小学奥数知识点趣味学习——相遇问题
- 格式:docx
- 大小:42.99 KB
- 文档页数:4
相遇问题概念:速度=路程÷时间路程=速度×时间时间=路程÷速度1、甲、乙两人分别从两地同时相向而行,8小时可以相遇,如果两人每小时都少行1.5千米。
那么10小时后相遇,问两地相距多少千米?2、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,骑自行车每小时行11千米,两人同时出发,然后在离甲、乙两地中点9千米处相遇。
求甲乙两地间的距离是多少千米?3、A、B两地相距21千米,上午6时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙到达A地后也立即返回,上午9时他们第二次相遇,此时甲行的路程比乙行的路程多9千米,甲每小时行多少千米?4、某城市的环城公路全长180千米,甲、乙两辆汽车同时从同地背向出发绕这条环城公路行驶了2.5小时相遇。
如果甲车先行36千米,那么在乙车出发几小时后两车相遇?5、兄弟两人同时从家里出发步行去车站,16分钟哥哥到达车站,弟弟离车站还有240米,哥哥的速度是每分钟82米,弟弟每分钟走多少米?6、甲、乙两人同时以相距4800米的两地相向而行,甲骑自行车,乙步行。
6分钟两人相遇。
已知甲的速度是乙的速度的3倍,求甲乙两人的速度各是多少?7、小明步行45分钟从A地到B地,小华乘车15分钟可以B地到A地,当小明和小华在路上相遇时,小明已经走了30分钟,小华接小明乘车返回B地,还需要多少分钟?8、一辆客车和一辆货车同时从相距225千米的两地相向而行,客车每小时行50千米,货车每小时行40千米,行了几小时后两车相距45千米?再行几小时后两车又相距45千米?9、甲、乙两辆车从相距240千米的两地同时相向而行,因遇雾天,甲车每小时比原来少行15千米,乙车每小时比原来少行10千米,出发后,经过3小时两车相遇。
已知甲车原来每小时比乙车快15千米,甲、乙两车原来的速度各是多少?10、甲、乙两车相距516千米,两车同时从两地出发相向行,乙车行驶6小时后停下修车,这时两车相距72千米,甲车保持原速继续前进,经过2小时与乙车相遇,求乙车的速度?11、两辆汽车上午8点整分别从相距210千米的甲、乙两度相向而行,第一辆汽车在途中修车停了45分钟,第二辆车因加油停了半小时。
小学四年级寒假奥数(行程问题)专题--相遇问题(一)知识宝库两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路程三者数量之间关系的问题。
它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
基本公式相遇问题的关系式是::速度和×相遇时间=路程;路程÷速度和=相遇时间;路程÷相遇时间=速度和。
注意问题解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法.。
相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。
驶的方向,是相向,同向还是背向.不同的方向解题方法就不一样。
是否相遇.有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上, 得到同时行驶的路程.。
50×2÷4 42-29-10 48-30+120 36÷9×727+63-30 560÷7×3 267-45+74 210÷35×3125×8÷25 75×5×8 643+205-138 360÷15÷4甲、乙两辆汽车分别从两城市同时相对开出,经过8小时相遇,已知甲汽车每小时行49千米,乙汽车每小时行47千米。
甲、乙两地相距多少千米?练习1、甲、乙两城市之间,两列火车同时从两个城市相对开出,4小时后两车相遇,一列火车每小时行120千米,另一列火车每小时行130千米。
甲、乙两地相距多少千米?2、A、B两列火车同时从两个城市相对开出,甲车每小时行48千米,乙车比甲车每小时快12千米。
两车开出13小时后在一个车站相遇,这两个城市之间的铁路长多少千米?3、上午8时,两列火车同时从A、B两地相向开出,已知一列火车每小时行60千米,另一列火车每小时行70千米,中午12时两车在途中相遇,求甲、乙两地的路程。
小学奥数知识点趣味学习——相遇问题相遇问题的要点及解题技巧1、概念:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
2、特点:它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
3、类型:相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
4、三者的基本关系及公式:它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度速度和:两个运动物体(人)在单位时间(时、分、秒)所行驶的速度和,即:速度和=甲速+乙速。
相遇时间:两个运动物体(人)同时出发到相遇所用的时间。
相遇路程:两个运动物体(人)同时出发到相遇所走的路程。
基本的数量关系是:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间解答相遇问题,应注意物体运动的方向、出发时间、相遇时间、是否相遇等。
关键是找出两个物体的速度和,然后根据两地路程求出相遇时间,或根据相遇时间求出两地路程。
稍复杂的,可借助线段图帮助理解题意,找出解题途径。
例1:甲、乙两人从相距54千米的两地,同时相向而行,甲每小时行4千米,乙每小时行5千米,几小时后两人相遇?【分析与解】这是一道最典型,最基本的相遇问题的应用题。
出发时甲、乙两人相距54千米,以后两人的距离每小时都缩短4+5=9(千米),即两人的速度和。
所以54千米里有几个9千米就是经过几小时相遇。
解:4+5=9(千米/时)………………表示两人的速度和54÷9=6(小时)答:6小时后两人相遇。
例2:甲、乙两人同时从两地出发,相向而行,距离是24千米。
甲每小时走4千米,乙每小时走2千米,甲带着一只狗,狗每小时走5千米,这只狗同甲一道出发,碰到乙的时候,它又掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
追及题型
1、甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?
2、哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?
3、小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?
4、一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。
在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?
5、小云以每分钟40米的速度从家去商店买东西,5分钟后,小英去追小云,结果在离家600米的地方追上小云,小英的速度是多少?
6、一队中学生到某地进行军事训练,他们以每小时5千米的速度前进,走了6小时后,学校派秦老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。
秦老师几小时可追上队伍?追上时队伍已经行了多少路?
7、小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘记在家里,立即骑自行车以每分钟280米的速度去追小明,那么爸爸出发后几分钟追上小明?
8、一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间,小强第一次追上小星?
11。
题型一. 相遇问题甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和相遇路程÷速度和=相遇时间 相遇路程÷相遇时间=速度和题型二. 追及问题有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”。
实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程)。
如果设甲走得快,乙走得慢,在相同的时间(追及时间)内: 追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差 速度差×追及时间=追及路程追及路程÷速度差=追及时间追及路程÷追击时间=速度差【中点相遇】例1甲、乙两车分别同时从A、B两地出发,相向而行,甲车每小时行55千米,乙车每小时行45千米,两车在距中点25千米处相遇。
求A、B两地的距离。
练习1哥哥和弟弟分别从家和学校相向而行。
哥哥每分行80米,弟弟每分行60米,两人在离中点100米处相遇。
问:家到学校的距离是多少米?练习2快、慢两车同时从两城相向出发,4小时后在离中点18千米相遇,已知快车每小时行70千米,慢车每小时行多少千米?例2东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。
小学奥数四年级参考资料第五讲:相遇问题【知识与方法】:相遇问题是两个物体,从不同的地点做面对面的运动,即相向运动,相向运动会使两个物体在途中相遇。
其路程、速度和、相遇时间之间的关系为:路程=速度和×相遇时间速度和=路程÷时间时间=路程÷速度和【例题精讲】例1:两列火车同时从两地相对开出,快车每小时行80千米,慢车每小时行60千米,4小时相遇,两地相距多少千米?思维点拨:速度和×时间=路程模仿练习:两汽车同时从两个车站对开,甲车每小时行40千米,乙车每小时行38千米,经过6小时两车相遇。
这两个车站相距多少千米?例2、甲乙两人同时从相距1080米的两地相对而行,8分钟相遇。
已知甲每分钟走65米,乙每分钟走多少米?思维点拨:乙的速度=路程÷相遇时间-甲的速度模仿练习:北京到沈阳的铁路长830千米,两火车同时相对开出,10小时相遇。
已知甲车每小时行41千米,乙车每小时行多少千米?例3:两辆汽车同时从甲乙两地相对开出,A车每小时行50千米,B车每小时行40千米,两车在距中点20千米处相遇。
则甲乙两地相距多少千米?思维点拨:相遇时,A车比B车多行40千米,A车的速度比B车的速度快10千米,即得出相遇时间为4小时。
再根据:速度和×相遇时间=路程模仿练习:甲、乙两汽车同时从A、B两地相对开出,已知A车每小时行40千米,经过4小时,A车已经驶过中点25千米,这时与B车还相距6千米,B车每小时行多少千米?例4:甲乙两地相距300千米,客车和货车同时从甲地出发驶向乙地。
货车的速度为每小时60千米,客车的速度为每小时40千米,货车到达乙地后立即以原速返回甲地,从甲地出发后几小时两车相遇?思维点拨:用线段图分析行程问题,直观明了。
模仿练习:甲、乙两人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米的地方遇到乙,此时他们已经离开学校30分钟了。
(八)行程(xíngchéng)问题一、相遇(xiānɡ yù)问题知识(zhī shi)概述:行程问题是研究相向运动(yùndòng)中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量(shùliàng)关系:总路程=(甲速+乙速)×相遇时间解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
求甲、乙二人的速度各是多少?习题:一辆快车和一辆慢车分别(fēnbié)从广州和深圳两地同时相向而行,经过小时(xiǎosh í)在离中点3千米处相遇。
已知快车平均每小时行75千米,慢车平均每小时行多少千米?例4.A、B两城间有一条(yī tiáo)公路长240千米,甲、乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后以原速沿路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?例5.体育场的环形跑道长400米,小刚和小华在跑道的统一起跑线上,同时(tóngshí)向相反的方向起跑,小刚每分钟跑152米,小华每分钟跑148米。
小学奥数知识点趣味学习——相遇问题
相遇问题的要点及解题技巧
1、概念:
两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
2、特点:
它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
3、类型:
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
4、三者的基本关系及公式:
它们的基本关系式如下:
总路程=(甲速+乙速)×相遇时间
相遇时间=总路程÷(甲速+乙速)
另一个速度=甲乙速度和-已知的一个速度
速度和:两个运动物体(人)在单位时间(时、分、秒)所行驶的速度和,即:速度和=甲速+乙速。
相遇时间:两个运动物体(人)同时出发到相遇所用的时间。
相遇路程:两个运动物体(人)同时出发到相遇所走的路程。
基本的数量关系是:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
解答相遇问题,应注意物体运动的方向、出发时间、相遇时间、是否相遇等。
关键是找出两个物体的速度和,然后根据两地路程求出相遇时间,或根据相遇时间求出两地路程。
稍复杂的,可借助线段图帮助理解题意,找出解题途径。
例1:
甲、乙两人从相距54千米的两地,同时相向而行,甲每小时行4千米,乙每小时行5千米,几小时后两人相遇?
【分析与解】
这是一道最典型,最基本的相遇问题的应用题。
出发时甲、乙两人相距54千米,以后两人的距离每小时都缩短4+5=9(千米),即两人的速度和。
所以54千米里有几个9千米就是经过几小时相遇。
解:4+5=9(千米/时)………………表示两人的速度和
54÷9=6(小时)
答:6小时后两人相遇。
例2:
甲、乙两人同时从两地出发,相向而行,距离是24千米。
甲每小时走4千米,乙每小时走2千米,甲带着一只狗,狗每小时走5千米,这只狗同甲一道出发,碰到乙的时候,它又掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
问:这只狗一共走了多少千米?
【分析与解】
对于这道题,有人认为:要求狗与甲、乙相遇的路程,就要把狗与乙相遇走的路程,与甲相遇走的路程,再与乙相遇走的路程……都求出来,然后再相加,算出结果。
但是,仔细想想,狗在甲、乙两人之间要跑多少个来回,每次来回所用的时间是多少,这些量我们都无法求出。
再认真审题,不难发现,不论狗在甲、乙两人间走了多少个来回,狗走的路程所用的总时间等于甲、乙两人相遇所用的时间,这是不变的关系。
所以,只要求出狗走的时间,也就是只要求出甲、乙两人相遇所用的时间,就可求出狗所走的路程,这样原问题就转化为甲、乙两人相遇时间的问题。
在这个问题中,甲、乙两人开始相距与两人的速度都是已知的,所以,根据相遇问题的基本关系,甲、乙两人相遇的时间就可以求出了。
解:4+2=6(千米/时)………………表示甲、乙两人的速度和24÷6=4(小时)………………表示甲、乙两人相遇所用的时间由于甲、乙两人相遇所用的时间等于狗来回走所用的时间总和4×5=20(千米)………………表示狗往返数次一共走的路程答:这只狗一共走了20千米。