八年级数学上学期第二次月考试题 新人教版
- 格式:doc
- 大小:696.00 KB
- 文档页数:5
2023-2024学年度上学期阶段(二)质量检测试卷八年级数学考生须知:1、全卷满分120分,考试时间120分钟;2、试卷和答题卡都要写上班级、姓名;3、请将答案写在答题卡上的相应位置上,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1中,无理数有()A.2个B.3个C.4个D.5个2.已知△ABC的三条边分别为a,b,c,下列条件不能判断是直角三角形的是()A.a2=b2-c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=5:12:133.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱,问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.4.直线y=kx+3与y=3x+k在同一坐标系内,其位置可能是()A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示,下列说法中正确的有()①A、B两地相距120千米;②出发1小时,货车与小汽车相遇;③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A.1个B.2个C.3个D.4个220.10100100017π8374x yx y=--=⎧⎨⎩8374x yx y=+-=⎧⎨⎩8374x yx y=++=⎧⎨⎩8374x yx y=-+=⎧⎨⎩6.如图,在平面直角坐标系中,(图中的三角形都是等边三角形),一个点从原点O 出发,沿折线移动,每次移动1个单位长度,则点的坐标为()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7______.8.点A (-2,3)关于x 轴的对称点的坐标为______.9.已知点都在直线上,则大小关系是______.10.如图,Rt △ABC 的周长为24,∠C =90°,且AB :AC =5:4,则BC 的长为______.第10题11.如图,直线y =-x +3与y =mx +n 交点的横坐标为1,则关于x 、y 的二元一次方程组的解为______.第11题12.如图,直线y =2x -4与x 轴和y 轴分别交与A ,B 两点,射线AP ⊥AB 于点A ,若点C 是射线AP 上的一11223341O A AA A A A A ===== 1234n O AA A A A 2023A ()1348,0113482⎛ ⎝11348,2⎛ ⎝()1349,0A '()()124,,2,y y -122y x =-+12,y y3x y mx y n+=-+=⎧⎨⎩个动点,点D是x轴上的一个动点,且以A,C,D为顶点的三角形与△AOB全等,则OD的长为______.第12题三、(本大题共5小题,每小题6分,共30分)13.(1(2)解方程组:14.已知2a-7和a+4是某正数的两个不同的平方根,b-11的立方根是-2.(1)求a、b的值.(2)求a+b的平方根.15.如图,一只小鸟旋停在空中4点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.16.图(1)、图(2)均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.图(1)图(2)(1)在图(1)中,△ABC的面积为5;(2)在图(2)中,△ABC是面积为的钝角三角形.)22+-23451x yx y-=+=-⎧⎨⎩5217.若的值.四、(本大题共3小题,每小题8分,共24分)18.某中学八(1)共有45人,该班计划为每名学生购买一套学具,超市现有A 、B 两种品牌学具可供选择.已知1套A 学具和1套B 学具的售价为45元;2套A 学具和5套B 学具的售价为150元.(1)A 、B 两种学具每套的售价分别是多少元?(2)现在商店规定,若一次性购买A 型学具超过20套,则超出部分按原价的6折出售.设购买A 型学具a 套(a >20)且不超过30套,购买A 、B 两种型号的学具共花费w 元.①请写出w 与a 的函数关系式;②请帮忙设计最省钱的购买方案,并求出所需费用.19.先阅读,再解方程组.解方程组时,设a =x +y ,b =x -y ,则原方程组变为,整理,得,解这个方程组,得,即,解得.请用这种方法解下面的方程组:.20.甲、乙两车间一起加工一批零件,同时开始加工,10个小时完成任务.在这个过程中,甲车间的工作效率不变,乙车间在中间停工一段时间维修设备,然后按停工前的工作效率继续加工.设甲、乙两车间各自加工零件的数量为y (个),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为______个,这批零件的总个数为______个;(2)求乙车间维护设备后,乙车间加工零件的数量y 与x 之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间加工的时间.五、(本大题共2小题,每小题9分,共18分)21.如图,已知△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点Px y ==22x xy y -+()()623452x y x yx y x y +-⎧-=⎪⎨⎪+--=⎩623452a ba b ⎧+=⎪⎨⎪-=⎩3236452a b a b +=⎧⎨-=⎩86a b =⎧⎨=⎩86x y x y +=⎧⎨-=⎩71x y =⎧⎨=⎩()()()()5316350x y x y x y x y +--=⎧⎪⎨+--=⎪⎩从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,同时停止.备用图(1)P 、Q 出发4秒后,求PQ 的长;(2)当点Q 在边CA 上运动时,出发几秒钟后,△CQB 能形成直角三角形?22.如图,已知A (3,0),B (0,4),点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求直线AB 的表达式;(2)求C 、D 的坐标;(3)在直线DA 上是否存在一点P ,使得?若存在,直接写出点P 的坐标;若不存在,请说明理由.六、(本大题共1小题,共12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.特例感知①等腰直角三角形______勾股高三角形(请填写“是”或者“不是”);②如图,已知△ABC 为勾股高三角形,其中C 为勾股顶点,CD 是AB 边上的高.若BD =1,AD =2,试求线段CD的长度.10P A B S △深入探究如图,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明:推广应用如图,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,直接写出线段DE的长度(用含a的代数式表示).八年级阶段二数学答案1.【答案】C【分析】根据无理数的定义,即可求解.,,4个.故选:C2.【答案】D.3.【答案】C4.【答案】A【分析】根据一次函数的性质分k>0,k<0两种情形分别分析即可.【详解】解:当时,两条直线都经过第一,二,三象限,四个选项都不符合题意;当时,经过第一,二,四象限,的图象经过第一,三,四象限,只有选项A正确,故选:A.5.【答案】D6.【答案】B【分析】过作轴,垂足为B,求出,,求出前若干个点的坐标,找到规律点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,计算出2023与6的商和余数,据此得到结果.【详解】解:∵图中的三角形都是等边三角形,边长为1,如图,过作轴,垂足为B,则,∴,3=-k>k<3y kx=+3y x k=+1A1AB x⊥OB1AB A1111,,1,,,12222++++++ 1A1AB x⊥212OB A B==1A B==∴点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;…分析图象可以发现,点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,,∴点的坐标为,即,故选B .7.【答案】±28.【答案】9.【答案】10.【答案】611.【答案】12.【答案】6或13.(1)1A 12⎛⎝2A ()1,03A ()2,04A 5,2⎛ ⎝5A ()3,06A ()4,0A 1111,,1,,,12222++++++20236337......1÷=2023A 133742⎛⨯+ ⎝113482⎛ ⎝()23-,-12yy >12x y =⎧⎨=⎩2+)22++-.(2)【答案】14.【详解】(1)由题意得:2a -7+a +4=0,b -11=-8,解得:a =1,b =3;(2)∵a =1,b =3,∴a +b =4,4的平方根为±2.【答案】17米【详解】解:由勾股定理得;,∴(米),∵(米),∴在中,由勾股定理得,∴此时小鸟到地面C 点的距离17米.答;此时小鸟到地面C 点的距离为17米.16.点C 到AB,进而可找到点C 所在的直线,与网格的交点即为点C 的位置).(2)如图(3)所示(点拨:由,可知点C 的距离为,进而可找到点C 所在的直线,再结合△ABC 角三角形,且点C在格点处,即可找到点C 的位置)17.【答案】13∵x y,∴x =2,y =,∴x 2-xy ﹢y 2=(x -y )2﹢xy =+1=1318.【详解】解:设A 种品牌的学具售价为x 元,B 种品牌的学具售价为y 元,根据题意有,,解之可得,222=+-34=-1=11x y =⎧⎨=-⎩222222520225BC AC AB =-=-=15BC =20128BD AB AD =-=-=Rt BCD 17CD ==52ABC AB S ==△(2()14525150x y x y +=⎧⎨+=⎩{2520x y ==所以A 、B 两种学具每套的售价分别是25和20元;因为,其中购买A 型学具的数量为a ,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w 为最小值,即元;Ⅱ、由于受到购买A 型学具数量的限制,购买A 型学具30套w 已是最小,所以全部购买B 型学具45套,此时元元,综上所述,购买45套B 型学具所需费用最省钱,所需费用为:900元.故答案为(1)A 、B 两种学具每套的售价分别是25和20元;(2)①w =-5a +1100,(20<a ≤30);②购买45套B 型学具所需费用最省钱,所需费用为900元.19.【答案】【分析】根据举例,结合换元法a =x +y ,b =x -y ,可得方程组;解方程,可以得到a ,b 的值,代入所设,组成关于x ,y 的方程组,解方程组即可.【详解】解:设,,则原方程组变为,解得,所以,解得.20.【答案】(1)75,1110(2)(3)8.5小时【详解】(1)甲车间每小时加工零件的个数为个;这批零件的总个数为个,故答案为:75,1110;(2)设乙车间维护设备后,y 与x 之间的函数关系式为,()2①2030a <≤()()2025202560%4520w a a =⨯+-⨯⨯+-⨯500153009002051100a a a =+-+-=-+51100w a =-+(2030)a <≤②①30a =5301100950(w =-⨯+=4520900(w =⨯=)950<41x y =⎧⎨=⎩5316350a b a b -=⎧⎨-=⎩a x y =+b x y =-5316350a b a b -=⎧⎨-=⎩53a b =⎧⎨=⎩53x y x y +=⎧⎨-=⎩41x y =⎧⎨=⎩4590y x =-750=7510750360=1110+y kx b =+将点代入,得,解得,∴设乙车间维护设备后,y 与x 之间的函数关系式为;(3)乙车间每小时加工零件的个数为个,设甲车间加工x 小时,则解得,∴甲车间加工8.5小时.21.【详解】(1)解:由题意可得,BQ =2×4=8(cm ),BP =ABAP =161×4=12(cm ),∵∠B =90°,∴PQcm ),即PQ 的长为cm ;(2)解:当BQ ⊥AC 时,∠BQC =90°,∵∠B =90°,AB =16cm ,BC =12cm ,∴AC (cm ),∵,∴,解得cm ,∴CQ(cm ),∴当△CQB 是直角三角形时,经过的时间为:(12+)÷2=9.6(秒);当∠CBQ =90°时,点Q 运动到点A ,此时运动的时间为:(12+20)÷2=16(秒);由上可得,当点Q 在边CA 上运动时,出发9.6秒或16秒后,△CQB 能形成直角三角形.22.【答案】(1)(2),(3)存在,或()()4,90,10,75049010360k b k b +=⎧⎨+=⎩4590k b =⎧⎨=-⎩4590y x =-90245÷=()75452930x x +-=8.5x ===20=22AB BC AC BQ = 16122022BQ ⨯=485BQ =365==365443y x =-+()80C ,()06D -,()14-,()54,【详解】(1)解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;(2)解:,,由题意得:,,,故点,设点D 的坐标为:,,解得:,故点;(3)解:存在,理由如下:设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD =4m =-6m =-()06D -,AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S ∴=⨯⨯= 10P A B S =DA (),26P a a -13102PAB BDP BDA S S S BD a ∴=-=⨯⨯-= 1a =即点P 的坐标为:或.23.【详解】解:特例感知:①等腰直角三角形是勾股高三角形.,∵,∵等腰直角三角形的一条直角边可以看作另一条直角边上的高,∴等腰直角三角形是勾股高三角形,故答案为:是;②∵是边上的高,,,∴,,∵为勾股高三角形,为勾股顶点,是边上的高,∴,∴,解得:或(负值不符合题意,舍去),∴线段;深入探究:.证明:∵为勾股高三角形,为勾股顶点且,是边上的高,∴,∴,∵,∴,∴;推广应用:过点作于,∴,∵等腰为勾股高三角形,且,为边上的高,∴,,由上问可知:,∵,∴,,∵,∴,∴,∴,()14-,()54,=)222a a -=CD AB 1BD =2AD =22221CB CD BD CD =+=+22224CA CD AD CD =+=+ABC C CD AB 222CD CA CB =-()()22241CD CD CD =+-+CD CD =CD AD CB =ABC C CA CB >CD AB 222CA CB CD -=222CA CD CB -=222CA CD AD -=22AD CB =AD CB =A AG ED ⊥G 90AGD ∠=︒ABC AB AC BC =>CD AB 222AC BC CD -=90CDB ∠=︒AD BC =ED BC ∥ADE B ∠=∠AED ACB ∠=∠AB AC =ACB B =∠∠ADE AED ∠=∠AE AD =∵,在和中,,∴,∴,∵为等腰三角形,∴,∵,,,∴,∴,∴线段的长度为.90AGD CDB ∠=∠=︒AGD △CDB △AGD CDB ADG CBD AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AGD CDB △≌△DG BD =ADE 22ED DG BD ==AB AC =AE AD =CE a =BD CE a ==2ED a =DE 2a。
八年级上学期第二次月考学情检测数学试题(含答案)一、选择题1.正方形具有而矩形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线互相平分 C .对角线相等D .四个角都是直角2.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .3.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒ 4.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .25.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A .32x B .23x C .33x D 3x6.下列各数中,无理数的是( ) A .0 B .1.01001 C .π D 4 7.下列一次函数中,y 随x 增大而增大的是( )A .y=﹣3xB .y=x ﹣2C .y=﹣2x+3D .y=3﹣x8.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量9.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下:x -4 -3 -2 -1 y-1-2-3-4x -4 -3 -2 -1 y-9-6-3当12y y >时,自变量x 的取值范围是( ) A .2x >- B .2x <- C .1x >- D .1x <- 10.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2)二、填空题11.17.85精确到十分位是_____. 12.点P (﹣5,12)到原点的距离是_____.13.若x +2y =2xy ,则21+x y的值为_____.14.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC边上一动点,则DP 长的最小值为 .15.若3a 的整数部分为2,则满足条件的奇数a 有_______个.16.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.17.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.18.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.19.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______. 20.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________三、解答题21.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润. 22.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是52a b c +-的平方根.23.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.24.计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式24b b ac-+-的值;(4)先化简,再求值:(m+252m--)243mm-⨯-,其中m=12-.25.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.四、压轴题26.如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,直接写出此时∠APB的度数及P点坐标27.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌. ②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________. (2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明) 28.如图,A ,B 是直线y =x +4与坐标轴的交点,直线y =-2x +b 过点B ,与x 轴交于点C .(1)求A ,B ,C 三点的坐标; (2)点D 是折线A —B —C 上一动点.①当点D 是AB 的中点时,在x 轴上找一点E ,使ED +EB 的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E 点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由29.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒). (1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?30.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.考点:(1)、正方形的性质;(2)、矩形的性质2.D解析:D 【解析】 【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴. 【详解】解:A 、是轴对称图形,不符合题意; B 、是轴对称图形,不符合题意; C 、是轴对称图形,不符合题意;D 、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D . 【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.A解析:A 【解析】 【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解. 【详解】解:∵AB=AC ,∴∠B=∠C , 在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ), ∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A . 【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.4.C解析:C 【解析】 【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可. 【详解】∵点P (a ,2a-1)在一、三象限的角平分线上, ∴a=2a-1, 解得a=1. 故选:C . 【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.5.D解析:D 【解析】 【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可. 【详解】解:∵△ABC 为等边三角形, ∴∠ABC=∠ACB=60°,AB=BC , ∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE , ∵∠E+∠CDE=∠ACB , ∴∠E=30°=∠DBC , ∴BD=DE ,∵BD 是AC 中线,CD=x , ∴AD=DC=x ,∵△ABC 是等边三角形, ∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D . 【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.6.C解析:C 【解析】 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数. 【详解】解:A.0是整数,属于有理数; B.1.01001是有限小数,属于有理数; C .π是无理数;,是整数,属于有理数.2故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.7.B解析:B【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.B解析:B【解析】【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y1=k2x+b1中y随x的增大而减小,y2=k2x+b2中y随x的增大而增大.且两个函数的交点坐标是(-2,-3).则当x<-2时,y1>y2.故选:B.【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.10.C解析:C【解析】【分析】直接利用关于y轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M(﹣3,2)关于y轴对称的点的坐标为:(3,2).故选:C.【点睛】本题考查的知识点是关于x轴、y轴对称的点的坐标,属于基础题目,易于掌握.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式=22x y xyxy xy+==2,故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.14.4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+解析:4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+∠BDE=90°,∴∠BDE=∠C,又∵∠ADB=∠C,∴∠ADB=∠BDE,∴在△ABD和△EBD中A DEBADB BDEBD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DE=AD=4,即DP的最小值为4.15.9【解析】【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围 8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a的取值范围,即可得到答案.【详解】2,则a的取值范围 8<a<27所以得到奇数a有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.16.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0 17.【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(解析:5,3 3⎛⎫ ⎪⎝⎭【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.18.(2,).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为解析:(232019).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×12=2,点C到AB2221-3,∴C(23,把等边△ABC先沿y轴翻折,得C’(-23,再向下平移1个单位得C’’( -23故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,3+1﹣3﹣2019,所以,点C的对应点C'的坐标是(232019).故答案为:(2,3﹣2019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.19.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.20.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.三、解答题21.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.22.【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵又45<<,∴4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.23.(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 【解析】【分析】(1)先求得点C 的坐标,再运用待定系数法即可得到l 2的解析式;(2)过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,再根据A (10,0),B (0,5),可得AO=10,BO=5,进而得出S △AOC ﹣S △BOC 的值;(3)分三种情况:当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12. 【详解】(1)把C (m ,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5, 解得m=2, ∴C (2,4),设l 2的解析式为y=ax ,则4=2a ,解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10, ∴A (10,0),B (0,5),∴AO=10,BO=5, ∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32; 当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12; 故k 的值为32或2或﹣12. 【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.24.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(346+4)﹣2m ﹣6,-5【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-;(2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,= (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-. 【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键. 25.(1)18;(2)CE 的长为83;(3)CG 的长为910. 【解析】【分析】(1)由矩形的性质可知∠BAD =90°,易知∠DAC 的度数,由折叠的性质可知∠DAE =12∠DAC ,计算可得∠DAE 的度数. (2)由矩形四个角都是直角及对边相等的性质及折叠后图形对应边相等的性质,结合勾股定理可得BF 长,由CF =BC ﹣BF 可求出CF 长,设CE =x ,则EF =ED =6﹣x ,在Rt △CEF 中,根据勾股定理求出x 值即可;(3)连接EG ,由中点及折叠的性质利用HL 定理可证Rt △CEG ≌△FEG ,结合全等三角形对应边相等的性质可设CG =FG =y ,可用含y 的代数式表示出AG 、BG ,在Rt △ABG 中,根据勾股定理求解即可.【详解】解:(1)∵四边形ABCD 是矩形,∴∠BAD =90°,∵∠BAC =54°,∴∠DAC =90°﹣54°=36°,由折叠的性质得:∠DAE =∠FAE ,∴∠DAE =12∠DAC =18°; 故答案为:18; (2)∵四边形ABCD 是矩形,∴∠B =∠C =90°,BC =AD =10,CD =AB =6,由折叠的性质得:AF =AD =10,EF =ED ,∴BF 8,∴CF =BC ﹣BF =10﹣8=2,设CE =x ,则EF =ED =6﹣x ,在Rt △CEF 中,由勾股定理得:22+x 2=(6﹣x )2,解得:x =83, 即CE 的长为83;(3)连接EG ,如图3所示:∵点E 是CD 的中点,∴DE =CE ,由折叠的性质得:AF =AD =10,∠AFE =∠D =90°,FE =DE ,∴∠EFG =90°=∠C ,在Rt △CEG 和△FEG 中, EG EG CE FE =⎧⎨=⎩, ∴Rt △CEG ≌△FEG (HL ),∴CG =FG ,设CG =FG =y ,则AG =AF +FG =10+y ,BG =BC ﹣CG =10﹣y ,在Rt △ABG 中,由勾股定理得:62+(10﹣y )2=(10+y )2,解得:y =910, 即CG 的长为910.【点睛】本题考查了四边形的折叠问题,涉及了矩形的性质、折叠的性质、直角三角形的判定、勾股定理,灵活利用矩形与折叠的性质是解题的关键.四、压轴题26.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.27.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.28.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E 的位置见解析,E (43-,0);②D 点的坐标为(-1,3)或(45,125) 【解析】【分析】(1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4) 把B(0,4)代入y=-2x+b ,得b =4,∴直线BC 为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C 点的坐标为(2,0);(2)①如图∵点D 是AB 的中点∴D (-2,2)点B 关于x 轴的对称点B 1的坐标为(0,-4),设直线DB 1的解析式为y kx b =+,把D (-2,2),B 1(0,-4)代入,得224k b b -+=⎧⎨=-⎩, 解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43-, ∴E 点的坐标为(43-,0). ②存在,D 点的坐标为(-1,3)或(45,125).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为4212,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为y mx n=+,将A(-4,0)与F(0,2)代入得402m nn-+=⎧⎨=⎩,解得1,22m n==,∴122y x=+,联立12224y xy x⎧=+⎪⎨⎪=-+⎩,解得:45125xy⎧=⎪⎪⎨⎪=⎪⎩,∴D的坐标为(45,125).综上所述:D点的坐标为(-1,3)或(45,125)【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.29.(1)6-2t ;(2)全等,理由见解析;(3)83;(4)经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇【解析】【分析】(1)根据题意求出BP ,由PC=BC-BP ,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C ,利用SAS 判定BPD △和CQP 全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC ,再根据路程=速度×时间公式,求点P 的运动时间,然后求点Q 的运动速度即得;(4)求出点P 、Q 的路程,根据三角形ABC 的三边长度,即可得出答案.【详解】(1)由题意知,BP=2t ,则PC=BC-BP=6-2t ,故答案为:6-2t ;(2)全等,理由如下:∵p Q V V =,t=1,∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点,∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ),在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS )故答案为:全等.(3)∵p Q V V ≠,∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C ,∴BP=PC=3cm ,CQ=BD=4cm ,∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ),故答案为:83;(4)设经过t 秒时,P 、Q 第一次相遇,∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t ,解得:t=24此时点Q 走了824643⨯=(cm ),∵ABC 的周长为:8+8+6=22(cm ),∴6422220÷=,∴20-8-8=4(cm ),经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,故答案为:24s ,在 BC 边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.30.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=。
人教版八年级上册数学月考考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
人教版八年级上册数学《第二次月考》试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( )A .96m 2-≤<-B .96m 2-<≤-C .9m 32-≤<-D .9m 32-<≤- 5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.分解因式6xy 2-9x 2y -y 3 = _____________.4.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =________.5.如图,∠1+∠2+∠3+∠4=______度.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知a 、b 、c 满足2225(32)0a b c ---= (1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;l的解析式.(2)若△ABC的面积为4,求25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、C6、A7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、-2 -33、-y(3x -y)24、45、2806、82.︒三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)4989x y ⎧=-⎪⎪⎨⎪=⎪⎩.2、20xy-32,-40.3、(1)a=b=5,c=2)能;4、(1)(0,3);(2)112y x=-.5、略6、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.。
一、选择题1.如图,▱ABCD 中,对角线AC ,BD 相交于O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点,下列结论①BE ⊥AC②四边形BEFG 是平行四边形③EG=GF④EA 平分∠GEF其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.如图,已知平行四边形ABCD ,6AB =,9BC =,120A ∠=︒,点P 是边AB 上一动点,作PE BC ⊥于点E ,作120EPF ∠=︒(PF 在PE 右边)且始终保持33PE PF +=,连接CF 、DF ,设m CF DF =+,则m 满足( )A .313m ≥B .63m ≥C .313937m <+≤D .3337379m +<<+3.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a b-(a 、b 为正整数),则+a b 的值为( )A .10B .11C .12D .134.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .65.如图,锐角△ABC 中,AD 是高,E,F 分别是AB,AC 中点,EF 交AD 于G,已知GF=1,AC= 6,△DEG 的周长为10,则△ABC 的周长为( )A .27-32B .28-32C .28-42D .29-526.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APF CDF SS .=⑤其中正确的是( )A .①②③B .①②④C .②④⑤D .①③⑤ 7.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14B .10 与 14C .18 与 20D .4 与 28 8.如图,E 是边长为2的正方形ABCD 的对角线AC 上一点,且AE AB =,F 为BE 上任意一点,FG AC 于点G ,FH AB ⊥于点H ,则FG FH +的值是( )A .22B 2C .2D .19.下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形;③顺次连结矩形四边中点得到的四边形是菱形;④如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是( )A .4个B .3个C .2个D .1个10.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD S AB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个二、填空题11.如图,某景区湖中有一段“九曲桥”连接湖岸A ,B 两点,“九曲桥”的每一段与AC 平行或BD 平行,若AB =100m ,∠A =∠B =60°,则此“九曲桥”的总长度为_____.12.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.13.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .14.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).15.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.16.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.17.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,18.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,四边形OABC 中,BC ∥AO ,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)当t 为何值时,四边形BNMP 为平行四边形?(2)设四边形BNPA 的面积为y ,求y 与t 之间的函数关系式.(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.22.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.23.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.24.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由;(3)当02x <<时,六边形AEFCHG 的面积可能等于534吗?如果能,求此时x 的值;如果不能,请说明理由. 25.如图,在平行四边形 ABCD 中,AD=30 ,CD=10,F 是BC 的中点,P 以每秒1 个单位长度的速度从 A 向 D 运动,到D 点后停止运动;Q 沿着A B C D →→→ 路径以每秒3个单位长度的速度运动,到D 点后停止运动.已知动点 P ,Q 同时出发,当其中一点停止后,另一点也停止运动. 设运动时间为 t 秒,问:(1)经过几秒,以 A ,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P 为顶点的四边形的面积是平行四边形 ABCD 面积的一半?26.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.27.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.28.如图,已知正方形ABCD 与正方形CEFG 如图放置,连接AG ,AE .(1)求证:AG AE =(2)过点F 作FP AE ⊥于P ,交AB 、AD 于M 、N ,交AE 、AG 于P 、Q ,交BC 于H ,.求证:NH =FM29.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由平行四边形的性质可得OB=BC ,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF ,BG ∥EF ∥CD 可证四边形BEFG 是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.【详解】∵四边形ABCD 是平行四边形,∴BO=DO=12BD ,AD=BC ,AB=CD ,AB ∥BC , 又∵BD=2AD ,∴OB=BC=OD=DA ,且点E 是OC 中点,∴BE ⊥AC ,故①正确,∵E 、F 分别是OC 、OD 的中点,∴EF ∥CD ,EF=12CD , ∵点G 是Rt △ABE 斜边AB 上的中点,∴GE=12AB=AG=BG , ∴EG=EF=AG=BG ,无法证明GE=GF ,故③错误,∵BG=EF ,BG ∥EF ∥CD ,∴四边形BEFG 是平行四边形,故②正确,∵EF ∥CD ∥AB ,∴∠BAC=∠ACD=∠AEF ,∵AG=GE ,∴∠GAE=∠AEG ,∴∠AEG=∠AEF ,∴AE 平分∠GEF ,故④正确,故选B .【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.2.D解析:D【解析】【分析】设PE=x ,则PB=233x ,PF=33x ,AP=6-233x ,由此先判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大.从而求出m 的取值范围.【详解】如上图:设PE=x ,则23,3,23x ∵0030,120BPE EPF ∠=∠=∴030APE ∠=由AP 、PF 的数量关系可知AF PF ⊥,060PAF ∠=如上图,作060BAM ∠=交BC 于M ,所以点F 在AM 上.当点P 与点B 重合时,CF+DF 最小.此时可求得33,37CF DF ==如上图,当点P 与点A 重合时,CF+DF 最大.此时可求得37,9CF DF == ∴3337379m +<<故选:D【点睛】此题考查几何图形动点问题,判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大是解题关键.3.B解析:B【解析】【分析】通过小正方形的边长表示出大正方形的边长,再利用a 、b 为正整数的条件分析求解.【详解】 解:由题意可知,222212a a AD b b=⨯+⨯= ∴(42)(422a a b ---=∵a 、b 都是正整数∴4a - =0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a、b是关键.4.D解析:D【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【详解】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选D.【点睛】本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型. 5.C解析:C【解析】【分析】由中点性质先得AF=3,再用勾股定理求出AG=2DG=AG=2,已知△DEG的周长为10,所以求得EG+DE的值,进一步证得AB=2DE,BD=2EG,从而求得△ABC的周长.【详解】∵ E,F分别是AB,AC中点,EF交AD于G,∴EF∥BC,11AF AC6322==⨯=∵AD是高∴∠ADC=∠AGF=90°在Rt△AGF中AG ===∵EF ∥BC∴1AG AF DG FC== ∴FG 是△ADC 的中位线∴DC=2GF=2∴ ∵ △DEG 的周长为10,∴ 在Rt △ADB 中,点E 是AB 边的中点,点G 是AD 的中点,∴AB=2DE ,BD=2EG∴AB+BD=2(EG+DE )∴△ABC 的周长为: 故答案为C【点睛】此题主要考查了直角三角形的性质、勾股定理、中位线性质等知识点.在直角三角形中,斜边上的中线等于斜边的一半.6.B解析:B【解析】【分析】根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APF CDF SS <.【详解】在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=, FA AE ⊥,BAE BAF 90∠∠∴+=,BAE DAF ∠∠∴=,BE DP ⊥,ABE BPE 90∠∠∴+=,又ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等),ABE ADF ∠∠∴=,在ABE 和ADF 中, BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABE ∴≌()ADF ASA ,故①正确;AE AF ∴=,BE DF =,AEF ∴是等腰直角三角形,过点A 作AM EF ⊥于M ,则AM MF =,点P 是AB 的中点,AP BP ∴=,在APM 和BPE 中,90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩,APM ∴≌()BPE AAS ,BE AM ∴=,EP MP =,PF MF PM BE EP ∴=+=+,故②正确;BE DF =,FM AM BE ==,AM DF ∴=,又ADM DAM 90∠∠+=,ADM CDF 90∠∠+=,DAM CDF ∠∠∴=,在ADM 和DCF , AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩,ADM ∴≌()DCF SAS ,CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确;在Rt CDF 中,CD CF >,BC CD =,CF BC ∴≠,BCF ∴不是等边三角形,故③错误;CF DM DF FM EM FM EF FP ==+=+=≠,又AM DF =,APF CDF S S ∴<,故⑤错误;综上所述,正确的有①②④,故选B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.7.C解析:C【分析】如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,在△BDF 中,利用三角形三边关系可得到x+y 与x -y 的取值范围,从而得到结论.【详解】如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,连接BD ,DF根据题意,设AB=12,BD=x ,DF=y则AF=AB=12,BF=24∴在△BDF 中,BD+FD >BF ,即:x+y >24在△BDF 中,BD -FD <BF ,即:x -y <24满足条件的只有C 选项故选:C【点睛】本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.8.B解析:B【分析】过点E作EM⊥AB,连接AF,先求出EM,由S△ABE=12AB•EM=12AE•GF+12AB•FH,可得FG+FH=EM,则FG+FH的值可求.【详解】解:如图,过点E作EM⊥AB,连接AF,∵四边形ABCD是正方形,∴∠ACB=45°,∴△AEM是等腰直角三角形,∵AB=AE=2,∴222224 AM EM EM AE+===∴EM2,∵S△ABE=S△AEF+S△ABF,∴S△ABE=12AB•EM=12AE•GF+12AB•FH,∴2;故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的性质,运用面积法得出线段的和差关系是解题的关键.9.B解析:B【分析】根据平行四边形的判定方法对①进行判断;根据矩形的判定方法对②进行判断即可;根据三角形中位线性质和菱形的判定方法对③进行判断;根据正方形的判定方法对④进行判断.【详解】解:①错误,反例为等腰梯形;②正确,理由一组邻角相等,且根据平行四边形的性质,可得它们都为直角,从而推得矩形;③正确,理由:得到的四边形的边长都等于矩形对角线的一半;④正确.故答案为B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.判定一个命题的真假关键在于对基本知识的掌握.解析:D【分析】求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△BCD中,斜边上的中线DE=斜边BC的一半,即可得到AD=BC=2DE,进而得到AB=DE;依据OE是中位线,即可得到OE∥CD,因为两平行线间的距离相等,进而得到S△CDE=S△OCD,再根据OC是△BCD的中线,可得S△BOC=S△COD,即可得到S△CDE=S△BOC.【详解】∵∠BCD=60°,四边形ABCD是平行四边形,∴∠ADC=180°-∠BCD=120°,BC//AD,BC=AD,∵DE平分∠ADC,∴∠CDE=∠CED=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD= AD= BC,∴E是BC的中点,∴DE=BE,∴∠BDE=∠CED=30°,∴∠CDB=90°,即CD⊥BD,∴S▱ABCD=CD•BD=AB•BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠ADB=30°=∠BDE,∴DB平分∠CDE,故②正确;∵△CDE是等边三角形,∴DE=CD=AB,故③正确;∵O是BD的中点,E是BC的中点,∴OE是△CBD的中位线,∴OE∥CD,∴S△OCD=S△CDE,∵OC是△BCD的中线,∴S△BOC=S△COD,∴S△CDE=S△BOC,故④正确,故选D.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、三角形中位线、平行线间的距离相等、直角三角形斜边上的中线等于斜边的一半等,综合性较强,熟练掌握和灵活运用相关性质与定理是解题的关键.二、填空题11.200m如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M ,则四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形,△ABC 是等边三角形,由此即可解决问题.【详解】如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M由题意可知,四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形∵∠A =∠B =60°∴18060E A B ∠=-∠-∠=∴△ABC 是等边三角形∴ED =FM+MK+KH =CN+JG+HK ,EC =EF+FC =JN+KG+DH∴“九曲桥”的总长度是AE+EB =2AB =200m故答案为:200m .【点睛】本题考查了平行四边形、等边三角形、三角形内角和的知识;解题的关键是熟练掌握平行四边形、等边三角形、三角形内角和的性质,从而完成求解.12.24【分析】由菱形的性质可得OD =OB ,∠COD =90°,由直角三角形的斜边中线等于斜边的一半,可得OH =12BD =OB ,可得∠OHB =∠OBH ,由余角的性质可得∠DHO =∠DCO ,即可求解. 【详解】 【解答】解:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∠DAB =∠DCB =48°,∵DH ⊥AB ,∴OH =12BD =OB , ∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO =12∠DCB =24°, 故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH 是BD 的一半,和∠DHO =∠DCO 是解决本题的关键. 13.101-【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时,22221310NB C N C B ''''=++=DB ′(即DE ″)=10﹣110=(910)(cm ),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=6﹣4+6﹣(910101)(cm).101.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.14.②③【分析】根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.【详解】解:在菱形ABCD中,AC⊥BD,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=12∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.15.663【分析】==,得到△FEM是等边三角形,根据含30°直通过四边形ABCD是矩形以及CE CB BE角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC==,∵CE CB BE∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,=∴NE=NK+KE=6+∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+∴6=+∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.16.5【分析】先判断四边形BCEF 的形状,再连接FM FC 、,利用正方形的性质得出AFG 是等腰直角三角形,再利用直角三角形的性质得出12MN FC =即可. 【详解】 ∵四边形ABCP 是边长为4的正方形,//EF BC ,∴四边形BCEF 是矩形,∵1PE =,∴3CE =,连接FM FC 、,如图所示:∵四边形ABCP 是正方形,∴=45BAC ∠ ,AFG 是等腰直角三角形,∵M 是AG 的中点,即有AM MG = ,∴FM AG ⊥,FMC 是直角三角形,又∵N 是FC 中点,12MN FC =, ∵225FC BF BC =+=∴ 2.5MN =,故答案为:2.5 .【点睛】本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.17.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18.故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.18.13【分析】根据12•BC •AH =12•AB •AC ,可得AH =13,根据 12AD •BO =12BD •AH ,得OB =13,再根据BE =2OB =13,运用勾股定理可得EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC∵点D 是BC 的中点,∴AD =DC =DB , ∵12•BC •AH =12•AB •AC ,∴AH =13, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE , ∵12AD •BO =12BD •AH ,∴OB =13,∴BE =2OB , ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°,∴在Rt △BCE 中,EC =.故答案为:51313. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.19.4【分析】过点E 作EM ∥AD ,由△ABO 是等腰三角形,根据三线合一可知点E 是AO 的中点,可证得EM=12AD=12BC ,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF 为等腰直角三角形,可得BF=EF=FC=12BC ,因此可证明△BFP ≌△MEP (AAS ),则EP=FP=12FC ,在Rt △BFP 中,利用勾股定理可求得x ,即得答案.【详解】 过点E 作EM ∥AD ,交BD 于M ,设EM=x ,∵AB=OB ,BE 平分∠ABO ,∴△ABO 是等腰三角形,点E 是AO 的中点,BE ⊥AO ,∠BEO=90°,∴EM 是△AOD 的中位线,又∵ABCD 是平行四边形,∴BC=AD=2EM=2x ,∵EF ⊥BC , ∠CAD=45°,AD ∥BC ,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC 为等腰直角三角形,∴EF=FC ,∠FEC=45°,∴∠BEF=90°-∠FEC=45°, 则△BEF 为等腰直角三角形,∴BF=EF=FC=12BC=x , ∵EM ∥BF ,∴∠EMP=∠FBP ,∠PEM=∠PFB=90°,EM=BF ,则△BFP ≌△MEP (ASA ),∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+,即:2221(5)()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键. 20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC ∠=∠证明BC=BE ,由此根据三角形的三线合一及勾股定理求出BF ,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===, ∴22223122BF BC CF =-=-=∴平行四边形ABCD的面积为5BF CD⋅==.故答案为:【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)34;(2)y=4t+2;(3)存在,点M的坐标为(1,0)或(2,0).【分析】(1)因为BN∥MP,故当BN=MP时,四边形BNMP为平行四边形,此时点M在点P的左侧,求解即可;(2)y=12(BN+PA)•OC,即可求解;(3)①当∠MQA为直角时,则△MAQ为等腰直角三角形,则PA=PM,即可求解;②当∠QMA为直角时,则NB+OM=BC=3,即可求解.【详解】(1)∵BN∥MP,故当BN=MP时,四边形BNMP为平行四边形.此时点M在点P的左侧时,即0≤t<1时,MP=OP﹣OM=3﹣t﹣2t=3﹣3t,BN=t,即3﹣3t=t,解得:t=34;(2)由题意得:由点C的坐标知,OC=4,BN=t,NC=PO=3﹣t,PA=4﹣OP=4﹣(3﹣t)=t+1,则y=12(BN+PA)•OC=12(t+t+1)×4=4t+2;(3)由点A、C的坐标知,OA=OC=4,则△COA为等腰直角三角形,故∠OCA=∠OAC=45°,①当∠MQA为直角时,∵∠OAC=45°,故△MAQ为等腰直角三角形,则PA=PM,而PA=4﹣(3﹣t)=t+1,PM=OP﹣OM=(3﹣t)﹣2t=3﹣3t,故t+1=3﹣3t,解得:t=12,则OM=2t=1,故点M(1,0);②当∠QMA为直角时,则点M、P重合,则NB+OM=BC=3,即2t+t=3,解得:t=1,故OM=OP=2t=2,故点M(2,0);综上,点M的坐标为(1,0)或(2,0).【点睛】本题是四边形综合题,涉及坐标与图形、平行四边形的性质、等腰直角三角形的判定和性质、图形的面积计算等,复杂度较高,难度较大,其中(3)要分类求解,避免遗漏.22.(1)见解析;(2)①见解析;②+2【分析】(1)根据矩形的性质,结合角平分线的定义可证明△ABE≌△AFD(AAS),进而证得结论;(2)①通过求解∴∠EFG=∠AED=67.5°,∠DFG=∠FDG=22.5°,进而可得EG=FG=DG;②AB=x,则x,DF=AF=x,x-x,利用勾股定理可求解x值,再根据矩形ABCD 的面积=△AED面积的2倍可求解.【详解】解:(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∠DAB=∠ABE=90°,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠BAE=∠AEB=45°,∴AB=EB,∵DF⊥AC∴∠AFD=90°,∴∠ABE=∠AFD=90°,∵AE=AD,∴△ABE≌△AFD(AAS),∴AB=AF;(2)①证明:∵AE=AD,∠EAD=45°,∴∠AED=∠ADE=67.5°,∴∠FDG=22.5°,∵AB=AF,∠BAF=45°,∴∠AFB=67.5°,∴∠EFG=67.5°,∴∠EFG=∠AED,∴FG=EG,∠DFG=22.5°,∴∠DFG=∠FDG,∴FG=DG,∴EG=DG;②∵EG=1,∴DG=2,设AB=x ,则x ,DF=AF=x ,∴x-x ,x-x )2+x 2=22,解得x 2,∴矩形ABCD 的面积=2×12×AE×DF x 2. 【点睛】本题主要考查勾股定理,矩形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,灵活运用定理是解题的关键.23.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得α=∠DCE =30°.(2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH .从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE =CD ,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE =60°.又∵∠BCD =90°,∴α=∠DCE =30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE =CD ,∴∠CED =∠CDE =1809022︒-αα︒-, 在△CEB 中,CE =CB ,∠BCE =90α︒-,∴∠CEB =∠CBE =1804522BCE α︒-∠=︒+, ∴∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过点A 作AG ∥DF 与BF 的延长线交于点G ,过点A 作AH ∥GF 与DF 交于点H ,过点C 作CI ⊥DF 于点I易知四边形AGFH 是平行四边形,又∵BF ⊥DF ,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=2AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)见解析;(2)不变,见解析;(3)能,21x=212+【分析】(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,3S四边形ABCD3AEFCHG 53时,得到S△BEF+S△DGH33GH与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论. 【详解】解:()1折叠后B 落在BD 上,,BE EP ∴=BF PF =BD 平分,ABC ∠BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE =四边形BEPF 为菱形,,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠=30,ABD ∴∠=。
人教版八年级上册数学第二次月考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .95.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .187.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.216.3.33x x -=-,则x 的取值范围是________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A 、B 为圆心,以大于12AB 长为半径作弧,两弧交于点P .若点C 的坐标为(,23a a -),则a 的值为________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m的值.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、B6、C7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、43、3x≤4、425、46、3三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、11a-,1.3、(1)-4;(2)m=34、略(2)∠EBC=25°5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
2022-2023学年八年级数学上册第二次月考测试题(附答案)一、选择题(共30分)1.计算下列四个式子,其运算结果最小的是()A.(﹣)2B.(﹣3)2C.﹣32D.(﹣3)02.在等腰△ABC中,∠A=50°,则∠B的度数不可能是()A.50°B.60°C.65°D.80°3.小王想做一个三角形的框架,他有两根长度分别为7cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分为两截的木条是()A.7cm的木条B.8cm的木条C.两根都可以D.两根都不行4.如图,△ABC是等边三角形,CB=CD,∠ABD=12°,则∠BAD的度数为()A.10°B.15°C.18°D.20°5.如图,已知∠O,点P为其内一定点,分别在∠O的两边上找点A、B,使△P AB周长最小的是()A.B.C.D.6.已知a=355,b=444,c=533,则下列关系中正确的是()A.b>c>a B.a>c>b C.b>a>c D.a<b<c7.若x2﹣kx+49是完全平方式,则k的值是()A.±9B.+14C.±14D.﹣148.如图为三条两两相交的公路,某石化公司拟建立一个加油站,计划使得该加油站到三条公路的距离相等,则加油站的可选位置有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,∠B=∠C,E、D、F分别是AB、BC、AC上的点,且BE=CD,BD=CF,若∠A=104°,则∠EDF的度数为()A.24°B.32°C.38°D.52°10.如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I为三个角的平分线的交点,若∠BOC的度为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°二、填空题(共15分)11.若a﹣b=5,则a2﹣b2﹣10b的值是.12.若(a﹣2)0=1,则a需要满足的条件是.13.若(mx2﹣3x)(x2﹣x﹣1)的乘积中不含x3项,则m的值是.14.如图,在Rt△ABC中,∠A=90°,∠ACB=30°,BD平分∠ABC,交AC于点D,CD=4,则点D到BC的距离是.15.如图,△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,CD与AE交于点F,若∠ABC=30°,∠ACB=15°,则∠CFE的度数为.三、解答题(满分75分)16.(1)计算:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷3a2b;(2)运用平方差公式解方程:(x+3)2﹣(x﹣3)2=36.17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如(如图),在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数.(1)根据上面的规律,写出(a+b)4的展开式;(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.18.甲、乙两人共同计算一道整式乘法题:(3x+a)(4x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为12x2﹣5x﹣2;乙由于漏抄了第二个多项式中x的系数,得到的结果为3x2+5x+2.(1)求正确的a、b的值;(2)计算这道乘法题的正确结果.19.如图1、图2和图3,A、B两点在直线l同侧,且点A、B所在直线与l不平行,在直线l上画出符合要求的点P(不写作法与理由,保留作图痕迹).(1)P A﹣PB为最大值,在图1中的直线l上画出点P1的位置;(2)P A=PB,在图2中的直线l上画出点P2的位置;(3)P A+PB为最小值,在图3中的直线l上画出点P3的位置.20.如图,AD,BC相交于点E,AD=BC,∠A=∠B=90°.(1)求证:△ACD≌△BDC;(2)若∠BCD=22°,求∠BDE的度数.21.求证:有两条边和其中一边上的中线对应相等的两个三角形全等.22.如图,在平面直角坐标系中,A(2,﹣1),B(4,2),C(1,4).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC的面积为;(3)请仅用无刻度的直尺画出∠ABC的平分线BD,保留作图痕迹.23.如图,小明将一张长方形的纸片沿着对角线AC对折,点B与点E为对应点,EC交AD 于点F.(1)图中共有对全等三角形;(2)若∠EAF为34°,求∠ACB的度数;(3)若长方形纸片的周长为18cm,猜想△DCF的周长,并证明你的结论.参考答案一、选择题(共30分)1.解:(﹣)2=,(﹣3)2=9,﹣32=﹣9,(﹣3)0=1,∵﹣9<<1<9,∴运算结果最小的是﹣32.故选:C.2.解:当∠A为顶角时,则∠B==65°;当∠B为顶角时,则∠B=180°﹣2∠A=80°;当∠A、∠B为底角时,则∠B=∠A=50°;∴∠B的度数不可能为60°,故选:B.3.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于7,所以,可以,而7cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.4.解:∵△ABC是等边三角形,∠ABC=60°,而∠ABD=12°,∴∠DBC=60°+12°=72°.∵CB=CD,∴∠BCD=180°﹣72°﹣72°=36°,∴∠DCA=60°﹣36°=24°,∵CD=CB=CA,∴∠DAC=×(180°﹣24°)=78°,∴∠BAD=78°﹣60°=18°.故选:C.5.解:分别作点P关于∠O的两边的对称点P1,P2,连接P1P2交∠O的两边于A,B,连接P A,PB,此时△P AB的周长最小.故选:D.6.解:∵a=355=(35)11,b=444=(44)11,c=533=(53)11,35=243,44=256,53=125,∴b>a>c,故选:C.7.解:∵x2﹣kx+49=x2﹣kx+72,x2﹣kx+49是完全平方式,∴﹣kx=±2•x•7,解得k=±14.故选:C.8.解:在三角形内部三条角平分线相交于同一点,三外角平分线有三交点,除去深水湖泊那里的交点,共有三个,故选:C.9.解:∵AB=AC,∠A=104°,∴∠B=∠C=38°,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS),∴∠BED=∠CDF,∠BDE=∠CFD,∴∠BED+∠BDE=∠CDF+∠CFD,∵∠BED+∠B=∠CDE=∠EDF+∠CDF,∴∠B=∠EDF=38°,故选:C.10.解:∵O为三条边的垂直平分线的交点,∴点O为△ABC的外心,∴x=2∠A,∵I为三个角的平分线的交点,∴点I是△ABC的内心,∴y=90°+A,∴y=90°+x,∴4y﹣x=360°,故选:D.二、填空题(共15分)11.解:∵a﹣b=5,即a=b+5,∴a2﹣b2﹣10b+1=(b+5)2﹣(b+5)2+25=25.故答案为:25.12.解:若(a﹣2)0=1,则a需要满足的条件是:a≠2.故答案为:a≠2.13.解:原式=mx4﹣(m+3)x3+(3﹣m)x2+3x由题意可知:m+3=0,∴m=﹣3,故答案为:﹣3.14.解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2,故答案为:2.15.解:∵△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,∴∠DCA=∠ACB=15°,∠BAC=∠BAE,∵∠ABC=30°,∴∠BAC=180°﹣15°﹣30°=135°,∴∠EAC=360°﹣135°﹣135°=90°,∴∠CFE=∠ACD+∠EAC=90°+15°=105°,故答案为:105°.三、解答题(满分75分)16.解:(1)原式=[a3b2﹣a2b﹣a2b+a3b2]÷3a2b=(2a3b2﹣2a2b)÷3a2b=ab﹣;(2)(x+3)2﹣(x﹣3)2=36.(x+3+x﹣3)(x+3﹣x+3)=36,∴12x=36,解得x=3.17.解:(1)根据上面的规律可知:(a+b)4=a4+4a3b+6a2b+4ab2+b4;(2)结合(1)可知:(a+b)n的展开式共有(n+1)项,系数和为2n.∵(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,∴25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=15=1.18.解:(1)∵(3x﹣a)•(4x+b)=12x2+3bx﹣4ax﹣ab=12x2+(3b﹣4a)x﹣ab,∴3b﹣4a=﹣5①,∵(3x+a)•(x+b)=3x2+3bx+ax+ab,∴3b+a=5②,由①和②组成方程组:,解得:;(2)(3x+2)•(4x+1)=12x2+11x+2.19.解:(1)如图1中,点P1即为所求作.(2)如图2中,点P2即为所求作.(3)如图3中,点P3即为所求作.20.证明:(1)∵∠A=∠B=90°,在Rt△ACD与Rt△BDC中,,∴Rt△ACD≌Rt△BDC(HL),(2)∵Rt△ACD≌Rt△BDC,∴∠ADC=∠BCD=22°,∴∠BDC=90°﹣∠BCD=90°﹣22°=68°,∴∠BDE=∠BDC﹣∠ADC=68°﹣22°=46°.21.已知:如图在△ABC和△DEF中,AB=DE,BC=EF,AN是BC上的中线,DM是EF 上的中线,且AN=DM,求证:△ABC≌△DEF.证明:∵BC=EF,AN是BC上的中线,DM是EF上的中线,∴BN=EM,在△ABN和△DEM中,,∴△ABN≌△DEM(SSS),∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).22.解:(1)如图所示,△A1B1C1即为所求;(2)由题可得,AB=BC==,∠ABC=90°,∴△ABC的面积为AB×BC=×()2=;故答案为:;(3)如图所示,BD即为所求.23.解:(1)∵四边形ABCD是矩形,∴AD∥BC,△ABC≌△CDA,∴∠DAC=∠ACB,∵△AEC是由△ABC沿着AC折叠得到的,∴△ABC≌△AEC,∠ECA=∠BCA,AE=AB,∴∠F AC=∠ACF,∴AF=CF,又∵AB=CD,∴AE=CD,∴Rt△AEF≌Rt△CDF(HL),∵△ABC≌△CDA,△ABC≌△AEC,∴△CDA≌△AEC,∴图中有4对全等三角形:△ABC≌△CDA,△ABC≌△AEC,△CDA≌△AEC,△AEF ≌△CDF.故答案为:4;(2)∵长方形的纸片沿着对角线AC对折,∴∠ACB=∠ACE,∠B=∠AEF=90°,∵∠EAF=34°,∴∠AFE=90°﹣∠EAF=56°,∵∠F AC=∠FCA,∴∠ACF=∠AFE=28°,∴∠ACB=28°;(3)△DCF的周长为9cm.证明:∵长方形纸片的周长为18cm,∴AD+DC=18=9(cm),∵AF=CF,∴△DCF的周长=DF+CF+DC=AF+DF+DC=AD+DC=9(cm).。
人教版八年级上册数学第二次月考考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知3y =,则2xy 的值为( )A .15-B .15C .152-D .1522.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.设4a ,小数部分为b ,则1a b-的值为( ) A. BC.1+ D.1 4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A.13 B.14 C.15 D.167.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E 是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15°B.22.5°C.30°D.45°9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.若b>0,则一次函数y=﹣x+b的图象大致是()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O ,线段EF 过点O 交AD 于点E ,交BC 于点F .求证:OE=OF .6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、A5、C6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、x1≥.3、14、180°5、36、12 xy=⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、x=-1或x=32、1a b-+,-13、(1)-3x+2<-3y+2,理由见解析;(2)a<34、(1)略(2-15、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版八年级上册数学《第二次月考》试卷(带答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.如果y,那么y x 的算术平方根是( )A .2B .3C .9D .±33.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44.已知点P (2a+4,3a-6)在第四象限,那么a 的取值范围是( )A .-2<a <3B .a <-2C .a >3D .-2<a <25.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤76.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.如图,在△ABC 中,∠C=90°,按以下步骤作图:①以点A 为圆心、适当长为半径作圆弧,分别交边AC 、AB 于点M 、N ;②分别以点M 和点N 为圆心、大于12MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.因式分解:2218x-=__________.3x2-x的取值范围是________.4.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是________.5.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.先化简,后求值:(5a 5a (a ﹣2),其中12+2.3.己知关于x 的一元二次方程x 2+(2k+3)x+k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若1211x x =﹣1,求k 的值.4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.5.如图,△ABC 中,AB=AC ,∠BAC=90°,点D ,E 分别在AB ,BC 上,∠EAD=∠EDA ,点F 为DE 的延长线与AC 的延长线的交点.(1)求证:DE=EF ;(2)判断BD 和CF 的数量关系,并说明理由;(3)若AB=3,AE=5,求BD 的长.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、D5、A6、A7、C8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、2(x +3)(x ﹣3).3、x 2≥4、x=25、42x y -⎩-⎧⎨==6、45︒三、解答题(本大题共6小题,共72分)1、原方程组的解为=63x y ⎧⎨=-⎩2、43、(1)k >﹣34;(2)k=3. 4、略(2)∠EBC=25°5、(1)略;(2略;(3)BD=1.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
高安四中2012-2013上学期八年级数学第二次月考试题一、选择题:(本大题共6小题,每小题3分,共18分,) 1、下列函数关系式:①,2x y -=② xy 2-= , ③22x y -=,④y=2 , ⑤y=2x-1。
其中是一次函数的是( )A、① ⑤ B、① ④ ⑤ C、② ⑤ D、② ④ ⑤ 2、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )A 、B 、C 、D 、3、如图,是在同一坐标系内作出的一次函数的图象l 1、l 2,设y =k 1x +b 1,y =k 2x +b 2,则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是( )A 、⎩⎨⎧=-=.y ,x 22B 、⎩⎨⎧=-=.y ,x 33C 、⎩⎨⎧=-=.y ,x 32D 、⎩⎨⎧=-=.y ,x 434、汽车由北京驶往相距120千米的天津,它的平均速度是60千米/时,•则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是( ) A 、S=120-60t (0≤t ≤2) B 、S=60t (0≤t ≤2) C 、S=120-60t (t>0) D 、S=60t (t=2)5.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )A B. C. D.6、如图OB 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①甲让乙先跑12米;② 甲的速度比乙快1.5米/秒;③ 8秒钟内,乙在甲前面;④ 8 秒钟后,甲超过了乙,其中正确的说法是( )A 、① ②B 、① ② ③ ④C 、② ③D 、① ③ ④ 二、填空题:(本大题共8小题,每空3分,共24分)7. 已知函数y=(m-1)x+m 2-1是正比例函数,则m =_____________.8、正比例函数x m y )2(-=,当m 时,y 随x 的增大而增大。
辽宁省盘锦市第一中学2015-2016学年八年级数学上学期第二次月
考试题
下面有4个汽车标志图案,其中是轴对称图形的有( )
A .1个
B .2个 C.3个 D. 4个 点M (—1,2)关于y 轴对称的点的坐标为( )
A.(-1,-2)
B.(2,-1)
C.(1,-2)
D.(1,2)
化简(-x)3·(-x)2
的结果正确的是( )
A.-x 6
B.x 6
C.x 5
D.-x 5
用尺规作角平分线的依据是 ( )
A .SSS
B .ASA C.AAS D. SAS 内角和等于外角和2倍的多边形是( )
A .四边形
B .五边形
C .六边形
D .七边形
如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形 B
.直角三角形 C .钝角三角形 D .都有可能 7.如图,小明的墙上挂着一个电子表,对面的墙上挂着一面镜子,小明看到镜子中的表的时间如图所示,那么实际的时间是( )
A 、12∶51
B 、15∶21
C 、21∶15
D 、21∶51
如图,∠BAC=130°,若MP 和QN 分别垂直平分AB 和AC, 则∠PAQ 等于
( )
A.50°
B.80°
C. 90°
D.105°
如图,坐标平面内一点A (2,﹣1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A
为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )
A . 2
B . 3
C . 4
D . 5
如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论: ①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60度.恒成立的结论有( ) A.2 B.3 C.4 D.5 填空题(每题3分共24分)
11、计算:(直接写结果)()
-233x 2xy ⋅ = ,
()()3x 2x +-11 = .
M Q A
P N C B
12、若11
39273m m ⨯⨯=,则m 的值是_________
13、计算:(﹣2)
2003
•等于________
14、若等腰三角形两边长分别为3和5,则它的周长是______________
15、如图(1)等腰△ABC 中,AB=AC ,BD 是腰AC 上的高线,∠DBC=15°,若BD=5, 则AC 等于
(1) (2) (3) (4)
16、如图(2)边长分别为a 和2a 的两个正方形按如图的样式摆放,则图中阴影部分的面积
17、如图(3)等腰三角形ABC 底边BC 的长为4cm ,面积是12cm 2
,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的动点,M 为线段EF 上一动点,则BM+DM 最小值为 . 18、如图(4),已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下五个结论:①AE=CF ;②∠APE=∠CPF ;③△
EPF 是等腰直角三角形;④EF=AP ;⑤
ABC AEPF S S ∆=
21
四边形.当∠EPF 在△ABC 内绕顶点P
旋转时(点E 不与点A 、B 重合),上述结论中始终正确的序号有:
三、简答题
先化简,再求值(每小题5分)
(1)x(x 2
-4)-(x +3)(x 2
-3x +2),其中x=23
.
(2)()22
35116612mn mn m ,其中m=4,n=
20、(6分)作图题(不写作法) 已知:如下图所示.
作出△ABC 关于y 轴对称的△A 1B 1C 1 写出△A 1B 1C 1三个顶点的坐标;
18
-
在x 轴上确定点P ,使PA+PC 最小.
21、(8分)如图,△ABC 是等边三角形,AD 为BC 边上的中线,AD=AE , 求∠EDC 的度数. (8分)如图,在等腰△ABC 中,∠BCA=120°,DE 是AC 的垂直平分线,线段DE=1cm , 求BE 的长.
23、(8分).△
ABC 中,D 是BC 上一点,P 是AD 上一点,若∠1=∠2,PB=PC.
求证:AD ⊥BC
24、(6分)仔细阅读下面例题,解答问题:
例题:已知二次三项式x 2
﹣4x+m 有一个因式是(x+3),求另一个因式以及m 的值. 解:设另一个因式为(x+n ),得 x 2
﹣4x+m=(x+3)(x+n )
则x 2﹣4x+m=x 2
+(n+3)x+3n ∴
解得:n=﹣7,m=﹣21 ∴另一个因式为(x ﹣7),m 的值为﹣21 问题:仿照以上方法解答下面问题:
已知二次三项式2x 2
+3x ﹣k 有一个因式是(2x ﹣5),求另一个因式以及k 的值.
25、(10分)如图,四边形ABCD 中,∠DAB=∠ABC=90°,AB=BC,E 是AB 的中点,CE ⊥BD (1)求证:BE=AD
(2)求证:AC 是线段ED 的垂直平分线
D A B E
2 A
B
D
P
1 A O
D E
26.(10分)在△ABC 中,A B AC , BAC (0 < <60 ),将线段B C 绕点B逆时针旋转60 得到线段B D 。
(1)如图1,直接写出 ABD 的大小: ABD=____________(用含 的式子表示)
(2)如图2, BCE 150 , ABE 60 ,判断△ABE 的形状并加以证明;
A A
B C
图2
参考答案
一、选择: CDDAC BABCC
二、填空:11.-6x3y36x2+x-1 12. 2 13.-2 14.11或13
15.10 16.2a2 17.6cm 18. ‚ƒ⑤
简答:
(1)化简结果 3x-6 值 -4
(2)化简结果值
(2)A、(-1,2)B、(-3,1)C、(-4,4)图略
21、∠EDC=15度 22、BE=4cm 23、略 24、另一个因式为(x+4),k的值为20
略 26(1) ABD=30 - ( )等边三角形
参考答案
一、选择: CDDAC BABCC
二、填空:11.-6x3y36x2+x-1 12. 2 13.-2 14.11或13
15.10 16.2a2 17.6cm 18. ‚ƒ⑤
简答:
(1)化简结果 3x-6 值 -4
(2)化简结果值
(2)A、(-1,2)B、(-3,1)C、(-4,4)图略
21、∠EDC=15度 22、BE=4cm 23、略 24、另一个因式为(x+4),k的值为20
略 26(1) ABD=30 - ( )等边三角形。