弯曲应力(工程力学)概要
- 格式:ppt
- 大小:2.39 MB
- 文档页数:50
材料力学弯曲应力知识点总结弯曲应力是材料力学中重要的概念之一,它描述了材料在受到弯曲力作用时所承受的内部力状态。
了解和掌握弯曲应力的知识对于工程领域的设计和分析具有重要意义。
本文将对材料力学中弯曲应力的相关知识点进行总结。
一、弯曲应力的基本概念弯曲应力是指在材料受到弯曲作用时,在横截面上单位面积所承受的力的大小,通常用σ表示。
弯曲应力的大小与施加在材料上的弯曲力以及截面形状和尺寸有关。
二、弯矩和截面性质1. 弯矩:在弯曲过程中,作用在材料上的弯曲力会产生一个力矩。
弯矩的大小等于力矩除以截面法线距离。
弯矩的单位通常是N·m。
2. 惯性矩和截面模量:惯性矩描述了截面抵抗变形的能力,通常用I表示。
截面模量描述了材料在弯曲过程中的刚度,通常用W表示。
惯性矩和截面模量与截面的形状和尺寸有关。
三、材料的截面形状对弯曲应力的影响材料的截面形状对弯曲应力有着重要的影响,以下是几种常见截面形状的弯曲应力分析:1. 矩形截面:矩形截面的弯曲应力呈线性分布,最大弯曲应力出现在截面内边缘。
2. 圆形截面:圆形截面的弯曲应力均匀分布,在截面上的任意一点的弯曲应力都相同。
3. T型截面:T型截面的弯曲应力最大出现在截面顶部和底部的交接处。
4. I型截面:I型截面的弯曲应力主要集中在截面中轴线部分。
四、弯曲应力与应变的关系弯曲应力和应变之间的关系可以通过杨氏模量进行描述。
弯曲应力和应变的关系可以用以下公式表示:σ=M*y/I,其中M为弯矩,y为截面的纵向距离,I为截面的惯性矩。
五、弯曲应力的计算方法根据弯曲应力的定义和性质,可以采用以下方法来计算弯曲应力:1. 等效应力法:将弯矩和弯曲力矩转化为等效应力,然后根据截面形状计算弯曲应力。
2. 梁理论:基于材料的截面形状和尺寸,使用梁理论来计算弯曲应力。
通过计算截面的惯性矩和截面模量来获得弯曲应力。
六、弯曲应力的影响因素弯曲应力受到以下因素的影响:1. 弯曲力的大小和方向2. 材料的弹性模量3. 材料的截面形状和尺寸4. 材料的力学性质和力学行为5. 材料的应变率和应变历史七、弯曲应力的应用弯曲应力在工程设计和分析中具有广泛的应用,例如:1. 结构设计:通过对材料的弯曲应力进行分析,可以确定结构的合理尺寸和截面形状,以满足设计要求。
第七章弯曲应力7.1预备知识一、基本概念 1、二、重点与难点 1、 2、 3、三、解题方法要点 1、 2、7.2典型题解一、计算题长为l 的矩形截面梁,在自由端作用一集中力F ,已知h=0.18m ,b=0.12m,y=0.06m,a =2m,F=1.5kN ,求C 截面上K 点的正应力。
解:先算出C 截面上的弯矩m N m N Fa M C ⋅⨯-=⨯⨯-=-=331032105.1截面对中性轴(即水平对称轴)的惯性矩为4433310583.01218.012.012m m m bh I z -⨯=⨯==将C M 、z I 及y 代入正应力公式(7—7)。
代入时,C M 、y 均不考虑正负号而以绝对值代入,则MPa Pa m mm N y I M z C K09.31009.306.010583.01036443=⨯=⨯⨯⋅⨯=⋅=-σ C 截面的弯矩为负,K 点位于中性轴上边,所以K 点的应力为拉应力。
在我国法定计量单位制中,应力的单位为Pa 在计算梁的正应力时,弯矩用N.m 、y 用m 、惯性矩用m 4,则算得的应力单位即为Pa 。
二、计算题一矩形珙面的简支木梁,梁上作用有均布荷载,已知:l =4m ,b=140mm,h=210mm,q=2kN/m ,弯曲时木木材的许用正应力[]σ=10MPa ,试校核该梁的强度。
解:梁中的最大正应力发生在跨中弯矩最大的截面上,最大弯矩为m N m m N ql M ⋅⨯=⨯⨯⨯==32232m ax 1044/1028181弯曲截面系数为3222210103.021.014.0616m m m bh W z -⨯=⨯⨯==最大正应力为[]σσ<=⨯=⨯⋅⨯==-MPa Pa m m N W M z 88.31088.310103.01046323max max所以满足强度要求。
二、计算题就计算题一,求梁能承受的最大荷载(即求m ax q )。
解:根据强度条件,梁能承受的最大弯矩为[]σz W M =m ax 跨中最大弯矩与荷载q 的关系为2m ax 81ql M = 所以[]281ql W z =σ 从而得[]m kN m N mPam lW q z /15.5/51504101010103.088226322==⨯⨯⨯⨯==-σ即梁能承受的最大荷载为m kN q /15.5m ax =。
弯曲应力引言弯曲应力是材料受到弯曲力作用时产生的应力。
在工程中,许多结构和元件都会承受弯曲力,因此对于弯曲应力的研究非常重要。
本文将介绍弯曲应力的概念、产生原因、计算方法以及对材料性能的影响。
一、概念与定义弯曲应力是由外力在材料截面上产生的弯曲时引起的内力分布所导致的。
当材料受到垂直于其截面的力作用时,材料会发生形变,产生内部应力以抵消外力的作用。
这些应力在截面上沿纵横两个方向分布,形成应力分布图。
在该图中,对于一切外力小于弯曲应力时,材料会发生弹性形变,当外力超过弯曲应力时,材料开始发生塑性变形。
二、弯曲应力产生原因弯曲应力的主要产生原因是施加在材料上的弯曲力。
当一个材料受到作用力时,由于横向收缩和纵向伸展,材料会发生变形。
在弯曲过程中,材料的上面受到压力,下面受到拉力。
这种压力和拉力导致了截面上的应力分布,形成弯曲应力。
三、弯曲应力的计算方法为了计算弯曲应力,需要了解材料的弯曲刚度和外力大小。
根据材料的力学性质,可以使用欧拉-伯努利梁理论计算等效弯曲应力。
该理论基于以下假设:材料在弯曲过程中保持线弹性,纵向扰动被忽略,并且任何截面都在弯曲过程中垂直于轴线。
通过这些假设,可以得到以下弯曲应力的计算公式:σ = (M * y) / I其中,σ是应力,M是弯矩,y是离轴心的距离,I是截面的惯性矩。
这个公式表示弯曲应力与弯矩成正比,与截面惯性矩成反比。
因此,在设计结构时,可以通过调整截面形状或增加材料的截面尺寸来减小弯曲应力。
四、弯曲应力对材料性能的影响弯曲应力对材料性能有重要影响。
首先,弯曲应力会导致材料发生弹性或塑性变形。
在弯曲应力作用下,材料的内部结构发生改变,导致材料的力学性能发生变化。
其次,弯曲应力还会导致材料的疲劳断裂。
当材料受到长期的反复弯曲作用时,弯曲应力超过了材料的疲劳极限,材料会产生裂纹,最终导致断裂。
因此,在设计和使用材料时,必须考虑到弯曲应力对材料的影响,并采取相应的措施来避免材料破坏。
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。
本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。
一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。
弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。
例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。
2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。
例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。
3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。
不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。
二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。
其中最常用的方法是梁的弯曲方程和梁的截面应力分析。
1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。
根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。
2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。
该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。
三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。
1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。
例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。
工程力学中的弯曲应力及应变分析工程力学是工程学科中的重要分支,它研究物体在受力作用下的力学性质和变形规律。
而在工程力学中,弯曲应力及应变分析是一项非常重要的内容。
本文将从弯曲应力与应变的基本概念入手,探讨弯曲应力与应变的分析方法,并介绍一些相关的实际应用。
1. 弯曲应力与应变的基本概念在工程力学中,弯曲是指物体在受到力的作用下,发生形状的变化,使其呈现出曲线状的变形。
而弯曲应力则是指物体在弯曲过程中受到的内部力的大小。
弯曲应变则是指物体在弯曲过程中产生的变形程度。
弯曲应力与应变的分析是为了了解物体在受力作用下的变形情况,以便进行结构设计和强度计算。
2. 弯曲应力与应变的分析方法弯曲应力与应变的分析方法主要有两种:一是基于弹性力学理论的解析方法,二是基于有限元分析的数值方法。
在解析方法中,我们可以利用梁的基本假设和弹性力学理论,通过求解弯曲方程和边界条件,得到弯曲应力与应变的解析解。
这种方法适用于简单的几何形状和边界条件的情况,可以快速得到结果。
但是对于复杂的结构和边界条件,解析方法往往难以应用。
数值方法中的有限元分析是一种常用的方法。
它将结构划分成有限个小单元,通过求解每个小单元的力学方程和边界条件,最终得到整个结构的弯曲应力与应变分布。
有限元分析可以处理复杂的几何形状和边界条件,但需要进行离散化处理和复杂的计算,计算量较大。
3. 弯曲应力与应变的实际应用弯曲应力与应变的分析在实际工程中有着广泛的应用。
例如,在建筑领域,我们需要对梁、柱等结构进行弯曲应力与应变的分析,以保证结构的稳定性和安全性。
在机械工程中,对于弯曲杆件、弯曲轴等零部件的设计,也需要进行弯曲应力与应变的分析,以确保其工作正常。
此外,在航空航天、汽车制造等领域,对于飞机、汽车等复杂结构的弯曲应力与应变分析更是不可或缺的。
4. 弯曲应力与应变分析的挑战与发展随着工程领域的不断发展,弯曲应力与应变分析也面临着一些挑战。
首先是对于复杂结构的分析问题,传统的解析方法和有限元分析方法可能无法满足需求,需要开发新的数值方法和计算技术。
第9章弯曲应力
9.1 纯弯曲
9.2 弯曲正应力的强度条件及其应用9.3 提高梁弯曲强度的一些措施
F Fa F F A
C D B
横力弯曲:既有弯矩又有剪力。
如AC 段和DB 段
纯弯曲:只有弯矩,没有剪力。
如CD 段
实验现象: 1、变形前互相平行的纵向直线、变形后变成弧线,且凹边纤维缩短、凸边纤维伸长。
2、变形前垂直于纵向线的横向线,变形后仍为直线,且仍与弯曲了的纵向线正交,但两条横向线间相对转动了一个角度。
变形前原本为平面的横截面变形后仍保持为平面。
且仍垂直于变形后的轴线,只是横截面绕某一轴旋转了一个角度。
必有一层变形前后长度不变的纤维
中性层:梁内一层纤维既不伸长也不缩短,因而纤维不受拉应力和压应力,此层纤维称为中性层。
(阴影面)
中性轴:中性层与横截面的交线称为中性轴。
中性轴与纵向对称面垂直。
•具有纵向对称面
•外力都作用在此面内 •弯曲变形后轴线变成对称面内的平面曲线
对称弯曲 纵向对称面
将梁的轴线取为 x 轴,
横截面的对称轴取为 y 轴,(向下为正) 中性轴取为 z 轴。
z
9.1 纯弯曲
9.2 弯曲正应力的强度条件及其应用9.3 提高梁弯曲强度的一些措施。