边a 、b 、c 满足a 4−b 4−c 4−2b 2c 2=0,则这个三角形的形状是( )A. 直角三角形B. 等腰三角形C. 等边三角形D. 无法确定6.已知集合M ={x|x =k +23,k ∈Z},N ={x|x =k +23,k ∈Z},则( )A. M ∩N =MB. M ∪N =MC. M ∩N =⌀D. M =N7.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程x 2+(2m−1)x +m 2+3=0的根,则m 等于( )A. −3B. 5C. 5或−3D. −5或38.若二次函数的解析式为:y =(x−2m)(x−2)(1≤m ≤5),且函数图象过点(p,q)和点(p +4,q),则q 的取值范围是( )A. −12≤q ≤4B. −5≤q ≤0C. −5≤q ≤4D. −12≤q ≤3二、多选题:本题共3小题,共18分。
孝感高中2010~2011学年度上学期期中考试试卷 高一数学命题人:朱光辉一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合32{|220}A x x x x =--+=,下列哪个元素不属于集合A ( )A.1B.1-C.2D.2-2.化简2115113366221(3)()3-÷a b a b a b 的结果为( )A.6aB.-aC.9-aD.9a3.下列函数中,为偶函数且在区间(0,2)上为减函数的是( ) A.3=-y xB.21=+y xC.1=y xD ||=-y x4.函数()=f x 的定义域为( )A.[1,0]-B.(0,)+∞C.[1,0)(0,)-+∞D.[1,)-+∞5.设集合{|06}=≤≤A x x ,{|02}=≤≤B y y ,则下列各选项中,从A 到B 的对应法则f 不是映射的是( )A.1:3→=f x y x B.:6→=xf x y C.:4→=x f x y D.1:2→=f x y x6.已知函数221(),1+=-x f x x 则有( )A.()f x 是奇函数,且1()()=-f f x xB.()f x 是奇函数,且1()()=f f x xC.()f x 是偶函数,且1()()=-f f x x D.()f x 是偶函数,且1()()=f f x x7.某供电公司采用分段计费的方法来计算电费,月用电量(度)与相应电费y (元)之间的函数关系如图所示,当月电量为300度时,应交电费( ) A.165元 B.170元C.175元D.180元8.定义在R 上的偶函数()f x 对任意12,[0,)∈+∞x x 12()≠x x ,有2121()()-<-f x f x x x ,则( )A.(3)(2)(1)<-<f f fB.(1)(2)(3)<-<f f fC.(1)(3)(2)<<-f f fD.(2)(3)(1)-<<f f f9.若关于x 的方程2(1)--+x x m =0在[1,1]-上有解,则m 的取值范围是( )A.11-≤≤mB.54≥-mC.1≤mD.514-≤≤m10.已知定义域为R 的函数()=y f x 在(,)(0)-∞>a a 上是增函数,且函数()=+y f x a 是偶函数,当1212,,||||<>-<-x a x a x a x a 时,有( ) A.12(2)(2)->-f a x f a x B.12(2)(2)-=-f a x f a xC.12(2)(2)-<-f a x f a xD.1(2)-f a x 与2(2)-f a x 的大小关系不能确定二、填空题:本题共25分,每小题5分,请将各题的正确答案直接写在题目的横线上。
湖北省孝感市2019-2020学年高一上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)设变量x,y满足约束条件则z=3x﹣2y的最大值为()A . 0B . 2C . 4D . 32. (2分) (2019高一上·杭州期中) 下列哪组中的两个函数是同一函数()A . 与B . 与C . 与D . 与3. (2分) (2019高一上·杭州期中) 下列图象中可以表示以为定义域,为值域的函数图象是()A .B .C .D .4. (2分) (2019高一上·杭州期中) 若,则()A .B .C .D .5. (2分) (2019高一上·杭州期中) 函数与在同一坐标系中的图象可能是()A .B .C .D .6. (2分) (2019高一上·杭州期中) 已知函数,则有()A . 是偶函数,递增区间为B . 是偶函数,递增区间为C . 是奇函数,递减区间为D . 是奇函数,递增区间为7. (2分) (2019高一上·长春期中) 设函数,若,则的取值范围是()A . (,1)B . (,)C . (,)(0,)D . (,)(1,)8. (2分) (2019高一上·杭州期中) 设偶函数(),则满足的实数的取值范围为()A .B .C .D .9. (2分) (2019高一上·杭州期中) 函数f(x)=log2(-x2+ax+3)在(2,4)是单调递减的,则a的范围是()A .B .C .D .10. (2分) (2019高一上·杭州期中) 不等式的解集是区间的子集,则实数的取值范围是()A .B .C .D .二、填空题 (共7题;共7分)11. (1分)已知集合A={﹣2,3,4,6},集合B={3,a,a2},若B⊆A,则实数a=________;若A∩B={3,4},则实数a=________.12. (1分)已知∅⊊{x|x2﹣x+a=0},则实数a的取值范围是________.13. (1分)由直线x=, x=2,曲线y=及x轴所围图形的面积为________14. (1分)已知是幂函数,且在定义域上单调递增,则 ________.15. (1分)若等差数列{an}满足a1=2,a5=6,则a2015=________16. (1分)设函数,已知f(x0)=8,则x0=________.17. (1分) (2019高一下·静安期末) 类比反正切函数的定义,我们将函数的反函数定义为反余切函数,记为,则 ________.三、解答题 (共5题;共60分)18. (10分)(2020·桂林模拟) 设函数 .(1)若恒成立,求整数k的最大值;(2)求证: .19. (15分) (2016高三上·盐城期中) 如图,在四边形ABCD中,| |=4, =12,E为AC的中点.(1)若cos∠ABC= ,求△ABC的面积S△ABC;(2)若 =2 ,求• 的值.20. (10分) (2020高二下·宁波月考) 已知函数是奇函数.(1)求实数m的值;(2)若函数在区间上是单调增函数,求实数a的取值范围;(3)求不等式的解集.21. (15分) (2019高一上·杭州期中) 设函数且,,是定义域在上的奇函数.(1)求的值;(2)证明:当时,函数是上的增函数;(3)若且满足的解集为,求定义域为的函数的值域.22. (10分) (2019高一上·杭州期中) 已知函数.(1)若,求函数的值域;(2)若函数的定义域、值域都为,且在上单调,求实数b的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共60分) 18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、第11 页共11 页。
一、选择题1.(0分)[ID :11813]函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .2.(0分)[ID :11809]不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦3.(0分)[ID :11753]已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .14.(0分)[ID :11750]函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .5.(0分)[ID :11749]设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z6.(0分)[ID :11796]设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x)=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5 B .4.5C .3.5D .2.57.(0分)[ID :11794]已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( )A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-8.(0分)[ID :11793]设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a取值范围( ) A .[)2,+∞B .[]0,3C .[]2,3D .[]2,49.(0分)[ID :11771]函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞10.(0分)[ID :11747]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,311.(0分)[ID :11744]函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .12.(0分)[ID :11741]设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)213.(0分)[ID :11739]函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( ) A .5B .4C .3D .614.(0分)[ID :11730]已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7815.(0分)[ID :11768]已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( ) A .a c b >> B .b c a >> C .b a c >> D .a b c >>二、填空题16.(0分)[ID :11924]给出下列四个命题:(1)函数()f x x x bx c =++为奇函数的充要条件是0c ;(2)函数()20xy x -=>的反函数是()2log 01y x x =-<<;(3)若函数()()2lg f x x ax a =+-的值域是R ,则4a ≤-或0a ≥;(4)若函数()1y f x =-是偶函数,则函数()y f x =的图像关于直线0x =对称. 其中所有正确命题的序号是______.17.(0分)[ID :11922]设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a的取值范围是__________.18.(0分)[ID :11903]若函数()y f x =的定义域是[0,2],则函数()g x =的定义域是__________.19.(0分)[ID :11889]已知偶函数()f x 满足3()8(0)f x x x =-≥,则(2)0f x ->的解集为___ ___20.(0分)[ID :11879]已知2a =5b =m ,且11a b+=1,则m =____. 21.(0分)[ID :11866]已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 22.(0分)[ID :11852]计算:log 3√27+lg25+lg4+7log 72−(827)−13=__________.23.(0分)[ID :11846]已知312ab +=a b =__________. 24.(0分)[ID :11833]若点12,2⎛⎫ ⎪⎝⎭)既在()2ax b f x +=图象上,又在其反函数的图象上,则a b +=____25.(0分)[ID :11829]若关于 x 的方程2420x x a ---= 在区间 (1, 4) 内有解,则实数 a 的取值范围是_____.三、解答题26.(0分)[ID :11997]已知()f x 是定义在()1,1-上的奇函数,且当01x <<时,()442xxf x =+, (1)求()f x 在1,0上的解析式; (2)求()f x 在1,0上的值域;(3)求13520172018201820182018f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.27.(0分)[ID :11993]设函数()()()22log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)若2log t x =,求t 的取值范围;(2)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.28.(0分)[ID :11968]已知函数()22f x ax ax b =-+()0a >在[]2,3上的值域为[]1,4.(1)求a ,b 的值; (2)设函数()()f xg x x=,若存在[]2,4x ∈,使得不等式()22log 2log 0g x k x -≥成立,求k 的取值范围.29.(0分)[ID :11946]已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=. (1)求,a b 的值; (2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.30.(0分)[ID :11943]已知定义域为R 的函数()1221x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(2)若关于m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解,求实数t 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D 2.C 3.B4.B5.D6.D7.C8.D9.D10.B11.B12.D13.A14.C15.B二、填空题16.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确17.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为18.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))19.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能20.10【解析】因为2a=5b=m所以a=log2mb=log5m由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数21.7【解析】【分析】【详解】设则因为所以故答案为722.4【解析】原式=log3332+lg(25×4)+2-(23)3-13=32+2+2-32=4故填423.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力24.【解析】【分析】由点在函数的反函数的图象上可得点在函数的图象上把点与分别代入函数可得关于的方程组从而可得结果【详解】点在函数的反函数的图象上根据反函数与原函数的对称关系点在函数的图象上把点与分别代入25.-6-2)【解析】【分析】转化成f(x)=与有交点再利用二次函数的图像求解【详解】由题得令f(x)=所以所以故答案为-6-2)【点睛】本题主要考查二次方程的有解问题考查二次函数的图像和性质意在考查学三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan,tan sin {2sin,tan sinx x xx x x<≥分段画出函数图象如D 图示, 故选D .2.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.3.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.4.B解析:B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x -=>,函数有意义,可排除A ;当2x =-时,1302x x -=-<,函数无意义,可排除D ;又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.5.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.8.D解析:D 【解析】 【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.9.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增;当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.11.B解析:B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.12.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.13.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.14.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.15.B解析:B 【解析】 【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系. 【详解】()()f x f x -=,则函数()y f x =为偶函数,函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.二、填空题16.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确 解析:(1)(2)(3) 【解析】【分析】根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确, 由函数()()2lg f x x ax a =+-的值域是R ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确. 【详解】 解:(1)当0c时,()=+f x x x bx ,()()()-=---=-+=-f x x x bx x x bx f x ,当函数为奇函数时()()f x f x -=-,即()++=----+=+-x x bx c x x bx c x x bx c ,解得0c ,所以0c 是函数()f x x x bx c =++为奇函数的充要条件,所以(1)正确;(2)由反函数的定义可知函数()20xy x -=>的反函数是()2log 01y x x =-<<,所以(2)正确;(3)因为函数()()2lg f x x ax a =+-的值域是R ,所以2y x ax a =+-能取遍(0,)+∞的所有实数,所以240a a =+≥△,解得0a ≥或4a ≤-,所以(3)正确; (4)函数()1y f x =-是偶函数,所以()1y f x =-图像关于y 轴对称,函数()y f x =的图像是由()1y f x =-向左平移一个单位得到的,所以函数()y f x =的图像关于直线1x =-对称,故(4)不正确. 故答案为:(1)(2)(3) 【点睛】本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.17.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.18.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->, ∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.19.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能 解析:{|40}x x x ><或【解析】 【分析】通过判断函数的奇偶性,增减性就可以解不等式. 【详解】根据题意可知(2)0f =,令2x t -=,则转化为()(2)f t f >,由于偶函数()f x 在()0,∞+上为增函数,则()(2)f t f >,即2t>,即22x -<-或22x ->,即0x <或4x >.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.20.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm 5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10【解析】因为2a=5b=m,所以a=log2m,b=log5m,由换底公式可得11a b+=log m2+log m5=log m10=1,则m=10.点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.21.7【解析】【分析】【详解】设则因为所以故答案为7解析:7【解析】【分析】【详解】设,则,因为112 22⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x,所以,,故答案为7.22.4【解析】原式=log3332+lg(25×4)+2-(23)3-13=32+2+2-32=4故填4 解析:4【解析】原式=log3332+lg(25×4)+2−[(23)3]−13=32+2+2−32=4,故填4.23.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力解析:3【解析】【分析】首先化简所给的指数式,然后结合题意求解其值即可.【详解】1321223333a ba b a a b+-+====.【点睛】本题主要考查指数幂的运算法则,整体数学思想等知识,意在考查学生的转化能力和计算求解能力.24.【解析】【分析】由点在函数的反函数的图象上可得点在函数的图象上把点与分别代入函数可得关于的方程组从而可得结果【详解】点在函数的反函数的图象上根据反函数与原函数的对称关系点在函数的图象上把点与分别代入解析:13【解析】【分析】由点12,2⎛⎫⎪⎝⎭在函数2ax by+=的反函数的图象上,可得点1,22⎛⎫⎪⎝⎭在函数2ax by+=的图象上,把点12,2⎛⎫⎪⎝⎭与1,22⎛⎫⎪⎝⎭分别代入函数2ax by+=,可得关于,a b的方程组,从而可得结果.【详解】点12,2⎛⎫⎪⎝⎭在函数2ax by+=的反函数的图象上,根据反函数与原函数的对称关系,∴点1,22⎛⎫⎪⎝⎭在函数2ax by+=的图象上,把点12,2⎛⎫⎪⎝⎭与1,22⎛⎫⎪⎝⎭分别代入函数2ax by+=可得,21a b+=-,①112a b+=,②解得45,33a b=-=,13a b+=,故答案为13.【点睛】本题主要考查反函数的定义与性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.25.-6-2)【解析】【分析】转化成f(x)=与有交点再利用二次函数的图像求解【详解】由题得令f(x)=所以所以故答案为-6-2)【点睛】本题主要考查二次方程的有解问题考查二次函数的图像和性质意在考查学解析:[-6,-2) 【解析】 【分析】转化成f(x)=242x x --与y a =有交点, 再利用二次函数的图像求解. 【详解】由题得242x x a --=,令f(x)=()242,1,4x x x --∈,所以()()[)2242266,2f x x x x =--=--∈--, 所以[)6,2a ∈-- 故答案为[-6,-2) 【点睛】本题主要考查二次方程的有解问题,考查二次函数的图像和性质,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.三、解答题 26. (1)()1124x f x -=+⋅(2)2133,⎛⎫-- ⎪⎝⎭(3)10092 【解析】 【分析】(1)令0x <<-1,则01x <-<,代入解析式可求得()f x -.再根据奇函数性质即可求得()f x 在()1,0-上的解析式;(2)利用分析法,先求得当0x <<-1时,4x 的值域,即可逐步得到()f x 在()1,0-上的值域; (3)根据函数解析式及所求式子的特征,检验()()1f x f x +-的值,即可由函数的性质求解. 【详解】(1)当0x <<-1时,01x <-<,()4142124x x xf x ---==++⋅, 因为()f x 是()1,1-上的奇函数 所以()()1124xf x f x -=--=+⋅,(2)当0x <<-1时,14,14x⎛⎫∈ ⎪⎝⎭,3124,32x ⎛⎫+⋅∈ ⎪⎝⎭,121,12433x -⎛⎫∈-- ⎪+⋅⎝⎭,所以()f x 在()1,0-上的值域为21,33⎛⎫-- ⎪⎝⎭; (3)当01x <<时,()442x x f x =+,()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅, 所以1201732015520131201820182018201820182018f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故1352017100920182018201820182f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【点睛】本题考查了奇函数的性质及解析式求法,利用分析法求函数的值域,函数性质的推断与证明,对所给条件的分析能力要求较高,属于中档题.27.(1)[]22-,;(2)24x =,最小值14-,4x =,最大值12 .【解析】试题分析:(1)根据定义域为1,44⎡⎤⎢⎥⎣⎦,利用对数函数的单调性确定函数2log t x =的取值范围;(2)根据对数的运算法则化简函数()()()()()2222log 4log 221f x x x log x log x =⋅=++利用换元法将函数()y f x =转化为关于t 的一元二次函数,利用二次函数的性质求函数的最值. 试题解析:(1)的取值范围为区间][221log ,log 42,24⎡⎤=-⎢⎥⎣⎦(2)记()()()()()()()22log 2log 12122y f x x x t t g t t ==++=++=-≤≤.∵()23124y g t t ⎛⎫==+- ⎪⎝⎭在区间32,2⎡⎤--⎢⎥⎣⎦是减函数,在区间3,22⎡⎤-⎢⎥⎣⎦是增函数 ∴当23log 2t x ==-即32224x -==时,()y f x =有最小值231424f g ⎛⎛⎫=-=- ⎪ ⎝⎭⎝⎭; 当2log 2t x ==即224x ==时,()y f x =有最大值()()4212f g ==.28.(1)1,1a b == (2) 1,8⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)先求得函数()f x 的对称轴,然后根据函数()f x 在[]2,3上的单调性列方程组,解方程组求得,a b 的值.(2)由(1)求得函数()f x 的解析式,进而求得()g x 的解析式,将不等式()22log 2log 0g x k x -≥分离常数2k ,利用换元法,结合二次函数的性质,求得k 的取值范围. 【详解】(1)由已知可得()()21f x a x b a =-+-,对称轴为1x =. 因为0a >,所以()f x 在[]2,3上单调递增,所以()()21,34,f f ⎧=⎪⎨=⎪⎩即1,44,a b a a b a +-=⎧⎨+-=⎩解得1,1,a b =⎧⎨=⎩(2)由(1)可得()221f x x x =-+,则()()12f x g x x x x==+-. 因为()22log 2log 0g x k x -≥,所以2221log 22log log x k x x+-≥. 又[]2,4x ∈,所以()2221221log log k xx ≤-+. 令21log t x=,则2221k t t ≤-+. 因为[]2,4x ∈,所以1,12x ⎡⎤∈⎢⎥⎣⎦.记()221h t t t =-+,1,12t ⎡⎤∈⎢⎥⎣⎦,所以当12t =时,()max 14h t =,所以124k ≤,解得18k ≤,故k 的取值范围是1,8⎛⎤-∞ ⎥⎝⎦.【点睛】本小题主要考查根据二次函数的对称轴、单调性和值域求解析式,考查存在性问题的求解策略,考查化归与转化的数学思想方法,属于中档题.29.(1)a=1,b=0;(2) (],0-∞. 【解析】 【分析】(1)依据题设条件建立方程组求解;(2)将不等式进行等价转化,然后分离参数,再换元利用二次函数求解.【详解】(1)()()2g x a x 11b a =-++-,因为a 0>,所以()g x 在区间[]23,上是增函数, 故()()21{34g g ==,解得1{0a b ==. (2)由已知可得()12=+-f x x x ,所以()20-≥x f kx 可化为12222+-≥⋅x x x k , 化为2111+222-⋅≥x x k (),令12=x t ,则221≤-+k t t ,因[]1,1∈-x ,故1,22⎡⎤∈⎢⎥⎣⎦t , 记()221=-+h t t t ,因为1,22⎡⎤∈⎢⎥⎣⎦t ,故()0=min h t ,所以k 的取值范围是(],0∞-. 【点睛】(1)本题主要考查二次函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力,(2)本题的关键有两点,其一是分离参数得到2111+222-⋅≥x x k (),其二是换元得到221≤-+k t t ,1,22⎡⎤∈⎢⎥⎣⎦t . 30.(1)1a =(2)见解析(3)1,2⎛⎫-∞ ⎪⎝⎭【解析】试题分析:(1)由()f x 为奇函数可知,()()f x f x -=--,即可得解;(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数,对于任意实数12,x x ,不妨设12x x <,化简()()12f x f x -判断正负即可证得; (3)不等式()()222120f m m f m mt -+++-≤,等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,原问题转化为121t m m ≤-++在()1,2m ∈上有解,求解11y m m=-++的最大值即可. 试题解析解:(1)由()f x 为奇函数可知,()()f x f x -=--,解得1a =.(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数,证明:对于任意实数12,x x ,不妨设12x x <,()()()()21121212112221212121x x x x x x f x f x --=-=++++∵2xy =递增,且12x x <,∴1222x x <,∴()()120f x f x ->,∴()()12f x f x >,故()f x 在R 上为减函数.(3)关于m 的不等式()()222120f m m f m mt -+++-≤, 等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,因为()1,2m ∈,所以121t m m≤-++, 原问题转化为121t m m≤-++在()1,2m ∈上有解, ∵11y m m=-++在区间()1,2上为减函数, ∴11y m m =-++,()1,2m ∈的值域为1,12⎛⎫- ⎪⎝⎭, ∴21t <,解得12t <, ∴t 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点晴:本题属于对函数单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.。
湖北省孝感高级中学~度上学期期中考试一年级(数学)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数11y x=-的定义域为 A .{}1x x <B .{}1x x ≥C .{}01x x <<D .{}1x x ≤2.设集合{}260A x x x =+-<,{}13B x x =≤≤则()R C A B ⋂等于 A .(,3)-∞-B .](3,1-C .[1,2)D .[]2,33.设函数2,0,(),0,x x f x x x -≤⎧=⎨>⎩若()4f α=,则实数α=A .4-或2-B .4-或2C .2-或4D .2-或24.化简2121113334424(6)(3)x y x y xy----÷-(其中0,0x y >>)的结果是A .8xyB .134xy C .2xyD . 12x y5.1()12x y =-的图象大致是A .B .C .D .6.下列函数中,既是偶函数又在(0,)+∞上是单调递增的函数是 A .3y x =B .1y x =+C .21y x =-+D .2xy -=7.某同学骑车上学,离开家不久,发现作业本忘家里了,于是返回家找到作业本再上学,为了赶时间快速行驶.下图中横轴表示出发后的时间,纵轴表示离学校的距离.......则较符合该同学走法的图是A .B .C .D .8.函数()x b f x a -=的图象如右图,其中,a b 为常数,则下列结论正确的是 A .1,0a b >< B .1,0a b >> C .01,0a b <<> D .01,0a b <<<9.若函数()y f x =是偶函数,x R ∈,在0x <时,()f x 是增函数,对 于120,0,x x <>且12x x <,则 A .12()()f x f x ->- B .12()()f x f x -<- C .12()()f x f x -=-D .12()()f x f x -≥-10.对实数a 和b ,定义运算“⊗”:,,a a ba b b a b ≥⎧⊗=⎨<⎩,设函数22()(1)(),=-⊗-∈f x x x x x R ,则()y f x =与x 轴的公共点个数为: A .1B .2C .3D .4二、填空题:本题共25分,每小题5分,请将各题的正确答案直接写在题目的横线上. 11.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.12.已知符合{}2(,)1,2,==+<∈A x y x y x x Z ,则集合A 用列举法可表示为:.13.设定义在N 上的函数()f n 满足[]13()(18)n f n f f n +⎧⎪=⎨-⎪⎩20002000n n ≤>则(2003)=f14.函数3()xx a f x a-+⎧=⎨⎩00x x <≥(01)a a >≠且是R 上的减函数,则实数a 的取值范围是 .15. 设[]x 表示不大于x 的最大整数,例如[][]2.13,3.23-=-=;集合[]{}223,==+A x x x {}23=-<<B x x ,则A B ⋂=.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)已知:{}U 1,2,3,6=-,集合{}2U,50A A x x x m ⊆=-+=.若{}U 2,3C A =,求m 的值.17.(本题满分12分)已知函数()22xf x =-.(1)作出函数()f x 的图象;(2)由图象指出函数的单调区间及单调性(不用证明); (3)指出函数的值域. 18.(本题满分12分)某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产一百台,需要新增加投入2.5万元.经调查,市场一年对此产品的需求量为500台;销售收入为21()62=-R t t t (万元),(05)<≤t ,其中t 是产品售出的数量(单位:百台). (说明:①利润=销售收入-成本;②产量高于500台时,会产生库存,库存产品不计于年利润.) (1)把年利润y 表示为年产量x (0)>x 的函数;(2)当年产量为多少时,工厂所获得年利润最大?19.(本题满分12分)已知函数21()(,,)ax f x a b c R bx c +=∈+是奇函数,又5(1)2,(2)2f f ==.(1)求,,a b c 的值;(2)当(0,)x ∈+∞时,讨论函数的单调性,并写出证明过程.20.(本题满分13分)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-. (1)求(1)f -的值;(2)当0x <时,求()f x 的解析式;(3)求函数()f x 在[],1(0)t t t +>上的最小值.21.(本题满分14分)已知定义域为R 的函数11()212xf x =-+. (1)判断其奇偶性并证明;(2)判断函数()f x 在R 上的单调性,不用证明;(3)是否存在实数k ,对于任意[1,2]∈t ,不等式22(2)(2)0f t t f t k -+->恒成立. 若存在,求出实数k 的取值范围;若不存在,说明理由.高一数学参考答案题号 1 2 3 4 5 6 7 8 9 10 答案ADBABBDDAC11.12 12.{(1,0),(0,1),(1,0)}-- 13.201114.113a ≤< 15.{1,7}-三、解答题16. ∵{1,2,3,6},{2,3}=-=U U C A ∴{1,6}A =-(6分) 又(16)5-+=,16m -⨯=即6m =-(12分)17.(1)图形 (4分) (2)()f x 在(,0)-∞上是减函数,在(0,)+∞上是增函数. (8分) (3)()f x 的值域为[1,)-+∞ (12分) 18.(1)当05x <≤时21()60.5 2.52f x x x x =---213.50.52x x =-+-(3分)当5x >时21()6550.5 2.52f x x =⨯-⨯--17 2.5x =- (5分)即21 3.50.5()217 2.5x x f x x⎧-+-⎪=⎨⎪-⎩(05)(5)x x <≤>(6分)(2)当05x <≤时21()(71)2f x x x =--+21745()228x =--+(9分)∴当 3.5(0.5]x =∈时,max 45() 5.6258f x == 当5x >时,()f x 为(5,)+∞上的减函数 ()(5)17 2.55 4.5f x f <=-⨯= 又5.625 4.5>(11分) ∴max ()(3.5) 5.625f x f ==故当年产量为350台时,工厂所获年利润最大.(12分)19. ∵()f x 为奇函数. ∴()()f x f x -=-21()ax f x bx c+=-+, 21()ax f x bx c+-=-- ∴对任意(,0)(0,)x ∈-∞+∞ 2211ax ax bx c bx c++=-+--恒成立 ∴0c =(2分)又1(1)2a f b+==415(2)22a f b +== 可得1a b == (4分) ∴1,0a b c === (5分)(2)21()x f x x+=得12,x x 是(0,)+∞上任意两实数,且12x x <22221212212112121211()()x x x x x x x x f x f x x x x x +++---=-=12122112121212()()()(1)x x x x x x x x x x x x x x -+---==(7分)当12,(0,1)x x ∈时,12121210,0,0x x x x x x -<-<> ∴121212()(1)0x x x x x x -->,即12()()f x f x >(9分)当12,(1,)x x ∈+∞时,12121210,0,0x x x x x x ->-<>∴121212()(1)0x x x x x x --<即12()()f x f x <(11分) ∴()f x 在(0,1)上是减函数,在(1,)+∞上是增函数.(12分)20.(1)∵()f x 是R 上的偶函数. ∴2(1)(1)1413-==-⨯=-f f(3分)(2)若0,x <则0x ->22()()[()4()]4f x f x x x x x =-=---=+(7分)(3)0x >时22()4(2)4f x x x x =-=--在(0,2)上是减函数,在(2,)+∞上是增函数①12t +≤ 即01t <≤时,()f x 在[,1]t t +上是减函数22min ()(1)(1)4(1)23f x f t t t t t =+=+-+=--(9分)②21t t <<+即12t <<时()f x 在[,1]t t +上先减后增min ()(2)4f x f ==-(10分)③2t ≥时,()f x 在[,1]t t +上是增函数2min ()()4f x f t t t ==-(11分)即2min223()44t t f x t t⎧--⎪=-⎨⎪-⎩ 01122t t t <≤<<≥(13分)21.(1)()f x 是奇函数112111()1212212212x x x x f x --=-=-=--+++1111()()221212x x f x =-=--=-++∴()f x 是R 上的奇函数. (3分) (2)()f x 是R 上的减函数. (6分)(3)∵()f x 是R 上的奇函数∴222(2)(2)(2)f t t f t k f k t ->--=-(9分)又()f x 是R 上的减函数 ∴2222t t k t -<-即问题等价于对任意[1,2]t ∈232k t t >-恒成立(12分)又2()32g t t t =-在[1,2]上是增函数 ∴max ()(2)1248g t g ==-=(13分)k ∴8。
湖北省黄冈中学2013年秋季高一数学期中考试试题(教师版)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如右图所示,U 是全集,A 、B 是U 的子集,则图中阴影部分表示的集合是( )A .AB B .()U B A ðC .A BD .()U A B ð 【答案】B【解析】由交集、补集的定义可知选B.2.函数)y x =-的定义域为集合A ,则集合A =( )A. ()0,1B. [)0,1C. (]0,1D. []0,1【答案】B【解析】要使解析式有意义:010x x ≥⎧⎨->⎩,解得:[)0,1x ∈,故选B ;3.下列各组函数中表示同一函数的是( ) A. x x f =)(与2)()(x x g = B. ||)(x x f =与33)(x x g = C. xe xf ln )(=与xe x g ln )(= D. 11)(2--=x x x f 与)1(1)(≠+=x x x g【答案】D【解析】A 、B 选项,(),()f x g x 定义域不同;B 选项,值域不同或者对应关系不同. 4.函数21log y x=,(0)x >的大致图象为( )【答案】C 【解析】221log log y x x==-,只需将2log y x =图像关于x 轴作对称变换即可得到;5. 下列函数中,既是偶函数又在区间()0,+∞上单调递减的是( ) A. 1y x=B. x y e -=C. 21y x =-+D. lg ||y x =【答案】C【解析】由“偶函数”条件,可以排除A ,B ;由“在区间()0,+∞上单调递减”可以排除D ;故选C ;6.已知()f x 是奇函数,()g x 是偶函数,且(1)(1)2,(1)(1)4f g f g -+=+-=,则(1)g =( )A. 4B. 3C. 2D. 1 【答案】B【解析】 ()f x 是奇函数,()g x 是偶函数,(1)(1),(1)(1)f f g g ∴-=--=∴由题可得:(1)(1)2(1)(1)4f g f g -+=⎧⎨+=⎩,解方程可得:(1)1(1)3f g =⎧⎨=⎩7.已知y x ,为正实数,则( )A. lg lg lg lg 222x y x y +=+B. ()lg lg lg 222x y x y +=⋅C. lg lg lg lg 222x y x y =+D. ()lg lg lg 222xy x y =⋅ 【答案】D【解析】由对数、指数运算性质可知选D ;8.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤⎧⎪=⎨+>⎪⎩给出,其中[]m 是不超过m 的最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( ) A. 3.71 B. 4.24 C. 4.77 D. 7.95 【答案】C【解析】[](5.2) 1.06(0.5 5.22) 4.77f =⨯⨯+=9.集合{}210A x ax ax =∈++=R 的子集只有2个,则a =( )A. 4B. 2C. 0D. 0或4 【答案】A【解析】集合A 子集只有2个,则集合A 中元素只有一个,方程210ax ax ++=只有一个根;当0a =,不合题意;当0a ≠,240a a ∆=-=,解得:0()4a a ==舍或;故选A.10.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递减. 若实数a 满足212(log )(log )2(1)f a f f a ≤+,则a 的取值范围是( )A. [)2,+∞B. [)1,2,2⎛⎤-∞+∞ ⎥⎝⎦C. 1,22⎛⎤ ⎥⎝⎦D.[)10,2,2⎛⎤+∞ ⎥⎝⎦【答案】D 【解析】212222(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+-=≤,所以2((log 1))f a f ≤由“函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递减”,所以2log 1a ≥,即22log 1,log 1a a ≥≤-或,所以12,02a a ≥<≤或;故选D二、填空题:本大题共5小题,每小题5分,共25分. 11.函数(0,1)x y a a a =>≠且的反函数的图象过点(9,2),则a 的值为_______.【答案】3【解析】由题知:x y a =图象过点(2,9),则29a =,又0a >,所以3a=.12.计算=+--3324log ln 01.0lg 2733e _______. 【答案】0 【解析】3223log 43233327lg 0.01ln 43lg(10)3e ⨯---+=--+49230=-++=13.已知函数()f x 的图象如右图所示,则此函数的定义域是 ________,值域是_______. 【答案】[]3,3-,[]2,2- 【解析】由图像可知;14.给定集合A 、B ,定义A ※B {},,x x m n m A n B ==-∈∈,若{}4,56A =,{}1,2,3B =则集合A ※B 中的所有元素之和为_______.【答案】15【解析】A ※B {}1,2,3,4,5=,元素之和为15;15.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()913a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为_______.【答案】2a ≤-【解析】()y f x =解析式为:22913,0()0,0913,0a x x x f x x a x x x ⎧++>⎪⎪⎪==⎨⎪⎪+-<⎪⎩;因为()1f x a ≥+ 对一切0x ≥成立,0(0)01,1x f a a ∴==≥+∴≤-当时,;0()x f x a ∴>≥⇔当时,恒成立min ()f x a ≥,min()13613f x f a ===-而x>0时,,由1a ≤-,所以min ()6131f x a a =--≥+,解得2a ≤-;三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。
湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)高一数学上学期期中考试试题新人教A 版一、选择题:本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 有且只有一项是符合题目要求的。
1.已知A={1,3,5,7},B={2,3,4,5},则集合A∪B 的元素个数是 ( )A .8B .7C .6D .52.下列函数是偶函数的是 ( )A. x y =B. 322-=x yC. 21-=xyD. ]1,0[,2∈=x x y3.函数)23(log 21-=x y 的定义域是 ( )A .),1[+∞B .),32(+∞C .]1,32[D .]1,32(4.若函数()f x 的图象是连续不断的,且(0)0>f ,(1)0>f ,(2)0<f ,则加上下列哪条件可确定()f x 有唯一零点 ( ) A. (3)0<f B. 函数在定义域内为增函数 C. (1)0->f D. 函数在定义域内为减函数5.若01x <<,则2x,12x⎛⎫ ⎪⎝⎭,()0.2x 之间的大小关系为 ( ) A. 2x<()0.2x<12x⎛⎫ ⎪⎝⎭B. 2x <12x⎛⎫ ⎪⎝⎭<()0.2xC. 12x⎛⎫ ⎪⎝⎭<()0.2x < 2xD. ()0.2x< 12x⎛⎫ ⎪⎝⎭< 2x6.函数2()log 10f x x x =+-的零点所在区间为 ( ) A .(0,7)B .(6,8)C .(8,10)D .(9, +∞)7.函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )A .b>0且a<0B .b=2a<0C .b=2a>0D .a ,b 的符号不定8.已知函数y=)32(log 221++x x , 则函数的最值情况为 ( )A.有最小值-1,无最大值;B. 无最小值,有最大值2 ;C.有最小值2,无最大值 ;D. 无最小值,有最大值-1.9.已知函数)0()(>+=a xax x f 在],0(a 上是减函数,在),[∞+a 上是增函数,若函数xx x f 25)(+=在)0(),[>∞+m m 上的最小值为10,则m 的取值范围是( ) A .]5,0(B .)5,0(C .),5[∞+D .),5(∞+10.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间分别为1t 、2t 、3t ,则123t t t +=.其中正确的是 ( ) A. ①② B.①②③④ C.②③④⑤ D. ①②⑤二、填空题:本大题5小题 每小题5分, 共25分。
湖北省孝感高级中学2013—2014学年度高中一年级上学期期中考试数 学满分150分,考试用时150分钟。
考试时间:2013年11月16日一、选择题(每题的四个选项中,只有一个符合题意,每题5分,共50分) 1.集合{(,)}A x y y x ==和21(,)45x y B x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则以下结论中正确的是( )A .1A ∈B .B A ⊆C .(1,1)B ⊆D . A ∅∈2.33xy +和2234x xy y --的公因式为 ( )A .4x y +B . 4x y -C . x y -D .x y +3.已知函数31()(0)()2(0),xx f x x x ⎧≤⎪=⎨⎪>⎩那么()1f f ⎡-⎤⎣⎦的值为( )A .8B .18C .9D .194.若14x x-+=,则1122x x-+的值等于( ) A .2或-2B .2CD . 65.已知集合{}0,1,2A =,集合B 满足AB A =,则可能的集合B 共有( )A .4个B .7个C .8个D .9个6.已知 ()Q x 是幂函数,则以下结论中正确的一个是( ) A .()Q x 在区间(0,)+∞上总是增函数. B .()Q x 的图像总过点(1,1). C .()Q x 的值域一定是实数集RD .()Q x 一定是奇函数或者偶函数7.函数()log (0a f x x a =>且1)a ≠对任意正实数,m n 都有( ) A .()()()f mn f m f n =+ B .()()()f mn f m f n = C .()()()f m n f m f n +=D .()()()f m n f m f n +=+8.若不等式20mx px q ++<的解集为(1,3),则不等式2px qx m ++>0的解集为( )A.1(,1)4-B.(4,1)-C.(,4)(1,)-∞-+∞D.1(,)(1,)4-∞-+∞9.已知2ln2,loga b c e===,(e是自然对数的底数)则它们的大小顺序是()A.a c b>>B.c b a>>C.c a b>>D.b c a>> 10.已知线段AB的长为4,以AB形ABCD,其中AB CD长的最大值为是( )A.8 B.10 C.1) D二、填空题:(本大题共5小题,每小题5分,满分2511.已知幂函数)(xfy=的图象过点1(,8)2,则-)2(f12.定义在实数集R上的偶函数()f x在[0,)+∞集是_____________.13.函数()f x的定义域是[4,1]-,则函数22()1f xyx=-的定义域为.14.若函数()(1)x af x a x=-+(0a>,1a≠)的图像恒过点P,则点P的坐标为.15.由声强I(单位:2/w cm)计算声压级D(单位: dB)的公式为:1610lg(10ID-=.(1)人低声说话的声压级为30dB,则它的声强是____________2/w cm;(2)音乐会上的声压级约为100dB,那么它的声强约是人低声说话时声强的_________倍(用数字作答).三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知全集U= R,{|36,}A x x x R=-<≤∈,2{|560,}B x x x x R=--<∈.求:(1)A B;(2)()B AUð∩17.(本题满分12分)设()f x是定义在R上的函数,且对任意实数x,有2(1)33f x x x-=-+.(1)求函数()f x 的解析式;(2)若函数()()51g x f x x =-+在[,1]m m +上的最小值为2-,求实数m 的取值范围.18.(本题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度()v x (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.高考资源网当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0; 当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20200x ≤≤时,车流速度()v x 是车流密度x 的一次函数. (Ⅰ)当0200x ≤≤时,求函数()v x 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x =⋅可以达到最大值,并求出这个最大值.(精确到1辆/小时).19.(本题满分12分)已知函数32()32x x x xf x ---=+. (1)判断()f x 的奇偶性; (2)若1()2f m =,试用m 表示3log 8.20.(本题满分13分)已知定义在实数集R 上的函数()f x ,同时满足以下三个条件:①(1)2f -=;②0x <时,()1f x >;③对任意实数,x y 都有()()()f x y f x f y +=;(1)求(0)f ,(4)f -的值; 高考资源网(2)判断函数()f x 的单调性,并求出不等式21(4)(10)16f x f x -≥的解集.21.(本题满分14分)对于在区间[,]p q 上有意义的两个函数(),()f x g x ,若对于所有的[,]x p q ∈,都有()()1f x g x -≤,则称()f x 和()g x 在区间[,]p q 上是接近的两个函数,否则称它们在区间[,]p q 上是非接近的两个函数. 现在给定区间[2,3]D a a =++,有两个函数1()log (3),()log 01a af x x ag x a a x a=-=>≠-,其中且.(1)若()f x 和()g x 在区间D 上都有意义,求a 的取值范围; (2)讨论()f x 和()g x 在区间D 上是否为接近的两个函数.湖北省孝感高级中学2013—2014学年度高中一年级上学期期中考试11. 8-12. (,1)(1,)-∞-+∞13. (1,1)-14. (0,0)15. (1)1310-(2) 71016. 解:(1) B={x | -1<x<6}; …………………………..3分{|36}A B x x ⋃=-<< ……………………………6分(2) ∁U B ={x | x ≤-1或x ≥6} …………………………………………9分( ∁U B )∩A= {x | -3<x ≤-1或x=6}. …………………………….12分 17. 解:(1)令1x t -=得2()(1)3(1)3f t t t =---+ …………………..3分化简得2()1f t t t =++即2()1,f x x x x R =++∈,------------------------------------6分(2)()22()4222g x x x x =-+=-- (1m x m ≤≤+)-------------8分因为1m x m ≤≤+,min ()2g x =-21m m ∴≤≤+ ………………………….10分 12m ∴≤≤ ………………………….12分18. 解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ; …………..2分当20020≤≤x 时,设()b ax x v +=, 20002060a b a b +=⎧⎨+=⎩,解得132003a b ⎧=-⎪⎪⎨⎪=⎪⎩ …….5分故函数()v x 的表达式为60020()1(200)202003x v x x x ≤≤⎧⎪=⎨-≤≤⎪⎩ ………….6分(Ⅱ)依题意并由(Ⅰ)可得60020()1(200)202003x x f x x x x ≤≤⎧⎪=⎨-≤≤⎪⎩当020x ≤≤时,()f x 为增函数,故当20=x 时,其最大值为12002060=⨯;……….9分当20200x ≤≤时,2min 120010000()()(100)333f x x x f x f =-+⇒==所以,综上当100x =时,()f x 在区间[0,200]上取得最大值1000033333≈.……….12分即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.19.解:(1)3223161()3223161x x x x x x x x x x f x ---⋅--===+⋅++所以6116()(),6116x xxxf x f x x R -----===-∈++,则()f x 是奇函数. .…………6分 (2)6611()log 3612m mf m m -==⇒=+ .…………8分 663366log (63)1log 3log 83log 233log 3log 3÷-===31log 83(1)m∴=- .…………12分20.解:(1)()(10)1(0),(0)1f f f f -+=-∴= .…………2分2(2)(11)(1)4f f f -=--=-= 2(4)(22)(2)16f f f -=--=-=.…….…….……4分(2)1(0)(())()()1()()f f x x f x f x f x f x =+-=-=⇒-=任取12x x <,则112122()()()()1()f x f x f x f x x f x =-=->, 故12()()f x f x >,()f x 在R 上是单调递减函数 .…… .…………8分 所以1(4)(4)1(4)16f f f -=⇒=,即2(410)(4)f x x f -+≥ .…………9分 又∵()f x 是R 的减函数,∴244x -+10x ≤∴原不等式的解集为1{|2}2x x x ≥≤或 ….………13分21.解:(1)01,a a >≠∴且3030x a x a x a ->⎧⇒>⎨->⎩,23,01a a a ∴+>∴<<…4分 (2)2222()()log (43)log [(2)]a a f x g x x ax a x a a -=-+=--,当x D ∈时,22(2)[44,96]x a a a a --∈--,令22()log (43)a h x x ax a =-+,则min ()(3)log (96)a h x h a a =+=-,max ()(2)log (44)a h x h a a =+=-,…8分要使得()()1f x g x -≤,则01log (96)1log (44)1a a a a a a <<⎧⎪-≥-⇒∈⎨⎪-≤⎩, ………………12分所以当9(0,12a -∈时,()f x 和()g x 在区间D 上是接近的两个函数当9(12a ∈时,()f x 和()g x 在区间D 上是非接近的两个函数 ……14分。