老师:XXX
时间:20XX.4
Trend Design
第二十一章 一元二次方程
前言
学习目标
1.会用因式分解法解一元二次方程。
2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解
决问题的多样性。
重点难点
重点:运用因式分解法求解一元二次方程。
难点:灵活应用各种因式分解法解一元二次方程。
回顾
.
课堂测试
2.若代数式3x2+1的值等于76,则x的值为 ±5
.
3.对于方程x2=m-3,若方程有两个不相等的实数根,则
m >3 ;若方程有两个相等的实数根,则m =3 ;若方程无
实数根,则m <3
.
课堂测试
4.用直接开平方法解下列方程:
⑴2x2-50=0;
⑵4x2+12x+9=1.
解:⑴移项,得2x2= 50 .
子的全部外表面,你能算出盒子的棱长吗?
根据平方根的意义,得x=±5,
60个面 即x1=5, x2=﹣5.
可以验证,x1=5, x2=﹣5,
是方程①的两个根
设正方体的棱长为x dm,
则一个正方体的表面积为6x2 dm2,
10×6x2=1 500
整理,得x2=25
①
因为棱长不能是负值,所以盒子的棱长为5 dm
因式分解法解一元二次方程的一般步骤
①移项,使一元二次方程等式右边为0;
②分解,把左边运用因式分解法化为两个一次因式的积;
③赋值,分别令每个因式等于0,得到两个一元一次方程;
④求解,分别解这两个一元一次方程,得到方程的解。
归纳:右化零,左分解,两因式,各求解.
思考
2)解:移项、合并同类项,