高考物理速度选择器和回旋加速器解题技巧和训练方法及练习题
- 格式:doc
- 大小:1.26 MB
- 文档页数:22
高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m vB qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
高考物理速度选择器和回旋加速器解题技巧分析及练习题一、速度选择器和回旋加速器1.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r='解得:2021v v += 故010212122v v v v -+≤≤=2.如图所示,有一对平行金属板,两板相距为0.05m 。
高考物理高考物理速度选择器和回旋加速器解题技巧及经典题型及练习题一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 3L 处,(2)34。
【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M 点飞出磁场,由几何关系:AM 222L R ⎛⎫- ⎪⎝⎭=32L 所以粒子离开的位置在AB 连线上距离A 点32L 处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan 12LL α==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan 3AMOAβ== 解得:60β︒= 所以偏转角之比:34αβ=。
2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B 3,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
高考物理速度选择器和回旋加速器解题技巧讲解及练习题一、速度选择器和回旋加速器1.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r='解得:2021v v += 故010212122v v v v -+≤≤=2.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1)E B ; (23)54qBL m 或4qBL m【解析】 【分析】 【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv 1B =qE解得:1E v B=(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:L =v 2t竖直方向有:21122L at = 由牛顿第二定律有:qE =ma解得:2v =(3)若粒子从板右边缘飞出,则2222L r L r =+-()解得:5 4r L =由233v qv B m r= 得:354qBLv m =若粒子从板左边缘飞出,则:4L r =由244v qv B mr=得:44qBLv m=3.如图所示为一速度选择器,也称为滤速器的原理图.K为电子枪,由枪中沿KA方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S.设产生匀强电场的平行板间的电压为300 V,间距为5 cm,垂直纸面的匀强磁场的磁感应强度为0.06 T,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外?(2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s【解析】【分析】【详解】(1)由题图可知,平行板产生的电场强度E方向向下.带负电的电子受到的静电力F E=eE,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB=eE解得:v=E B又因为E=U d所以v=UBd=1×105m/s即只有速率为1×105m/s的电子才可以通过小孔S4.PQ和 MN分别是完全正对的金属板,接入电动势为E的电源,如图所示,板间电场可看作匀强电场,MN之间距离为d,其间存在着磁感应强度为B,方向垂直纸面向里的匀强磁场。
高考物理速度选择器和回旋加速器解题技巧讲解及练习题一、速度选择器和回旋加速器1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qE qvB =解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯2.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2 q E mB L =(3)从dc 边距离d 点距离为32L 处射出磁场;3BLEπ【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0Ev B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m == 得:2 q E m B L= (3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:3x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2 qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点3x L =处离开磁场,在磁场中运动的时间3BL t E =π.3.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 2的水平间距为3L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)129=∶t t 【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222())R R L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间20=t v 则磁场中和在电场中时间之比12=∶t t4.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60o ,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷qm. 【答案】(1)00U dB (2)0013U 【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0013U q m = 点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.5.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U ;(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R .【答案】(1)U=Bv 0d ;(2)m qBθ;(3)R=0tan2mv qBθ【解析】 【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv 0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv 0q=m 20v r同时有T=02rv π粒子在圆形磁场区域中运动的时间t=2θπT 解得t=mBqθ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan 2mv qBθ6.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。
高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题一、速度选择器和回旋加速器1.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qE qvB =离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯ 在电场中的偏移量210.1m 2y at ==粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
高考物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析一、速度选择器和回旋加速器1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qE qvB =解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =3T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
高考物理高考物理速度选择器和回旋加速器解题技巧(超强)及练习题一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m v B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。
这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:(1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小;(3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。
高考物理高考物理速度选择器和回旋加速器解题技巧及练习题一、速度选择器和回旋加速器1.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 2的水平间距为3L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)1239=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期0 v运动时间11263Lt Tvπ==电场中,离子运动时间23=Lt则磁场中和在电场中时间之比12239=∶t tπ2.如图为质谱仪的原理图。
电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。
一束带电量均为q但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B2的匀强磁场,磁场B2方向与纸面垂直,结果分别打在a、b两点,若打在a、b两点的粒子质量分别为1m和2m.求:(1)磁场B2的方向垂直纸面向里还是向外?(2)带电粒子的速度是多少?(3)打在a、b两点的距离差△x为多大?【答案】(1)垂直纸面向外 (2)1UvB d= (3)12122()U m mxqB B d-∆=【解析】【详解】(1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动,因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外.(2)带正电的粒子直线穿过速度选择器,受力分析可知:1UqvB qd=解得:1UvB d=(3)两粒子均由洛伦兹力提供向心力2R可得:112m v R qB =,222m vR qB = 两粒子打在底片上的长度为半圆的直径,则:1222x R R ∆=-联立解得:12122()U m m x qB B d-∆=3.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
高考物理速度选择器和回旋加速器解题技巧和训练方法及练习题一、速度选择器和回旋加速器1.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:1021v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r='解得:2021v += 故010212122v v v v ≤≤=2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。
这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:(1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小;(3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。
(不计重力)。
粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。
【答案】(1)0mv qB (2)E B (302v ,02R h +(4)22000724M x R R R h h =++-【解析】 【详解】(1)若只有磁场,粒子做圆周运动有:200qB m R =v v解得粒子做圆周运动的半径00m R qBν=(2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B=(3)只有电场时,粒子做类平抛,有:00y qE ma R v a t v t=== 解得:0y v v =所以粒子速度大小为:22002y v v v v =+=粒子与x 轴的距离为:20122R H h at h =+=+ (4)撤电场加上磁场后,有:2v qBv m R=解得:02R R = 粒子运动轨迹如图所示:圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,由几何关系得C 点坐标为:02C x R =,02C R y H R h =-=-过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==2C R CD y h ==-解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =++-3.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60,不计重力,求(1)离子到达M 点时速度的大小;(2)离子的电性及比荷q m. 【答案】(1)00U dB (2)00133U dB B R【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0013U q m = 点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.4.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
【答案】(1)带正电;(2)12qU v m =;(3)1212qU U B m=(4)1221mU r B q=【解析】 【分析】(1)根据电荷在磁场中的偏转方向即可判断电荷的正负; (2)根据动能定理求解速度 (3)根据平衡求解磁场强度(4)根据2v qvB m r=求解运动轨道半径;【详解】(1)根据电荷在磁场中的运动方向及偏转方向可知该粒子带正电; (2)粒子经加速电场U 1加速,获得速度v ,由动能定理得:2112qU mv =解得:12qU v m=⑵在速度选择器中作匀速直线运动,电场力与洛仑兹力平衡得21U q qvB d= 解得:21112U B dv B qU m== ⑶在B 2中作圆周运动,洛仑兹力提供向心力,2v qvB m r=解得:12221mU mv r B q B q== 故本题答案是:(1)带正电;(2)12qU v m =;(3)1212qU U B m=(4)1221mUrB q=5.如图,在整个直角坐标系xoy区域存在方向沿y轴负方向的匀强电场,场强大小为E;在x>0区域还存在方向垂直于xoy平面向内的匀强磁场。
一质量为m、电荷量为q的带正电粒子从x轴上x=-L的A点射出,速度方向与x轴正方向成45°,粒子刚好能垂直经过y 轴,并且在第一象限恰能做直线运动,不计粒子重力(1)求粒子经过y轴的位置(2)求磁感应强度B的大小(3)若将磁场的磁感应强度减小为原来的一半,求粒子在x>0区域运动过程中的最大速度和最低点的y坐标。
【答案】(1)y=12L (2)mEBqL=(3)3mqELvm=72y L=-【解析】【分析】(1)粒子在第二象限做类平抛运动,根据平抛运动的规律求解粒子经过y轴的位置;(2)粒子在第一象限恰能做直线运动,则电场力等于洛伦兹力,可求解B;(3)将x>0区域的曲线运动看做以2v1的匀速直线运动和以v1的匀速圆周运动的合成,结合直线运动和圆周运动求解最大速度和最低点坐标。
【详解】(1)粒子在第二象限做类平抛运动,设初速度为v,1222v v==L=v1t22vy t=联立解得2Ly=,则经过y轴上2Ly=的位置;(2)qE a m= v 2=at 可得1qELv m= qv 1B=qE 解得mEB qL=(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,如图;2112v Bqv m r⋅=解得2122mv r L qE == 24y r L ∆==最低点y 坐标为1722y L y L =-∆=- 此时速度最大为v m =2v 1+v 1解得3m qELv m=6.如图所示,一对平行金属极板a 、b 水平正对放置,极板长度为L ,板间距为d ,极板间电压为U ,且板间存在垂直纸面向里磁感应强度为B 的匀强磁场(图中未画出)。
一带电粒子以一定的水平速度从两极板的左端正中央沿垂直于电场、磁场的方向射入极板间,恰好做匀速直线运动,打到距离金属极板右端L处的荧光屏MN上的O点。
若撤去磁场,粒子仍能从极板间射出,且打到荧光屏MN上的P点。
已知粒子的质量为m,电荷量为q,不计粒子的重力及空气阻力。
(1)求带电粒子刚进入极板左侧时的速度大小v;(2)求粒子打到荧光屏P点时动能大小;(3)求荧光屏上P点与o点间距离。
【答案】(1)UBd(2)22222222q L B mUm d B+ (3)2232qB L dmU【解析】【分析】(1)带电粒子受力平衡,洛伦兹力等于电场力,从而求解粒子进入极板时的速度;(2,3)只有电场时,粒子在电场中做类平抛运动,结合运动公式求解粒子打到荧光屏P点时动能大小以及荧光屏上P点与O点间距离;【详解】(1)带电粒子受力平衡,有qvB=q Ud粒子进入极板时的速度v=U Bd(2)带电粒子在两极板间运动时间t1=Lv,加速度qUamd=带电粒子从极板右端射出时沿竖直方向的速度v y =1qULatmdv=粒子出偏转场时动能大小为2222 22222 11()2222 K yq L B mU E mv m v vm d B ==+=+(3)带电粒子穿过电场时的侧移量22112 122qUL y atmdv ==带电粒子离开两极板间后做匀速直线运动的时间t2=L v带电粒子离开两极板间后在竖直方向的位移2 222yqUL y v tmdv ==P点与O点距离h=y1+y2=222233=22 qUL qB L d mdv mU7.某速度选择器结构如图所示,三块平行金属板Ⅰ、Ⅱ、Ⅲ水平放置,它们之间距离均为d,三金属板上小孔O1、O2、O3在同一竖直线上,Ⅰ、Ⅱ间有竖直方向匀强电场E 1,Ⅱ、Ⅲ间有水平向左电场强度为E 2的匀强电场及垂直于纸面向里磁感应强度为B 2的匀强磁场.一质子由金属板I 上端O 1点静止释放,经电场E 1加速,经过O 2进入E 2、B 2的复合场中,最终从Ⅲ的下端O 3射出,已知质子带电量为e ,质量为m .则A .O 3处出射时粒子速度为222E v B = B .Ⅰ、Ⅱ两板间电压2122mE U eB =C .粒子通过Ⅰ、Ⅱ金属板和Ⅱ、Ⅲ金属板的时间之比为1︰1D .把质子换成α粒子,则α粒子也能从O 3射出 【答案】AB 【解析】 【详解】A .经过O 2点进入E 2、B 2的复合场中,最终沿直线从Ⅲ的下端O 3点射出,因质子受到电场力与洛伦兹力,只要当两者大小相等时,才能做直线运动,且速度不变的,依据qE 2=B 2qv解得:v=22E B故A 正确;B .质子在Ⅰ、Ⅱ两板间,在电场力作用下,做匀加速直线运动,根据动能定理,即为qU 1=12mv 2,而质子以相同的速度进入Ⅱ、Ⅲ金属板做匀速直线运动,则有v =22 E B ,那么Ⅰ、Ⅱ两板间电压U 1=2222 2mE eB 故B 正确;C .粒子通过Ⅰ、Ⅱ金属板做匀加速直线运动,而在Ⅱ、Ⅲ金属板做匀速直线运动,依据运动学公式,即有d =102vt +⋅ 而d =vt 2,那么它们的时间之比为2:1,故C 错误;D .若将质子换成α粒子,根据qU 1=12mv 2 导致粒子的比荷发生变化,从而影响α粒子在Ⅱ、Ⅲ金属板做匀速直线运动,因此α粒子不能从O 3射出,故D 错误; 故选AB . 【点睛】考查粒子在复合场中做直线运动时,一定是匀速直线运动,并掌握动能定理与运动学公式的应用,注意粒子何时匀加速直线运动与匀速直线运动是解题的关键.8.回旋加速器的工作原理如图甲所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量为+q ,加在狭缝间的交变电压如图乙所示,电压值的大小为U 0.周期T =2mqB π .一束该种粒子在t =0~2T时间内从A 处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求:(1)出射粒子的动能E m ;(2)粒子从飘入狭缝至动能达到E m 所需的总时间t 0;(3)要使飘入狭缝的粒子中有超过99%能射出,d 应满足的条件.【答案】(1)2222q B R m(2) 2022BR BRd m U qB ππ+-;(3) d <02100mU qB R π 【解析】 【详解】(1)粒子运动半径为R 时,有2v qvB m R=且2m 12E mv =解得222m 2q B R E m=(2)粒子被加速n 次达到动能E m ,则E m =nqU 0粒子在狭缝间做匀加速运动,设n 次经过狭缝的总时间为Δt加速度0qU a md=匀加速直线运动21Δ2nd a t =⋅ 由0(1)Δ2Tt n t =-⋅+ 解得200π2π2BR BRd mt U qB+=-(3)只有在0~()2Tt -∆时间内飘入的粒子才能每次均被加速 则所占的比例为22T tT η-∆=由99%η>,解得02π100mU d qB R <.9.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示。