2019届广西中考数学复习专题(8)规律与猜想(含答案解析)
- 格式:doc
- 大小:1.05 MB
- 文档页数:29
绝密★启用前广西桂林市2019年中考数学试卷数学一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.23的倒数是()A .32B.32-C.23-D.232.若海平面以上1 045米,记做1045+米,则海平面以下155米,记做( )A.1200-米B.155-米C.155米D.1 200米3.将数47 300 000用科学记数法表示为 ()A.547310⨯B.647.310⨯C.74.7310⨯D.54.7310⨯4.下列图形中,是中心对称图形的是()A.圆B.等边三角形C.直角三角形D.正五边形5.9的平方根是()A.3B.3±C.3-D.96.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.12B.13C.14D.167.下列命题中,是真命题的是()A.两直线平行,内错角相等B.两个锐角的和是钝角C.直角三角形都相似D.正六边形的内角和为3608.下列计算正确的是()A.236a a a=B.824a a a÷=C.2222a a a+=D.22(3)9a a+=+9.如果a b>,0c<,那么下列不等式成立的是()A.a c b+>B.a c b c+->C.11ac bc-->D.(1)(1)a cb c--<10.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(31)π+11.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则ADAB的值为()A.65B.2C.32D.312.如图,四边形ABCD的顶点坐标分别为0()4,A-,()2,1B--,()3,0C,()0,3D,当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为( )A.116105y x=+B.2133y x=+C.1y x=+D.5342y x=+二、填空题(共6小题,每小题3分,共18分.把答案填写在题中的横线上)毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共24页)数学试卷第2页(共24页)数学试卷 第3页(共24页) 数学试卷 第4页(共24页)13.计算:||2019-= .14.某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况: 组别 一 二 三 四 五 六 七 八 得分9095908890928590这组数据的众数是 .15.一元二次方程2)30()(x x -=-的根是 . 16.若224)2(x ax x ++=-,则a = . 17.如图,在平面直角坐标系中,反比例(0)ky k x=>的图象和ABC △都在第一象限内,52AB AC ==,BC x ∥轴,且4BC =,点A 的坐标为(3,5).若将ABC △向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 . 18.如图,在矩形ABCD 中,3AB =,3AD =,点P 是AD 边上的一个动点,连接BP ,作点A 关于直线BP 的对称点A 1,连接A 1C ,设A 1C 的中点为Q ,当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(6分)计算:20190(1)12tan60(π 3.14)--++-.20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,ABC △的三个顶点均在格点上.(1)将ABC △先向右平移6个单位长度,再向上平移3个单位长度,得到111A B C △,画出平移后的111A B C △;(2)建立适当的平面直角坐标系,使得点A 的坐为()4,3-; (3)在(2)的条件下,直接写出点A 1的坐标.21.(8分)先化简,再求值:221121()2x xy y y x xy y x-+-÷--,其中22x =+,2y =.22.(8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A 合唱,B 群舞,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“D ”部分的圆心角度数是多少? (2)请将条形统计图补充完整;(3)若全校共有1 800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?数学试卷 第5页(共24页) 数学试卷 第6页(共24页)23.(8分)如图,AB AD =,BC DC =,点E 在AC 上. (1)求证:AC 平分BAD ∠; (2)求证:BE DE =.24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B 类足球共花费7 500元,已知购买一个B 类足球比购买一个A 类足球多花30元. (1)求购买一个A 类足球和一个B 类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4 800元的经费再次购买A 类足球和B 类足球共50个,若单价不变,则本次至少可以购买多少个A 类足球?25.(10分)如图,BM 是以AB 为直径的O 的切线,B 为切点,BC 平分ABM ∠,弦CD 交AB 于点E ,DE OE =.(1)求证:ACB △是等腰直角三角形; (2)求证:2OA OE DC =; (3)求tan ACD ∠的值.26.(12分)如图,抛物线2y x bx c =-++与x 轴交于点0()2,A -和()1,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)作射线AC ,将射线AC 绕点A 顺时针旋转90交抛物线于另一点D ,在射线AD 上是否存在一点H ,使CHB △的周长最小.若存在,求出点H 的坐标;若不存在,请说明理由;(3)在(2)的条件下,点Q 为抛物线的顶点,点P 为射线AD 上的一个动点,且点P 的横坐标为t ,过点P 作x 轴的垂线l ,垂足为E ,点P 从点A 出发沿AD 方向运动,直线l 随之运动,当21t -<<时,直线l 将四边形ABCQ 分割成左右两部分,设在直线l 左侧部分的面积为S ,求S 关于t 的函数表达式.备用图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)广西桂林市2019年中考数学试卷答案解析一、选择题 1.【答案】A【解析】解:23的倒数是:32.故选:A . 2.【答案】B【解析】解:若海平面以上1 045米,记做1045+米,则海平面以下155米,记做155-米.故选:B . 3.【答案】C【解析】解:将47 300 000用科学记数法表示为74.7310⨯,故选:C . 4.【答案】A【解析】解:A 、是中心对称图形,本选项正确;B 、不是中心对称图形,本选项错误;C 、不是中心对称图形,本选项错误;D 、不是中心对称图形,本选项错误.故选:A . 5.【答案】B【解析】解:∵2(3)9±=,∴9的平方根为:3±.故选:B . 6.【答案】D【解析】解:当转盘停止转动时,指针指向阴影部分的概率是16,故选:D . 7.【答案】A【解析】解:A 、两直线平行,内错角相等,正确,是真命题;B 、两个锐角的和不一定是钝角,故错误,是假命题;C 、所有的直角三角形不一定相似,故错误,是假命题;D 、正六边形的内角和为720,故错误,是假命题;故选:A . 8.【答案】C【解析】解:A 、235a a a =,故此选项错误;B 、826a a a ÷=,故此选项错误;C 、2222a a a +=,正确;D 、22(39)6a a a +=++,故此选项错误;故选:C .9.【答案】D【解析】解:∵0c <,∴11c -<-, ∵a b >,∴()1(1)a c b c --<,故选:D . 10.【答案】C【解析】解:由三视图可知:该几何体是一个圆锥,.∴正三角形的边长2sin60==. ∴圆锥的底面圆半径是1,母线长是2, ∴底面周长为2π∴侧面积为12π22π2⨯⨯=,∵底面积为2ππr =, ∴全面积是3π. 故选:C . 11.【答案】B【解析】解:由折叠可得,AE OE DE ==,CG OG DG ==, ∴E ,G 分别为AD ,CD 的中点,设2CD a =,2AD b =,则2AB a OB ==,DG OG CG a ===,3BG a =,2BC AD b ==,∵90C ∠=,∴Rt BCG △中,222CG BC BG +=,即222(2)(3)a b a +=,∴222b a =,即b =,∴ba = ∴AD AB,故选:B . 12.【答案】D【解析】解:由0()4,A -,()2,1B --,()3,0C ,()0,3D ,数学试卷 第9页(共24页) 数学试卷 第10页(共24页)∴7AC =,3DO =, ∴四边形ABCD 分成面积11(||3)741422B AC y =⨯⨯+=⨯⨯=, 可求CD 的直线解析式为3y x =-+, 设过B 的直线l 为y kx b =+, 将点B 代入解析式得21y kx k =+-,∴直线CD 与该直线的交点为4251(,)11k k k k --++, 直线21y kx k =+-与x 轴的交点为12(,0)kk-, ∴112517(3)(1)21k k k k --=⨯-⨯++, ∴54k =或0k =,∴54k =,∴直线解析式为5342y x =+;故选:D . 二、填空题 13.【答案】2 019【解析】解:|2019|2019-=,故答案为:2 019. 14.【答案】90【解析】解:90出现了4次,出现的次数最多,则众数是90;故答案为:90. 15.【答案】13x =,22x =【解析】解:30x -=或20x -=,所以13x =,22x =.故答案为13x =,22x =. 16.【答案】4-【解析】解:∵224(2)x ax x ++=-,∴4a =-.故答案为:4-. 17.【答案】54【解析】解:∵52AB AC ==,4BC =,点(3,5)A .∴7(1,)2B ,()75,2C ,将ABC △向下平移m 个单位长度,∴(3,5)A m -,7(5,)2C m -,∵A ,C 两点同时落在反比例函数图象上,∴73(5)5()2m m -=-,∴54m =;故答案为54. 18.【答案】π3【解析】解:如图,连接BA 1,取BC 使得中点O ,连接OQ ,BD .∵四边形ABCD 是矩形, ∴90BAD ∠=,∴tan ADABD AB∠== ∴60ABD ∠=,∵1AQ QC =,BO OC =,∴11122OQ BA AB ===, ∴点Q 的运动轨迹是以O 为圆心,OQ 为半径的圆弧,圆心角为120,∴点Q 的运动路径长3120π32180==. .三、解答题19.【答案】解:原式11=--=-【解析】解:原式11=--=.20.【答案】解:(1)如图,111A B C △为所作;数学试卷 第11页(共24页) 数学试卷 第12页(共24页)(2)如图,(3)点1A 的坐标为(2,6).【解析】解:(1)如图,111A B C △为所作;(2)如图,(3)点1A 的坐标为(2,6).21.【答案】解: 原式221()x y xy xy x y x y -=+-- 21x y x y=+-- 3x y =-,当2x =,2y =时,=【解析】解:原式221()x y xy xy x y x y-=+-- 21x y x y=+-- 3x y=-,当2x =,2y =时, =22.【答案】解:(1)本次调查的学生总人数是12060%200()÷=人, 扇形统计图中“D ”部分的圆心角度数是836014.4200⨯=; (2)C 项目人数为200(120528)20()-++=人, 补全图形如下:(3)估计该校报名参加书法和演讲比赛的学生共有2081800252()200+⨯=人. 【解析】解:(1)本次调查的学生总人数是12060%200()÷=人, 扇形统计图中“D ”部分的圆心角度数是836014.4200⨯=; (2)C 项目人数为200(120528)20()-++=人, 补全图形如下:(3)估计该校报名参加书法和演讲比赛的学生共有2081800252()200+⨯=人. 23.【答案】解:(1)在ABC △与ADC △中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴(SSS)ABC ADC ≅△△数学试卷 第13页(共24页) 数学试卷 第14页(共24页)∴BAC DAC ∠=∠ 即AC 平分BAD ∠; (2)由(1)BAE DAE ∠=∠在BAE △与DAE △中,得BA DABAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴(SAS)BAE DAE ≅△△ ∴BE DE =.【解析】解:(1)在ABC △与ADC △中,AB ADAC AC BC DC =⎧⎪=⎨⎪=⎩∴(SSS)ABC ADC ≅△△ ∴BAC DAC ∠=∠ 即AC 平分BAD ∠; (2)由(1)BAE DAE ∠=∠在BAE △与DAE △中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴(SAS)BAE DAE ≅△△ ∴BE DE =.24.【答案】解:(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元,依题意,得:5025750030x y y x +=⎧⎨-=⎩,解得:90120x y =⎧⎨=⎩.答:购买一个A 类足球需要90元,购买一个B 类足球需要120元. (2)设购买m 个A 类足球,则购买(50)m -个B 类足球, 依题意,得:90120(50)4800m m +-≤, 解得:40m ≥.答:本次至少可以购买40个A 类足球.【解析】解:(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元, 依题意,得:5025750030x y y x +=⎧⎨-=⎩,解得:90120x y =⎧⎨=⎩.答:购买一个A 类足球需要90元,购买一个B 类足球需要120元. (2)设购买m 个A 类足球,则购买(50)m -个B 类足球, 依题意,得:90120(50)4800m m +-≤, 解得:40m ≥.答:本次至少可以购买40个A 类足球.25.【答案】证明:(1)∵BM 是以AB 为直径的O 的切线, ∴90ABM ∠=, ∵BC 平分ABM ∠, ∴1452ABC ABM ∠=∠= ∵AB 是直径 ∴90ACB ∠=, ∴45CAB CBA ∠=∠= ∴AC BC =∴ACB △是等腰直角三角形; (2)如图,连接OD ,OC∵DE EO =,DO CO =∴EDO EOD ∠=∠,EDO OCD ∠=∠ ∴EDO EDO ∠=∠,EOD OCD ∠=∠数学试卷 第15页(共24页) 数学试卷 第16页(共24页)∴EDO ODC △△ ∴OD DEDC DO= ∴2OD DE DC =∴2OA DE DC EO DC ==(2)如图,连接BD ,AD ,DO ,作BAF DBA ∠=∠,交BD 于点F ,∵DO BO = ∴ODB OBD ∠=∠,∴2AOD ODB EDO ∠=∠=∠,∵453CAB CDB EDO ODB ODB ∠=∠==∠+∠=∠, ∴15ODB OBD ∠==∠ ∵15BAF DBA ∠=∠= ∴AF BF =,30AFD ∠= ∵AB 是直径 ∴90ADB ∠=∴2AF AD =,DF∴2BD DF BF AD =+=+∴tan tan 2AD ACD ABD BD ∠=∠===-【解析】证明:(1)∵BM 是以AB 为直径的O 的切线, ∴90ABM ∠=, ∵BC 平分ABM ∠, ∴1452ABC ABM ∠=∠= ∵AB 是直径∴90ACB ∠=, ∴45CAB CBA ∠=∠= ∴AC BC =∴ACB △是等腰直角三角形; (2)如图,连接OD ,OC∵DE EO =,DO CO =∴EDO EOD ∠=∠,EDO OCD ∠=∠ ∴EDO EDO ∠=∠,EOD OCD ∠=∠ ∴EDO ODC △△ ∴OD DEDC DO= ∴2OD DE DC =∴2OA DE DC EO DC ==(2)如图,连接BD ,AD ,DO ,作BAF DBA ∠=∠,交BD 于点F ,∵DO BO = ∴ODB OBD ∠=∠,∴2AOD ODB EDO ∠=∠=∠,∵453CAB CDB EDO ODB ODB ∠=∠==∠+∠=∠, ∴15ODB OBD ∠==∠数学试卷 第17页(共24页) 数学试卷 第18页(共24页)∵15BAF DBA ∠=∠= ∴AF BF =,30AFD ∠= ∵AB 是直径 ∴90ADB ∠=∴2AF AD =,DF =∴2BD DF BF AD =+=+∴tan tan 2AD ACD ABD BD ∠=∠===26.【答案】解:(1)抛物线与x 轴交于点0()2,A -和()1,0B ∴交点式为221)2()(()y x x x x =-+-=-+- ∴抛物线的表示式为22y x x =--+(2)在射线AD 上存在一点H ,使CHB △的周长最小.如图1,延长CA 到C',使AC AC '=,连接BC',BC'与AD 交点即为满足条件的点H图1∵0x =时,222y x x =--+= ∴()0,2C ∴2OA OC ==∴45CAO ∠=,直线AC 解析式为2y x =+ ∵射线AC 绕点A 顺时针旋转90得射线AD ∴90CAD ∠=∴45OAD CAD CAO ∠=∠-∠=∴直线AD 解析式为2y x =-- ∵AC AC '=,AD CC '⊥ ∴4,(2)C '﹣﹣,AD 垂直平分CC' ∴CH C H '=∴当C'、H 、B 在同一直线上时,CHB C CH BH BC C H BH BC BC BC''=++=++=+△最小设直线BC'解析式为y kx a =+∴420k a k a -+=-⎧⎨+=⎩解得:2525k a ⎧=⎪⎪⎨⎪=-⎪⎩∴直线BC':2255y x =- ∵22552y x y x ⎧=-⎪⎨⎪=--⎩解得:8767x y ⎧=-⎪⎪⎨⎪=⎪⎩∴点H 坐标为86(,)77--(3)∵2212()24y y x x x =--+=-++∴抛物线顶点19(,)24Q - ①当122t --<≤时,如图2,直线l 与线段AQ 相交于点F图2数学试卷 第19页(共24页) 数学试卷 第20页(共24页)设直线AQ 解析式为y mx n =+∴201924m n m n -+=⎧⎪⎨-+=⎪⎩解得:323m n ⎧=⎪⎨⎪=⎩∴直线AQ :332y x =+ ∵点P 横坐标为t ,PF x ⊥轴于点E ∴3(,3)2F t t +∴(2)2AE t t =--=+,332FE t =+ ∴21133(2)(3)332224AEF S S AE EF t t t t ===++=++△ ②当102t -<≤时,如图3,直线l 与线段QC 相交于点G ,过点Q 作QM x ⊥轴于M图3∴13(2)22AM =---=,94QM =∴113927222416AQMS AM QM ==⨯⨯=△ 设直线CQ 解析式为2y qx =+把点Q 代入:19224q -+=,解得:12q =- ∴直线CQ :122y x =-+ ∴1(,2)2G t t -+∴11()22EM t t =--=+,122GE t =-+∴211911117(2)()22242246(1)MEGQ S QM GE ME t t t t =+=-++=--++梯形∴2227117111(2)21641644AQM MEGQ S S S t t t t =+=+-++=-++△梯形 ③当01t <<时,如图4,直线l 与线段BC 相交于点N图4设直线BC 解析式为2y rx =+ 把点B 代入:20r +=,解得:2r =- ∴直线BC :22y x =-+∴,2()2N t t -+∴1BE t =-,22NE t =-+∴211(1)(22)2122BEN S BE NE t t t t ==--+=-+△ ∵119117()(2)224216MOCQ S QM CO OM =+=⨯+⨯=梯形,1112122BOC S BO CO ==⨯⨯=△∴222717111(21)216164AQM BOC BEN MOCQ S S S S S t t t t =++-=++--+=-+△△△梯形数学试卷 第21页(共24页) 数学试卷 第22页(共24页)综上所述,2223133(2)4211112(0)442112(01)4t t t S t t t t t t ⎧++--⎪⎪⎪=-++-⎨⎪⎪-+⎪⎩<≤<<<【解析】解:(1)抛物线与x 轴交于点0()2,A -和()1,0B ∴交点式为221)2()(()y x x x x =-+-=-+- ∴抛物线的表示式为22y x x =--+(2)在射线AD 上存在一点H ,使CHB △的周长最小.如图1,延长CA 到C',使AC AC '=,连接BC',BC'与AD 交点即为满足条件的点H图1∵0x =时,222y x x =--+= ∴()0,2C ∴2OA OC ==∴45CAO ∠=,直线AC 解析式为2y x =+ ∵射线AC 绕点A 顺时针旋转90得射线AD ∴90CAD ∠=∴45OAD CAD CAO ∠=∠-∠= ∴直线AD 解析式为2y x =-- ∵AC AC '=,AD CC '⊥∴4,(2)C '﹣﹣,AD 垂直平分CC' ∴CH C H '=∴当C'、H 、B 在同一直线上时,CHB C CH BH BC C H BH BC BC BC''=++=++=+△最小设直线BC'解析式为y kx a =+∴420k a k a -+=-⎧⎨+=⎩解得:2525k a ⎧=⎪⎪⎨⎪=-⎪⎩∴直线BC':2255y x =- ∵22552y x y x ⎧=-⎪⎨⎪=--⎩解得:8767x y ⎧=-⎪⎪⎨⎪=⎪⎩∴点H 坐标为86(,)77--(3)∵2212()24y y x x x =--+=-++∴抛物线顶点19(,)24Q - ①当122t --<≤时,如图2,直线l 与线段AQ 相交于点F图2设直线AQ 解析式为y mx n =+∴201924m n m n -+=⎧⎪⎨-+=⎪⎩解得:323m n ⎧=⎪⎨⎪=⎩数学试卷 第23页(共24页) 数学试卷 第24页(共24页)∴直线AQ :332y x =+ ∵点P 横坐标为t ,PF x ⊥轴于点E ∴3(,3)2F t t +∴(2)2AE t t =--=+,332FE t =+ ∴21133(2)(3)332224AEF S S AE EF t t t t ===++=++△ ②当102t -<≤时,如图3,直线l 与线段QC 相交于点G ,过点Q 作QM x ⊥轴于M图3∴13(2)22AM =---=,94QM =∴113927222416AQMS AM QM ==⨯⨯=△ 设直线CQ 解析式为2y qx =+把点Q 代入:19224q -+=,解得:12q =- ∴直线CQ :122y x =-+ ∴1(,2)2G t t -+ ∴11()22EM t t =--=+,122GE t =-+∴211911117(2)()22242246(1)MEGQS QM GE ME t t t t =+=-++=--++梯形 ∴2227117111(2)21641644AQM MEGQ S S S t t t t =+=+-++=-++△梯形 ③当01t <<时,如图4,直线l 与线段BC 相交于点N图4设直线BC 解析式为2y rx =+ 把点B 代入:20r +=,解得:2r =- ∴直线BC :22y x =-+∴,2()2N t t -+∴1BE t =-,22NE t =-+∴211(1)(22)2122BEN S BE NE t t t t ==--+=-+△ ∵119117()(2)224216MOCQ S QM CO OM =+=⨯+⨯=梯形,1112122BOC S BO CO ==⨯⨯=△∴222717111(21)216164AQM BOC BEN MOCQ S S S S S t t t t =++-=++--+=-+△△△梯形 综上所述,2223133(2)4211112(0)442112(01)4t t t S t t t t t t ⎧++--⎪⎪⎪=-++-⎨⎪⎪-+⎪⎩<≤<<<。
广西 2019 届中考数学专题复习题型八规律与猜想含分析1. ( 2017 四川省 阳市)如 所示,将形状、大小完整同样的“●”和 段依据必定 律 成以下 形,第 1 幅形中“●”的个数a 1,第 2 幅 形中“●”的个数 a 2,第 3 幅 形中“●”的个数a 3,⋯,以此 推,11 1 1 )a 1a 2a 3的 (a 19A .20B .61C . 589D . 4212184 840760【答案】 C .考点: 1. 律型: 形的 化 ;2. 合 .2.(2017 四川省达州市)如 ,将矩形ABCD 其右下角的 点按 方向旋 90°至 ①地点, 右下角的 点按 方向旋 90°至 ②地点,以此 推, 旋 2017 次.若 AB=4,AD=3, 点 A 在整个旋程中所 的路径 ()A . 2017πB . 2034πC . 3024 πD . 3026π【答案】 D .考点: 1. 迹; 2.矩形的性 ;3.旋 的性 ; 4. 律型; 5. 合 .3.( 2017 江 省 云港市)如 所示,一 点从半径 2 的⊙ O 上的 A 0 点出 ,沿着射A 0O 方向运 到⊙ O 上的点 A 1 ,再向左沿着与射A 1O 角 60°的方向运 到⊙O 上的点 A 2 ;接着又从A 2 点出 ,沿着射A 2O 方向运 到⊙ O 上的点 A 3 ,再向左沿着与射 A 3O 角 60°的方向运 到⊙ O 上的点 A 4 ;⋯按此 律运 到点A 2017, 点A 2017 与点 A 0 的距离是()A .4B . 2 3C .2D .0【答案】 A.【分析】如,∵⊙O的半径 =2,由意得,OA1=4, OA2= 2 3 , OA3=2, OA4=2 3 ,OA5=2, OA6=0, OA7=4,⋯∵ 2017÷ 6=336⋯ 1,∴按此律运到点A2017, A2017与 A1重合,∴ OA2017=2R=4.故 A.考点: 1.律型:形的化;2.合.21 世教育网4.( 2017 重市 B 卷)以下象都是由同样大小的按必定律成的,此中第①个形中一共有4,第②个形中一共有11,第③个形中一共有21,⋯,按此律摆列下去,第⑨个形中的数()A. 116B. 144C. 145D. 150【答案】B.5. ( 2017 山德州第12 )察以下形,它是把一个三角形分接个三角形的中点,组成 4 个小三角形,挖去中的小三角形(如1);剩下的三角形再分重复以上做法,⋯⋯,将种做法下去(如2,3⋯⋯),6 中挖去三角形的个数()A.121B.362C.364D. 729【答案】 C考点:探究律6.( 2017 浙江宁波第 12 )一个大矩形按如方式切割成九个小矩形,且只有号①和②的两个小矩形正方形,在知足条件的全部切割中,若知道九个小矩形中n 个小矩形的周长,就必定能算出这个大矩形的面积,则n 的最小值是 ( )【答案】 A.【分析】依据题意可知,最少知道 3 个小矩形的周长即可求得大矩形的面积.考点:矩形的性质.7.( 2017 贵州黔东南州第10 题)我国古代数学的很多创新和发展都位居世界前列,如南宋数学家杨辉(约13 世纪)所著的《详解九章算术》一书中,用如图的三角形解说二项和(a+b)n的睁开式的各项系数,此三角形称为“杨辉三角”.依据“杨辉三角”请计算(a+b)20的睁开式中第三项的系数为()A. 2017 B . 2016 C . 191 D. 190【答案】 D.8.( 2017 湖南长沙第 11题)中国古代数学著作《算法统宗》中有这样一段记录:“三百七十八里关,初健步不犯难,第二天脚痛减一半,六朝才获得其关.”其粗心是,有人要去某关隘,行程378 里,第一天健步行走,第二天起,由于脚痛,每日走的行程都为前一天的一半,一共走了六天才抵达目的地,则这人第六天走的行程为()A.24 里B.12 里C.6里D.3 里【答案】 C考点:等比数列9. ( 2017 浙江湖州第 10题)在每个小正方形的边长为1的网格图形中,每个小正方形的极点称为格点.从一个格点挪动到与之相距 5 的另一个格点的运动称为一次跳马变换.比如,在 4 4 的正方形网格图形中(如图1),从点经过一次跳马变换能够抵达点,C,D,等处.现有 2020的正方形网格图形(如图2),则从该正方形的极点经过跳马变换抵达与其相对的极点,最少需要跳马变换的次数是()A.13B. 14 C.15D. 16【答案】B【分析】依据图一可知,延AC或AD可进行下去,而后到CF,进而求出CF=3 2 ,这时可知跳过了 3 格,而后挨次进行下去,而故答案为: 14.20× 20 格共21 条线,因此可知要进行下去,正好是(20+1)÷ 7× 2=14.考点: 1、勾股定理, 2、规律探究10.(2017山东菏泽第 14题) 如图,AB y 轴,垂足为 B ,将ABO绕点 A 逆时针旋转到AB1O1的地点,使点BB1落在直线y 3AB1O1绕点 B1逆时针旋转到A1 B1O1的地点,使点 O1的对应点 O2落的对应点x 上,再将3在直线 y 3x 上,挨次进行下去......若点 B 的坐标是 (0,1) ,则点O12的纵坐标为.3【答案】 33 3 3【分析】∵直线 y 3x ∴∠°∵在ABO 中,OB=1,OA=2,AB=3∴OO233,∵ ABO 每旋转3AOB=60三次看做一个整体,∴OO1263 3 3 .如图,过点O12向x轴画垂线,∵ OO12 6 3 3 3,O12OE 60 ,∴OE 33 3 3 ,即点O12的坐 33 3 3 .11. (2017 浙江湖州第 15 )如,已知30 ,在射上取点 1 ,以1心的与相切;在射 1 上取点 2 ,以 2 心,2 1 半径的与相切;在射2上取点3,以 3 心, 3 2半径的与相切;;在射9上取点10 ,以10 心,109半径的与相切.若 1 的半径,10 的半径是.1【答案】 512(或 29)考点: 1、的切, 2、 30°角的直角三角形12.(2017浙江舟山第15 ) 如,把n 个 1 的正方形拼接成一排,求得tan BA1C1, tan BA2C 1 , tan3BA3C17,算tan BA4 C,⋯⋯,按此律,写出tan BA n C(用含n的代数式表示).【答案】1,n21. 13n1考点:解直角三角形.13.( 2017 浙江衢州第16 )如,正△ ABO的2,O坐原点, A 在x上, B 在第二象限。
中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。
2019年中考数学总复习【规律探索题】专项练1.[2018·烟台] 如图ZT1-1所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()图ZT1-1A.28B.29C.30D.312.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么计算71+72+73+…+72020的结果的个位数字是()A.9B.7C.6D.03.[2017·自贡] 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值为()图ZT1-2A.180B.182C.184D.1864.[2017·重庆A卷] 下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()图ZT1-3A.73B.81C.91D.1095.请你计算:(1-x)(1+x),(1-x)(1+x+x2),(1-x)(1+x+x2+x3),…,猜想(1-x)(1+x+x2+…+xn)的结果是()A.1-xn+1B.1+xn+1C.1-xnD.1+xn6.图ZT1-4中的图形都是由同样大小的棋子按一定的规律组成的,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()图ZT1-4A.51B.70C.76D.817.[2018·贺州] 如图ZT1-5,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()图ZT1-5A.()n-1B.2n-1C.()nD.2n8.[2017·遵义] 按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.9.[2017·郴州] 已知a1=-,a2=,a3=-,a4=,a5=-,…,则a8=.10.[2017·潍坊] 如图ZT1-6,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…;按照此规律,第n个图中正方形和等边三角形的个数之和为个.图ZT1-611.观察下面的单项式:a,-2a2,4a3,-8a4,…,根据你发现的规律,第8个式子是.12.[2017·巴中] 观察下列各式:=2,=3,=4,…,请你将所发现的规律用含自然数n(n≥1)的代数式表达出来:.13.图ZT1-7是将正三角形按一定规律排列的,则第五个图形中正三角形的个数是.14.观察下列等式:42-12=3×5;52-22=3×7;62-32=3×9;72-42=3×11;…,则第n(n是正整数)个等式为.15.[2017·天门] 如图ZT1-8,在平面直角坐标系中,△ABC的顶点坐标为A(-1,1),B(0,-2),C(1,0).点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.图ZT1-816.[2018·贵港] 如图ZT1-9,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,则点An的坐标为.图ZT1-917.[2018·安顺] 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图ZT1-10所示的方式放置.点A1,A2,A3…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点Bn的坐标是.(n为正整数)参考答案1.C[解析] 第1个图形有(4×1)朵,第2个图形有(4×2)朵,第3个图形有(4×3)朵, …,第n个图形有4n朵,所以由4n=120得n=30.2.D3.C[解析] 观察各正方形中的4个数可知,1+14=3×5,3+32=5×7,5+58=7×9,故11+m=(11+2)×(11+4),解得m=184.4.C[解析] 整个图形可以看作是由两部分组成,各自的变化规律我们可以用一个表格来呈现:第①个第②个第③个第④个…第个上半1=12 4=22 9=32 16=42 …n2部分下半2=1+1 3=2+1 4=3+1 5=4+1 …n+1部分由此推断出这组图形中菱形个数的变化规律为:n2+n+1.当n=9时,有n2+n+1=92+9+1=91,∴第⑨个图形中菱形的个数为91.5.A[解析] 利用多项式乘多项式法则计算,归纳总结得到一般性规律,即可得到结果.观察可知,第一个式子的结果是:1-x2,第二个式子的结果是:1-x3,第三个式子的结果是:1-x4,…,第n个式子的结果是:1-xn+1.6.C[解析] 通过观察图形得到第①个图形中棋子的颗数为1=1+5×0;第②个图形中棋子的颗数为1+5×1=6;第③个图形中棋子的颗数为1+5+10=1+5×3=16;…所以第个图形中棋子的颗数为1+,然后把n=6代入计算即可.7.B8.[解析] 分别寻找分子、分母蕴含的规律,第n个数可以表示为,当n=100时,第100个数是.9.[解析] 由前5项可得an=(-1)n·,当n=8时,a8=(-1)8·=.10.(9n+3)[解析] 由图形及数字规律可知,第n个图中正方形的个数为5n+1,等边三角形的个数为4n+2,所以其和为5n+1+4n+2=9n+3.11.-128a8[解析] 根据单项式可知n为双数时a的前面要加上负号,而a的系数为2n-1,a的指数为n. 第8个式子为-27a8=-128a8.12.=(n+1)[解析] 观察所给出的二次根式,确定变化规律:左边被开方数由两项组成,第一项为序号,第二项为序号加2的倒数;右边也为两部分,根号外为序号加1,根号内为序号加2的倒数的算术平方根,即=(n+1).13.485[解析] 由图可以看出:第一个图形中有5个正三角形,第二个图形中有5×3+2=17(个)正三角形,第三个图形中有17×3+2=53(个)正三角形,由此得出第四个图形中有53×3+2=161(个)正三角形,第五个图形中有161×3+2=485(个)正三角形.14.(n+3)2-n2=3×(2n+3)[解析] 确定规律,写出一般式.∵42-12=3×5;52-22=3×7;62-32=3×9;72-42=3×11;∴第n个式子为:(n+3)2-n2=3×(2n+3).15.(-2,0)[解析] 根据旋转可得:P1(-2,0),P2(2,-4),P3(0,4),P4(-2,-2),P5(2,-2),P6(0,2),故6次旋转为一个循环,2017÷6=336……1,故P2017(-2,0).16.(2n-1,0)[解析] 由点A1坐标为(1,0),过点A1作x轴的垂线交直线y=x于点B1,可知B1点的坐标为(1,).以原点O为圆心,OB1长为半径画弧与x轴交于点A2,所以OA2=OB1,所以OA2==2,因此点A2的坐标为(2,0),同理,可求得B2的坐标为(2,2),点A3的坐标为(4,0),B3(4,4)……所以点An的坐标为(2n-1,0).17.(2n-1,2n-1)[解析] 当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵四边形A2B2C2C1为正方形,∴点B2的坐标为(3,2).同理,可得点A3的坐标为(3,4),点B3的坐标为(7,4),…,点An的坐标为(2n-1-1,2n-1),点Bn的坐标为(2n-1,2n-1).故答案为(2n-1,2n-1).。
一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×1065.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG 的度数为( )A .40°B .45°C .50°D .60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .299.(3分)若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx (k <0)的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 110.(3分)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .(30﹣x )(20﹣x )=34×20×30B .(30﹣2x )(20﹣x )=14×20×30 C .30x +2×20x =14×20×30 D .(30﹣2x )(20﹣x )=34×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2√5,BC=2,当CE+DE的值最小时,则CEDE的值为()A.910B.23C.√53D.2√55二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式√x+4有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:{3x−5<x+13x−46≤2x−13,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;̂的长(结果保留π).(2)若∠AEB=125°,求BD24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F . (1)求证:△ABF ≌△BCE ;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC =DG ;(3)如图3,在(2)的条件下,过点C 作CM ⊥DG 于点H ,分别交AD ,BF 于点M ,N ,求MN NH的值.26.(10分)如果抛物线C 1的顶点在拋物线C 2上,抛物线C 2的顶点也在拋物线C 1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=14x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【解答】解:700000=7×105;故选:B.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A .40°B .45°C .50°D .60°【解答】解:由作法得CG ⊥AB , ∵AC =BC ,∴CG 平分∠ACB ,∠A =∠B ,∵∠ACB =180°﹣40°﹣40°=100°, ∴∠BCG =12∠ACB =50°. 故选:C .8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .29【解答】解:画树状图为:(用A 、B 、C 分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3, 所以两人恰好选择同一场馆的概率=39=13. 故选:A .9.(3分)若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx (k <0)的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 1【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0,∵2<3,∴y2<y3<y1故选:C.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=34×20×30B.(30﹣2x)(20﹣x)=14×20×30C.30x+2×20x=14×20×30D.(30﹣2x)(20﹣x)=34×20×30【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=34×20×30,故选:D.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=OF DF,∴OF=x tan65°,∴BD=3+x,∵tan35°=OF BF,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2√5,BC=2,当CE+DE的值最小时,则CEDE的值为()A.910B.23C.√53D.2√55【解答】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=√OB2+BC2=√5+4=3,∵OB•BC=OC•BG,∴BG=23√5,∴BD=2BG=43√5,∵OD2﹣OH2=DH2=BD2﹣BH2,∴5−(√5−BH)2=(43√5)2−BH2,∴BH=89√5,∴DH=√BD2−BH2=20 9,∵DH∥BF,∴EFED =BFDH=2209=910,∴CEDE =910,故选:A.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式√x+4有意义,则x的取值范围是x≥﹣4.【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【解答】解:甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.16.(3分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH ⊥BC 于点H ,已知BO =4,S 菱形ABCD =24,则AH =245.【解答】解:∵四边形ABCD 是菱形, ∴BO =DO =4,AO =CO ,AC ⊥BD , ∴BD =8,∵S 菱形ABCD =12AC ×BD =24, ∴AC =6, ∴OC =12AC =3, ∴BC =√OB 2+OC 2=5, ∵S 菱形ABCD =BC ×AH =24, ∴AH =245; 故答案为:245.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 26 寸.【解答】解:设⊙O 的半径为r .在Rt △ADO 中,AD =5,OD =r ﹣1,OA =r , 则有r 2=52+(r ﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2. 【解答】解:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2 =1+6+9﹣3 =13.20.(6分)解不等式组:{3x −5<x +13x−46≤2x−13,并利用数轴确定不等式组的解集.【解答】解:{3x −5<x +1①3x−46≤2x−13②解①得x <3, 解②得x ≥﹣2,所以不等式组的解集为﹣2≤x <3. 用数轴表示为:21.(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (2,﹣1),B (1,﹣2),C (3,﹣3)(1)将△ABC 向上平移4个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画出与△ABC 关于y 轴对称的△A 2B 2C 2; (3)请写出A 1、A 2的坐标.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【解答】解:(1)由题意知a=4,b=110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c=80+902=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×430=76(张),答:估计需要准备76张奖状.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求BD̂的长(结果保留π).【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD =∠CBD ;(2)解:连接OD ,∵∠AEB =125°,∴∠AEC =55°,∵AB 为⊙O 直径,∴∠ACE =90°,∴∠CAE =35°,∴∠DAB =∠CAE =35°,∴∠BOD =2∠BAD =70°,∴BD ̂的长=70⋅π×3180=76π.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a 的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w 元,求w 关于a 的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【解答】解:(1)设每袋国旗图案贴纸为x 元,则有150x =200x+5,解得x =15,经检验x =15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b 袋小红旗恰好与a 袋贴纸配套,则有50a :20b =2:1,解得b =54a ,答:购买小红旗54a 袋恰好配套; (3)如果没有折扣,则W =15a +20×54a =40a ,依题意得40a ≤800,解得a ≤20,当a >20时,则W =800+0.8(40a ﹣800)=32a +160,即W ={40a ,a ≤2032a +160,a >20, 国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a =240050=48袋,b =54a =60袋,总费用W =32×48+160=1696元.25.(10分)如图1,在正方形ABCD 中,点E 是AB 边上的一个动点(点E 与点A ,B 不重合),连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F .(1)求证:△ABF ≌△BCE ;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC =DG ;(3)如图3,在(2)的条件下,过点C 作CM ⊥DG 于点H ,分别交AD ,BF 于点M ,N ,求MN NH 的值.【解答】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=12AB=a,∴CE=√5a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=2√55a,∴CG=√CB2−BG2=4√55a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=2√55a,∴GQ=CG﹣CQ=2√55a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=12•DQ=12CH•DG,∴CH=CG⋅DQDG=85a,在Rt△CHD中,CD=2a,∴DH =√CD 2−CH 2=65a ,∵∠MDH +∠HDC =90°,∠HCD +∠HDC =90°,∴∠MDH =∠HCD ,∴△CHD ∽△DHM ,∴DH CH =DH HM =34, ∴HM =910a , 在Rt △CHG 中,CG =4√55a ,CH =85a , ∴GH =√CG 2−CH 2=45a ,∵∠MGH +∠CGH =90°,∠HCG +∠CGH =90°,∴∠QGH =∠HCG ,∴△QGH ∽△GCH ,∴HN HG =HG CH, ∴HN =HG 2CG =25a , ∴MN =HM ﹣HN =12a ,∴MN NH =12a 25a =5426.(10分)如果抛物线C 1的顶点在拋物线C 2上,抛物线C 2的顶点也在拋物线C 1上时,那么我们称抛物线C 1与C 2“互为关联”的抛物线.如图1,已知抛物线C 1:y 1=14x 2+x 与C 2:y 2=ax 2+x +c 是“互为关联”的拋物线,点A ,B 分别是抛物线C 1,C 2的顶点,抛物线C 2经过点D (6,﹣1).(1)直接写出A ,B 的坐标和抛物线C 2的解析式;(2)抛物线C 2上是否存在点E ,使得△ABE 是直角三角形?如果存在,请求出点E 的坐标;如果不存在,请说明理由;(3)如图2,点F (﹣6,3)在抛物线C 1上,点M ,N 分别是抛物线C 1,C 2上的动点,且点M ,N 的横坐标相同,记△AFM 面积为S 1(当点M 与点A ,F 重合时S 1=0),△ABN 的面积为S 2(当点N 与点A ,B 重合时,S 2=0),令S =S 1+S 2,观察图象,当y 1≤y 2时,写出x 的取值范围,并求出在此范围内S 的最大值.【解答】解:由抛物线C 1:y 1=14x 2+x 可得A (﹣2,﹣1),将A (﹣2,﹣1),D (6,﹣1)代入y 2=ax 2+x +c得 {4a −2+c =−136a −6+c =−1, 解得{a =−14c =2, ∴y 2=−14x 2+x +2,∴B (2,3);(2)易得直线AB 的解析式:y =x +1,①若B 为直角顶点,BE ⊥AB ,k BE •k AB =﹣1,∴k BE =﹣1,直线BE 解析式为y =﹣x +5联立{y =−x +5y =−14x 2+x +2,解得x =2,y =3或x =6,y =﹣1,∴E (6,﹣1);②若A 为直角顶点,AE ⊥AB ,同理得AE 解析式:y =﹣x ﹣3,联立{y =−x −3y =−14x 2+x +2, 解得x =﹣2,y =﹣1或x =10,y =﹣13, ∴E (10,﹣13);③若E 为直角顶点,设E (m ,−14m 2+m +2) 由AE ⊥BE 得k BE •k AE =﹣1,即−14m 2+m−1m−2⋅−14m 2+m+3m+2=−1,解得m =2或﹣2(不符合题意舍去),∴点E 的坐标∴E (6,﹣1)或E (10,﹣13);(3)∵y 1≤y 2,∴﹣2≤x ≤2,设M (t ,14t 2+t ),N (t ,−14t 2+t +2),且﹣2≤t ≤2, 易求直线AF 的解析式:y =﹣x ﹣3,过M 作x 轴的平行线MQ 交AF 于Q ,则Q (14t 2−t −3,14t 2+t ),S 1=12QM •|y F ﹣y A |=12t 2+4t +6设AB 交MN 于点P ,易知P (t ,t +1),S2=12PN•|x A﹣x B|=2−1 2 t2S=S1+S2=4t+8,当t=2时,S的最大值为16.。
绝密★启用前7.下列图形,既是轴对称图形又是中心对称图形的是(( ) )广西省百色市 2019 年初中学业水平考试A.正三角形B.正五边形在此卷上答题无效C.等腰直角三角形D.矩形数学⎧12 - 2x<20⎩3x - 6≤08.不等式组⎨的解集是一、选择题(本大题共 12 小题,每小题 3 分,共 6 分,在每小题给出的四个选项中只有一项是符合要求的)A.-4<x≤6C.-4<x≤2B.x≤- 4或x>2D.2≤x<41.三角形的内角和等于A.90︒( ))9.抛物线y x2 + 6x 7 可由抛物线y x2 如何平移得到的=+=( )B.180︒C.270︒D.360︒A.先向左平移 3 个单位,再向下平移 2 个单位B.先向左平移 6 个单位,再向上平移 7 个单位C.先向上平移 2 个单位,再向左平移 3 个单位D.先回右平移 3 个单位,再向上平移 2 个单位2.如图,已知a∥b ,∠1=58︒,则∠2 的大小是(10.小韦和小黄进行射击比赛,各射击 6 次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( ) A.122︒B.85︒C.58︒C.8D.32︒3.一组数据 2,6,4,10,8,12 的中位数是( ))A.6B.7 D.91x +1A.无解4.方程=1的解是(B.x =-1C.x = 0D.x =15.下列几何体中,俯视图不是圆的是( ) A.小黄的成绩比小韦的成绩更稳定B.两人成绩的众数相同C.小韦的成绩比小黄的成绩更稳定D.两人的平均成绩不相同11.下列四个命题:A.四面体B.圆锥C.球D.圆柱①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直6.一周时间有 604 800 秒,604 800 用科学记数法表示为( )A.6048⨯102C.6.048⨯106B.6.048⨯105D.0.6048⨯106其中逆命题是真命题的是A.①②③④B.①③④数学试卷第 2 页(共 6 页)( )C.①③D.①数学试卷第 1 页(共 6 页)( ), ( ),则线段 MN 的中点的坐标公式18.四边形具有不稳定性.如图,矩形 ABCD 按箭头方向变形成平行四边形 A 'B 'C 'D ', 12.阅读理解:已知两点 M x , y N x , y K (x , y ) 1 1 2 2 当变形后图形面积是原图形面积的一半时,则∠A ' = . x 1 + x y1 + y为:x = 2 ,y = 2 .如图,已知点 O 为坐标原点,点 A (-3, 0), 经过点2 2 ( ),则有a ,b 满足等式: 2.设 ( ),A ,点B 为弦 P A 的中点.若点 N x , y a 2 +b 2 = 9 B m ,n 2 则 m ,n 满足的等式是 ( )三、解答题(本大题共 8 小题,共 66 分,解答应写出文字说明、证明过程或演算步骤) 19.(6 分)计算: (-1)3 + 9 (π 112)0 2 3 tan 60︒ . - - - ⎛ m - 3⎫ ⎛ n ⎫22 A .m 2 + n 2 = 9 B . + = 9 ⎪ ⎪ ⎝ 2 ⎭⎝ 2 ⎭ ( + )2 + ( )2 = D . 2m 3 4n 2 = 9( + )2 + 3 4 C . 2m 3 2n 3 ÷ 的值,其中 m = -2019 . 20.(6 分)求式子 m - 3 m 2 - 9 二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13.-16 的相反数是 14.若式子 x -108 在实数范围内有意义,则 x 的取值范围是 15.编号为 2,3,4,5,6 的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是 16.观察一列数:-3,0,3,6,9,12,……,按此规律,这一列数的第 21 个数是 17.如图,△ABC 与△A 'B 'C '是以坐标原点 O 为位似中心的位似图形,若点 A 2,2 ),则△A 'B 'C '的面积为 ..( ), ( ),函 C 1,2 .21.(6 分)如图,已如平行四边形 OABC 中,点 O 为坐标顶点,点 A 3,0 .k 数 y = (k ≠ 0) 的图象经过点 C . ( ),x (1)求 k 的值及直线 OB 的函数表达式: (2)求四边形 OABC 的周长. ( ), ( ), ( .B 3, 4C 6,1 B ' 6,8 数学试卷 第 3 页(共 6 页) 数学试卷 第 4 页(共 6 页)22.(8 分)如图,菱形ABCD 中,作BE ⊥AD 、CF ⊥AB ,分别交AD、AB 的延长线于点E、F. 24.(10 分)一艘轮船在相距 90 千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用 6 小时,逆流航行比顺流航行多用 4 小时.在此卷上答题无效(1)求证:AE BF ;=( )求该轮船在静水中的速度和水流速度;1(2)若点E 恰好是AD 的中点,AB 2 ,求=BD的值. (2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?25.(10 分)如图,已知AC、AD 是的两条割线,AC 与交于B、C 两点,AD 过圆心O 且与交于E、D 两点,OB 平分∠AOC .(1)求证:△ACD∽△ABO ;23.(8 分)九年级(1)班全班 50 名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:(2)过点E 的切线交AC 于F,若EF∥OC ,编号人数一二三四五=OC 3 ,求EF 的值.[ 提示:a15 20 10 b( 2+ 1 ) -( 2]1:5已知前面两个小组的人数之比是.解答下列问题:(1)a +b =.(2)补全条形统计图:y =-x +b M (-2, 4),点O 为坐标原点,26.(12 分)已知抛物线y =mx2 和直线都经过点(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)y =-x +b点P 为抛物线上的动点,直线(1)求m、b 的值;与x 轴、y 轴分别交于A、B 两点.(2)当是以AM 为底边的等腰三角形时,求点P 的坐标;(3)满足(2)的条件时,求sin∠BOP 的值.数学试卷第 5 页(共 6 页) 数学试卷第 6 页(共 6 页)广西省百色市 2019 年初中毕业学业考试数学答案解析一、选择题1.【答案】B【解析】因为三角形的内角和等于 180 度,故选:B.【考点】三角形的内角和定理2.【答案】C【解析】∵a∥b ,∴∠1=∠2,∵∠1= 58︒,∠2 = 58︒,∴故选:C.【考点】平行线的性质3.【答案】B【解析】将数据重新排列,再根据中位数的概念求解可得.将数据重新排列为 2、4、6、8、10、12,6 + 8= 7 ,所以这组数据的中位数为2故选:B.【考点】中位数4.【答案】C1 x +1-x x +1-1== 0,可得x = 0;【解析】移项可得1=1,x +11 x +1-x x +1-1== 0,∴移项可得∴x 0 ,=经检验x 0 是方程的根,=∴方程的根是x = 0 ;故选:C.【考点】方程式的解法5.【答案】A【解析】分别找出从图形的上面看所得到的图形即可.A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.【考点】简单几何体的三视图6.【答案】B【解析】科学记数法的表示形式为a⨯10n 的形式,其中1≤a<10,为整数.确定的值时,要看把原数n n变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.数字 604 800 用科学记数法表示为6.048⨯105 .故选:B.【考点】科学计数法7.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形;故选:D.【考点】中心对称图形,轴对称图形8.【答案】C【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解不等式12 2x 20,得:x>- 4,-<解不等式3x - 6≤0 ,得: x ≤2 ,则不等式组的解集为 -4<x ≤2 .故选:C .【考点】解一元一次不等式组9.【答案】A【解析】按照“左加右减,上加下减”的规律求则可.因为 y = x 2 + 6x + 7 = (x + 3)2 - 2.y = x 2 先向左平移 3 个单位,再向下平移 2 个单位即可得到抛物线 y = x 2 + 6x + 7 . 所以将抛物线 故选:A .【考点】抛物线的平移,抛物线解析式的变化规律:左加右减,上加下减.10.【答案】A【解析】根据折线统计图得出两人成绩的波动幅度,结合众数、平均数和方差的定义逐一判断即可得. A ,由折线统计图知,小黄的成绩波动幅度小,成绩更稳定,此选项正确,C 选项错误;B .小韦成绩的众数为 10 环,小黄成绩的众数为 9 环,此选项错误;6 + 7⨯ 2 +10⨯3 257 + 8⨯ 2 + 9⨯3 25 D .小韦成绩的平均数为 故选:A .= ,小黄的平均成绩为 = ,此选项错误; 6 3 6 3【考点】折线统计图,方差,平均数11.【答案】C【解析】首先写出各个命题的逆命题,然后进行判断即可.①两直线平行,内错角相等;其命题:内错角相等两直线平行是真命题;②对顶角相等,其逆命题:相等的角是对顶角是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形是假命题;故选:C .【考点】写一个命题的逆命题的方法12.【答案】D【解析】根据中点坐标公式求得点 B 的坐标,然后代入 a ,b 满足的等式.∵点 A (-3,0 ),点 ( , ), 点 ( , )为弦 P A 的中点,Pa b B m n -3 + a 0 + b ∴ m =, n = . 2 2 ∴ a 2m 3, = + b = 2n . 又 a ,b 满足等式: a 2 +b 2 = 9,( + )2 + 4n 2 = 9 .∴ 2m 3故选:D . 【考点】坐标与图形性质二、填空题13.【答案】16【解析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可. -16 的相反数是 16.故答案为:16【考点】相反数的含义以及求法14.【答案】 x ≥108【解析】根据被开方数是非负数,可得答案.由 x -108 在实数范围内有意义,得 x -108≥0 .解得 x ≥108 ,故答案是: x ≥108 .【考点】二次根式有意义的条件3 15.【答案】 5【解析】直接利用概率公式求解可得.在这 5 个乒乓球中,编号是偶数的有 3 个,3 所以编号是偶数的概率为 , 53 故答案为: . 5【考点】概率公式16.【答案】57-3+ 3 n -1 = 3n - 6 ,据此求解可得.( ) 【解析】根据数列中的已知数得出这列数的第 n 个数为 -3+ 3 n -1 = 3n - 6 ,由题意知,这列数的第 n 个数为 ( ) 当 n 21时, = 3n -6 = 3⨯21-6 = 57,故答案为:57.【考点】数字的变化类17.【答案】18【解析】直接利用位似图形的性质得出对应点位置进而得出答案.∵△ABC 与△A 'B 'C '是以坐标原点 O 为位似中心的位似图形,点( ), A 2,2 ( ), ( ), ( ),C 6,1 B ' 6,8B 3,4 ∴ A '(4, 4), '(C 12, 2 ) , 1 1 1 ∴△A 'B 'C '的面积为: 6 8 ⨯ - ⨯ ⨯ - ⨯ ⨯ - ⨯ ⨯ = 2 4 6 6 2 8 18. 2 2 2故答案为:18.【考点】位似变换,三角形面积求法18.【答案】30︒【解析】根据矩形和平行四边形的面积公式可知,平行四边形 A 'B 'C 'D '的底边 AD 边上的高等于 AD 的一 半,据此可得∠A ' 为 30°.1 ∵ S 平行四边形ABCD = S 矩形ABCD ,2 ∴平行四边形 A 'B 'C 'D '的底边 AD 边上的高等于 AD 的一半,∠A ' = 30︒.∴故答案为:30°【考点】四边形的不稳定性,矩形与平行四边形的面积公式,30°角所对的直角边等于斜边的一半三、解答题19.【答案】原式 = -1+ 3-1- 2 3 ⨯ 3 =1- 2⨯3 = -5 ;【解析】根据实数的运算法则,特殊角的三角函数值,算术平方根的运算分别进行化简即可;【考点】本题考查实数的运算,零指数幂,特殊角的三角函数值( + )( - ) 3 m 3 m 3 20.【答案】原式 = ⋅ m - 3 43 = (m + 3) , 4当 m 2019 时,= 3 = ⨯(- + ) 2019 3 原式 4 3 = ⨯(-2016 ) 4= -1512.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将 m 的值代入计算可得.【考点】分式的化简求值k ( )在反比例函数21.【答案】(1)依题意有:点C 1, 2 的图象上, y = (k ≠ 0) x ∴k = xy = 2, ∵ ( A 3,0)∴ CB OA3, = = 又 CB ∥x 轴,∴ ( ),B 4,2y = ax 设直线 OB 的函数表达式为 ,∴ 2 = 4a ,1 ∴ a = , 21 ∴直线 OB 的函数表达式为 y = x ; 2(2)作CD OA 于点 ⊥ D ,∵(),C 1,2∴OC =12 + 22 = 5 ,在平行四边形OABC 中,CB =OA = 3,AB =OC = 5 ,∴四边形OABC 的周长为:3+ 3+ 5 + 5 = 6 + 2 5 ,即四边形OABC 的周长为6 + 2 5 .k【解析】(1)根据函数y=k(k ≠ 0)的图象经过点C,可以求得的值,再根据平行四边形的性质即可求得x点B 的坐标,从而可以求得直线OB 的函数解析式;(2)根据题目中各点的坐标,可以求得平行四边形各边的长,从而可以求得平行四边形的周长.【考点】待定系数法求反比例函数解析式,一次函数解析式,反比例函数图象上点的坐标特征,平行四边形的性质22.【答案】(1)证明:四边形ABCD 是菱形∴AB BC ,=AD∥BC∠=∠A CBF∵BE ⊥AD 、CF AB=∠∴⊥∴∠AEB BFC = 90︒∴△AEB≌△BFC (AAS)∴AE =BF(2)∵E 是AD 中点,且BE ⊥AD∴直线BE 为AD 的垂直平分线∴BD AB 2==【解析】(1)由“AAS”可证△AEB≌△BFC ,可得AE BF ;=(2)由线段垂直平分线的性质可得BD AB 2 .==【考点】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质+=-(++) =23.【答案】(1)由题意知a b 50 15 20 10 5,故答案为:5;(2)∵a 3,=b = 50 -3+15 + 20 +10 = 2()∴,∴a +b = 5,故答案为 5;(2)补全图形如下:(3)由题意得a 3,= b = 2.设第一组 3 位同学分别为A 、A 、A ,设第五组 2 位同学分别为B 、B ,1 2 3 1 28 25 由上图可知,一共有 20 种等可能的结果,其中两名同学是同一组的有 8 种,所求概率是:Pa +b = 50-15+ 20+10 = 5==.20【解析】(1)由题意知();(2)a 3,= b =50 -(3+15 +20 +10)=2,a+b=5;8 2(3)一共有 20 种等可能的结果,其中两名同学是同一组的有 8 种,所求概率是:P【考点】统计图与概率==.20 5 24.【答案】(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,⎧6(x + y ) = 90 ⎪ 依题意,得: ⎨ , ( + )( - ) = ⎪ 6 4 x⎩y 90 ⎧x =12 解得: ⎨ ⎩y = 3. 答:该轮船在静水中的速度是 12 千米/小时,水流速度是 3 千米/小时.(2)设甲、丙两地相距 a 千米,则乙、丙两地相距(90-a )千米,a 90 - a = 依题意,得: , 12 + 3 12 - 3225 解得: a = . 4225 答:甲、丙两地相距千米. 4 【解析】(1)设该轮船在静水中的速度是 x 千米/小时,水流速度是 y 千米/小时,根据路程=速度×时间,即 可得出关于 x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距 a 千米,则乙、丙两地相距( 90- a )千米,根据时间=路程÷速度,即可得出关于 a 的一元一次方程,解之即可得出结论.【考点】本题考查了二元一次方程组的应用,一元一次不等式的应用25.【答案】证明:(1)∵OB 平分∠AOC1 ∴∠BOE = ∠ AOC 2∵ OC OD= ∠ =∠OCDD ∴ ∵∠AOC =∠ +∠OCDD 1 ∠D = ∠ AOC ∴ ∴ 2∠ =∠BOE D ,且∠A =∠A∴△ACD ∽△ABO(2)∵EF 切于 E ∴∠OEF 90 = ︒ ∵ EF ∥OC∴∠DOC =∠OEF = 90︒∵ OC OD3 = =∴CD =OC2 +OD2 = 3 2∵△ACD∽△ABOAD CD=∴∴AO BOAE + 6 3 2=AE + 3 3∴AE = 3 2∵EF∥OCAE EF=∴∴AO OC3 2 EF=3 2 + 3 3∴EF = 6 -3 21=∠2【解析】(1)由题意可得∠BOE AOC D=∠,且∠A=∠A,即可证△ACD∽△ABO ;(2)由切线的性质和勾股定理可求CD 的长,由相似三角形的性质可求AE = 3 2 ,由平行线分线段成比例AE EF=EF 的值.可得,即可求AO OC【考点】相似三角形的判定和性质,圆的有关知识,勾股定理(-2, 4)代入,得:4 = 4m,26.【答案】(1)将M y =mx2∴m 1;=M -2,4()代入y=-x +b 4 = 2+b,将,得:∴b 2.=y =-x + 2(2)由(1)得:抛物线的解析式为y =x2 ,直线AB 的解析式为.当 y = 0时, -x + 2 = 0 ,解得: x 2 ,= ∴点 A 的坐标为(2,0), OA = 2. (x ,x 2 PM 2 = (-2 - x )2 + (4 - x 2 )2 = x 4 - 7x 2 + 4x + 20 .是以 AM 为底边的等腰三角形,) 2 (x )22 - x 0+ P 的 坐 标 为 , 则 P 2 A = 2 ( -) 4 = x 24 ,设 点 ∵ ∴ PA 2 = PM 2 ,即 x 4 + x 2 - 4x + 4 = x 4 -7x 2 + 4x + 20,整理,得: x 2 - x - 2 = 0,x = -1 x = 2 ,解得: , 1 2 ∴点 P 的坐标为( -1,1)或(2, 4). PN ⊥ y (3)过点 P 作 轴,垂足为点 N ,如图所示.当点 P 的坐标为(-1,1 )时, P N 1, PO = 12 +12 = 2 , = PN 2 ∴ sin ∠BOP = = ; PO 2当点 P 的坐标为(2, 4)时,PN = 2 , PO = 22 + 42 = 2 5 , PN PO 5 ∴ sin ∠BOP = = . 52 5 ∴满足(2)的条件时,sin ∠BOP 的值的值为或 . 2 5 【解析】(1)根据点 M 的坐标,利用待定系数法可求出 m ,b 的值;(2)由(1)可得出抛物线及直线 AB 的解析式,利用一次函数图象上点的坐标特征可求出点 A 的坐标,设点 P 的坐标为(x ,x 2 ,结合点 , 的坐标可得出 PA , PM 的值,再利用等腰三角形的性质可得出关于) A M 2 2x 的方程,解之即可得出结论;PN y(3)过点P 作轴,垂足为点N,由点P 的坐标可得出PN,PO 的长,再利用正弦的定义即可求出sin∠BOP的值.【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质,勾股定理,解直角三角绝密★启用前 5.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()广西北部湾经济区 2019 年初中学业水平考试在此卷上答题无效数学(本试卷满分120分,考试时间120分钟)一、选择题(本大题共 12 小题,毎小题 3 分,共 36 分,在毎小题给出的四个选项中只有一项是符合要求的)A. 60︒B.65︒C.75︒D.85︒6.下列运算正确的是A.(ab3 )2 =a2b6()B. 2 a+ b =ab3 51.如果温度上升2℃记作+2℃,那么温度下降3℃记作A. +2℃B. -2℃C. +3℃2.如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是(D. -3℃()C.5a2 -3a2 = 2D.(a+1)2=a2+1)7.如图,在△ABC中,AC =BC ,∠A = 40︒,观察图中尺规作图的痕迹,可知∠BCG的度数为()A. 40︒B. 45︒C.50︒D.60︒8.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图A B C D书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆3.下列事件为必然事件的是A.打开电视机,正在播放新闻()的概率是()1A.3231929B. C. D.B.任意画一个三角形,其内角和是180︒C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上kx9.若点( 1, y ) ,(2, y ) ,(3, y ) 在反比例函数y-=(k 0) 的图象上,则y ,y ,y 的<1 2 3 1 2 3大小关系是()4.2019 年 6 月 6 日,南宁市地铁 3 号线举行通车仪式,预计地铁 3 号线开通后日均客流A. y >y >yB. y >y >y3 2 11 2 3量为 700 000 人次,其中数据 700 000 用科学记数法表示为A.70⨯104B. 7⨯105C.7⨯106()D. 0.7⨯10 6 C. y >y >y D. y >y >y2 3 11 3 2数学试卷第 1 页(共 8 页)数学试卷第 2 页(共 8 页)9 23 5 2 5510.扬帆中学有一块长30 m ,宽20 m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为x m ,则可列A. B. C. D.10 3二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13.若二次根式x + 4 有意义,则x 的取值范围是方程为().14.分解因式:3ax -ay =2 3 2 .15.甲,乙两人进行飞镖比赛,每人各投6 次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为 4,那么成绩较为稳定的是(填“甲”或“乙”). .3 1A. (30 -x)(20 -x) =⨯ 20⨯30B. (30 - 2x)(20 -x) =⨯ 20⨯304 416.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH ⊥BC 于点H ,1 3C.30x + 2⨯ 20x =⨯ 20⨯30D. (30 - 2x)(20 -x) =⨯ 20⨯304 4 =,则AH =已知BO 4,S= 24 .菱形ABCD11.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为 1.5 米,她先站在A 处看路灯顶端O 的仰角为35︒,再往前走 3 米站在C 处,看路灯顶端O 的仰角为65︒,则路灯顶端O 到地面的距离约为(已知sin 35︒≈ 0.6,cos35︒≈ 0.8 ,tan 35︒≈ 0.7 ,sin 65︒≈ 0.9 ,cos65︒≈ 0.4,tan 65︒≈ 2.1)()17.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为 1 寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为寸.A.3.2 米B.3.9 米C.4.7 米D.5.4 米12.如图,AB 为O的直径,BC 、CD 是O的切线,切点分别为点B 、D ,点E 为线段OB 上的一个动点,连接OD ,CE ,DE ,已知AB = 2 5 ,BC = 2,当C E+D ECE的值最小时,则的值为()DE18.如图,AB 与CD 相交于点O ,AB =CD,∠AOC = 60︒,∠ACD +∠ABD = 210︒,则线段AB ,AC ,BD 之间的等量关系式为.数学试卷第 3 页(共 8 页)数学试卷第 4 页(共 8 页)分),收集数据如下: 1 班:90,70,80,80,80,80,80,90,80,100; 2 班:70,80,80,80,60,90,90,90,100,90; 3 班:90,60,70,80,80,80,80,90,100,100. 整理数据: 在此卷上答题无效 三、解答题共(本大题共 8 小题,共 66 分,解答应写岀文字说明,证明过程或演算步 骤) (-1) 3 + ( 6) 2 -(-9) + (-6) ÷2 . 分数 人数 19.(6 分)计算: 60 10 80 90 100 ⎧3x - 5 < x +1 ⎪ 20.(6 分)解不等式组: ⎨3x - 4 2x -1 ,并利用数轴确定不等式组的解集. 班级 1 班 ⎪ ⎩ 6 0 1 1 1 1 1 6 3 4 2 a 2 1 1 2 2 班 21.(8 分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是 A (2,-1) , 3 班 分析数据: B (1,-2) , C (3,-3) 平均数 中位数 众数 (1)将△ABC 向上平移 4 个单位长度得到△ A B C ,请画出△ A B C ; 1 1 1 1 1 1 1 班 2 班 3 班 83 83 b 80 c 80 d (2)请画出与△ABC 关于 y 轴对称的△ A B C ; 2 2 2 (3)请写出 A 、 A 的坐标. 1 2 80 80 根据以上信息回答下列问题: (1)请直接写出表格中 a ,b , c , d 的值; (2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好? 请说明理由; (3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该 校七年级新生共 570 人,试估计需要准备多少张奖状? 23. (8 分)如图,△ABC 是 O 的内接三角形, AB 为 O 直径, AB = 6 , AD 平分 ∠BAC ,交 BC 于点 ,交 O 于点 ,连接 BD . E D 22.(8 分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共 10 题,每题 10 分.现分别从三个班中各随机取 10 名同学的成绩(单位:(1)求证:∠BAD = ∠CBD ; 数学试卷 第 5 页(共 8 页) 数学试卷 第 6 页(共 8 页)(2)若 ∠AEB =125︒ ,求 BD 的长(结果保留π ).26(. 10 分)如果抛物线C 的顶点在拋物线C 上,抛物线C 的顶点也在拋物线C 上时, 1 2 2 1 1 那么我们称抛物线C 与 C “互为关联”的抛物线.如图 1,已知抛物线 C : y = x 2 + x 1 2 1 1 4 与C y = ax + x + c 是“互为关联”的拋物线,点 A ,B 分别是抛物线C ,C 的顶 : 2 2 2 1 2 点,抛物线C 2 经过点 D (6,-1) . 24.(10 分)某校喜迎中华人民共和国成立 70 周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有 50 张,毎袋小红旗有 20 面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少 5 元,用 150 元购买贴纸所得袋数与用 200 元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(1)直接写出 A , B 的坐标和抛物线C 2 的解析式; (2)抛物线C 2 上是否存在点 E ,使得△ABE 是直角三角形?如果存在,请求出点 E 的坐标;如果不存在,请说明理由; (3)如图 2,点 F (-6,3) 在抛物线C 上,点 M ,N 分别是抛物线C ,C 上的动点, 1 1 2 (2)如果给每位演出学生分发国旗图案贴纸 2 张,小红旗 1 面.设购买国旗图案贴纸a 袋 (a 为正整数),则购买小红旗多少袋能恰好配套?请用含 a 的代数式表示.且点 M ,N 的横坐标相同,记△AFM 面积为 S 1(当点 M 与点 A ,F 重合时 S = 1 0) , △ABN 的面积为 S (当点 N 与点 A ,重合时 S = 0),令 S = S + S ,观察图象,当 (3)在文具店累计购物超过 800 元后,超出 800 元的部分可享受 8 折优惠.学校按(2)中的配套方案购买,共支付 w 元,求 w 关于 a 的函数关系式.现全校有 1200 名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10 分)如图 1,在正方形 ABCD 中,点 E 是 AB 边上的一个动点(点 E 与点 A ,B不重合),连接CE ,过点 B 作 BF ⊥ CE 于点 G ,交 AD 于点 F .2 2 1 2 y ≤y 时,写出 x 的取值范围,并求出在此范围内 S 的最大值. 1 2 (1)求证:△ABF ≌△BCE ;(2)如图 2,当点 E 运动到 AB 中点时,连接 DG ,求证: DC = DG ;(3)如图 3,在(2)的条件下,过点C 作 CM ⊥ DG 于点 H ,分别交 AD , BF 于MN点 M , N ,求 的值.NH 数学试卷 第 7 页(共 8 页) 数学试卷 第 8 页(共 8 页)广西北部湾经济区 2019 年初中学业水平考试数学答案解析一、选择题1.【答案】D【解析】上升2℃记作+2℃,下降3℃记作-3℃;故选:D。
广西南宁市2019年中考[数学]考试真题与答案解析一、选择题本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数是无理数的是( )AB .C .D .2.下列图形是中心对称图形的是( )A .B .C .D .3. 2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约次,则数据用科学记数法表示为( )A .B .C .D .4. 下列运算正确的是( )A .B .C .D .5. 以下调查中,最适合采用全面调查的是( )A .检测长征运载火箭的零部件质量情况B .了解全国中小学生课外阅读情况C .调查某批次汽车的抗撞击能力D .检测某城市的空气质量105-889000889000388.910⨯488.910⨯58.8910⨯68.8910⨯22422x x x +=3232x x x ⋅=()322x x =75222x x x ÷=6. 一元二次方程的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定7. 如图,在中,,观察图中尺规作图的痕迹,则的度数为( )A .B .C .D .8. 一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A.B .C .D .9. 如图,在中,高,正方形一边在上,点分别在上,交于点则的长为( )A .B .C .D .2210x x -+=ABC V ,80BA BC B =∠=︒DCE ∠60o 65o 70o 75o16141312ABC V 120,BC =60AD =EFGH BC ,E F ,AB AC AD EF ,N AN 1520253010. 甲、乙两地相距提速前动车的速度为提速后动车的速度是提速前的倍,提速后行车时间比提速前减少则可列方程为( )A.B .C .D .11. 《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙的距离为寸,点和点距离门槛都为尺(尺寸),则的长是( )A .寸B .寸C .寸 D .寸12. 如图,点是直线上的两点,过两点分别作轴的平行线交双曲线于点.若,则的值为( )600,km /,vkm h 1.220,min 60016003 1.2v v -=60060011.23v v =-60060020 1.2v v-=600600201.2v v=-,kun CD 2C D AB 1110=AB 50.552101104,A B y x =,A B x ()10y x x=>,C D AC =223OD OC -A .B .C .D .二、填空题13.如图,在数轴上表示的的取值范围是_.14.计算.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数“射中环以上”的次数“射中环以上”的频率(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区共有排, 其中第排共有个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有排,则该礼堂的座位总数是__.17.以原点为中心,把点逆时针旋转得到点则点的坐标为___.18.如图,在边长为的菱形中,,点分别是上的动点,且与交于点.当点从点运动到点时,则点的运动路径长为__.54x =204010020040010009153378158321 80190.750.830.780.790.800.80812010()3,4M 90︒,N N ABCD 60C ∠=︒,E F ,AB AD ,AE DF DE =BF P E A B P三、解答题19. 计算:.20.先化简,再求值:,其中.21.如图,点在一条直线上,.求证:;连接,求证:四边形是平行四边形.22.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取份答卷,并统计成绩(成绩得分用表示,单位:分),收集数据如下:整理数据:()()213142--+÷-⨯11x x x x +⎛⎫÷- ⎪⎝⎭3x =,,,B E C F ,,AB DE AC DF BE CF ===()1ABC DEF V V ≌()2AD ABED 20x 90,82,99,86,98,96,90,100,89,8387,88,81,90,93,100,100,96,92,1008085x ≤<8590x ≤<9095x ≤<95100x ≤≤34a8分析数据:平均分中位数众数根据以上信息,解答下列问题:直接写出上述表格中的值;该校有名家长参加了此次问卷测评活动,请估计成绩不低于分的人数是多少?请从中位数和众数中选择一个量, 结合本题解释它的意义.23.如图,一艘渔船位于小岛的北偏东方向,距离小岛的点处,它沿着点的南偏东的方向航行.渔船航行多远距离小岛最近(结果保留根号) ?渔船到达距离小岛最近点后,按原航向继续航行到点处时突然发生事故,渔船马上向小岛上的救援队求救,问救援队从处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器92bc()1,,a b c ()2160090()3B 30o 40nmile A A 15o ()1B ()2B C B B人公司研发出型和型两款垃圾分拣机器人,已知台型机器人和台型机器人同时工作共分拣垃圾吨,台型机器人和台型机器人同时工作共分拣垃圾吨.台型机器人和台型机器人每小时各分拣垃圾多少吨?某垃圾处理厂计划向机器人公司购进一批型和型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾吨.设购买型机器人台,型机器人台,请用含的代数式表示;机器人公司的报价如下表:型号原价购买数量少于台购买数量不少于台型万元/台原价购买打九折型万元/台原价购买打八折在的条件下,设购买总费用为万元,问如何购买使得总费用最少?请说明理由.25.如图,在中,以为直径的交于点连接且连接并延长交的延长线于点与相切于点.求证:是的切线:连接交于点,求证:;A B 2A 5B 2h 3.63A 2B 5h 8()11A 1B ()2A B 20A a 104()5a ≤≤B b a b ()33030A 20B 12()2w w ACE V AC O e CE ,D ,AD ,DAE ACE ∠=∠OD AE ,P PB O e B ()1AP O e ()2AB OP F FAD DAE V :V若,求的值.26.如图1,在平面直角坐标系中,直线与直线相交于点点是直线上的动点,过点作于点点的坐标为连接.设点的纵坐标为的面积为.当时,请直接写出点的坐标;关于的函数解析式为其图象如图2所示,结合图1、2的信息,求出与的值;在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.()312tan OAF ∠=AEAP1:1l y x =+2:2l x =-,D A 2l A 1AB l ⊥,B C ()0,3,,AC BC A ,t ABC V s ()12t =B ()2s t ()()215,15,44115,15t bt t t s a t t ⎧+-<->⎪=⎨⎪+--<<⎩或a b ()32l A ABC V A ABC V答案解析一、选择题123456789101112二、填空题12、[解析]设点,则为点为,则为两边同时平方,得ADCDABBCBACC(),A aa C 1,a a⎛⎫⎪⎝⎭B (),b b D 1,b b⎛⎫ ⎪⎝⎭11,BD b AC ab a∴=-=-AC =Q 11a b a b ⎫∴-=-⎪⎭22113a b a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭222211232a b a b ⎛⎫∴+-=-- ⎪⎝⎭22222211,OC a OD b a b=+=+Q18、[解析]方法一: 连接易证:得则四点共圆为的外接圆易求半径得从而点的路径长为 [此题还有特殊值法等多种技巧]三、解答题19.[答案]解:原式20.[答案]解:原式()22232OC OD ∴-=-2234OD OC -=∴,BD ,BFD DEA V V ≌60,BPE ∠=︒120,BPD ∠=︒180,C DPB ∴∠+∠=︒C B PD ∴、、、O ∴e CBD V Oe 2,R BD ==120,DOB ∠=︒P 120423603R ππ︒⋅=︒()1932=+÷-⨯()16=+-5=-211x x x x x ⎛⎫+=÷- ⎪⎝⎭当时,原式21.[答案]证明:即证明:四边形是平行四边形22.[答案](人)众数:在统计的问卷的成绩中,得分的人数最多.23. [答案]从点作垂线交于点.()()111x x x x x +=⋅+-11x =-3x =11312==-()1,BE CF =Q ,BE EC CF EC ∴+=+,BC EF =,AB DE AC DF==Q ()ABC DEF SSS ∴≅V V ()2()ABC DEF SSS ≅QV V ,B DEF ∴∠=∠//,AB DE ∴,BE DF =Q ∴ABED ()15,91,100a b c ===()()258200.65+÷=16000.651040⨯=()3100()1B AC BD AC D因为垂线段最短,上的点距离点最近,即为所求.易求:在中,易证答:从处沿南偏东出发,最短行程24.[答案]解:设台每小时分拣吨,台每小时分拣吨,依题意得:解得依题意得:AC D BAD )45,4540BAD AD BD ABsin mile ∠=︒==︒==()2Rt BDCV BD tan C DC ∠===30,C ∴∠=︒)30BD BC nmile sin ∴==︒15,60DBE DBC ∠=︒∠=︒45EBC DBC DBE ∴∠=∠-∠=oB 45o ()11A x 1B y ()()225 3.65328x y x y +=⎧⎪⎨+=⎪⎩0.40.2x y =⎧⎨=⎩()20.40.220,a b ÷=与是一次函数的关系,当时,当时,当时,综上,购买台,台,费用最少25.[答案]证明:为直径又为的切线连为圆的切线又弧弧()()()200.91210023545200.9120.81002303520120.810021,,,030a a a W a a a a a a ⨯+⨯-<≤⎧⎪=⨯+⨯-<≤⎨⎪⨯+⨯-≤≤⎩W a 1045a ≤<3545,45a a <≤=930min W =3035,35a a ≤≤=918min W =1030,10a a ≤<=968min W =35A 30B W ()1AC Q 90,ADC ∴∠=︒90,ACE CAD ∴∠+∠=︒90DAE DAC ∠+∠=o,OA AP ∴⊥AP ∴O e ()2,OB ,PA PB Q ,PA PB ∴=,OB OA OP OP ==()OBP OAP SSS ∴≅V V ,BOD DOA ∠=∠∴AD ∴DB =又在中,设:,故且即26. [答案]依题有,当时,故得当时,达到最大值,则代入得,FAD ACE ∴∠=∠,OF AB ∴⊥,ACE DAE ∠=∠Q ,90FAD DAE AFD ADE ∴∠=∠∠=∠=o ()FAD DAE AA ∴V :V ()3Rt OFA V 12tan OAF ∠=,2,OF x AF x OA ===2AP OA ==)1DF OD OF OA OF x =-=-=Q FAD DAEV :V ,FAD DAE ACE ∴∠=∠=∠,tan ACE tan FAD ∴∠=∠AE DF AC AF ==)(15AE x ⇒==AE AP ∴==()111,22B ⎛⎫- ⎪⎝⎭()27t =4,s =215774,44b ⨯+-=1b =-2t =S 11193232224OAC OBC S S S =-=⨯⨯-⨯⨯=V V S ()()921254a +-=解得若为的直角顶点,则此时的方程为,令得,此时若为的直角顶点,过作垂线交于则在中,由勾股定理得14a =-()3)i A ABC V 1//,AC l AC 3y x =+2x =-()12,1A -AC ==122ABC S ==V )ii C ABC V B 2l 2l (),2,E A t -()1312,,2,1,,222t t t E D B ---⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭Rt ABC V 222AC BC AB +=即解得:或此时或;或当为的直角顶点,此种情况不存在,当在上方时为锐角,当在下方时,为钝角,故不存在()222222313123322222t t t t t t ----⎛⎫⎛⎫⎛⎫⎛⎫+-++-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭212270t t ⇒-+=3t =9t =()22,3A -()32,9A -122ABC S AC BC =⨯⨯=V 1102ABC S =⨯=V )iii B ABC V A D ABC ∠A D ABC ∠。
①1×12=1-12 ②2×23=2-23 ③3×34=3-34④4×45=4-45 ……专题复习 归纳与猜想归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
一、知识网络图二、基础知识整理猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的又一热点。
★ 范例精讲【归纳与猜想】例1【河北实验区05】观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。
例2〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么? ⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ;⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形;⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。
①1×12=1-12 ②2×23=2-23 ③3×34=3-34④4×45=4-45 ……专题复习 归纳与猜想归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
一、知识网络图二、基础知识整理猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的又一热点。
★ 例精讲【归纳与猜想】例1观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。
例2〖归纳猜想型〗将一正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,将结果填在下表中,并解答所提出的问题:⑴如果能剪100次,共有多少个正方形?据上表分析,你能发现什么规律? ⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么?⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ;⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形;⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。
绝密★启用前广西桂林市2019年中考数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.3的倒数是( ) A.32 B.32-C.23-D.23【答案】A 【解析】 【分析】直接利用倒数的定义得出答案. 【详解】 解:23的倒数是:32. 故选:A . 【点睛】此题主要考查了倒数,正确把握定义是解题关键.2.若海平面以上1045米,记做1045+米,则海平面以下155米,记做( ) A.1200-米 B.155-米C.155米D.1200米【答案】B 【解析】 【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 【详解】试卷第2页,总21页…………○…………※※请※※不※…………○…………解:若海平面以上1045米,记做1045+米,则海平面以下155米,记做155-米. 故选:B . 【点睛】此题主要考查了正负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 3.将数47300000用科学记数法表示为( ) A.547310⨯ B.647.310⨯C.74.7310⨯D.54.7310⨯【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将47300000用科学记数法表示为74.7310⨯, 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.下列图形中,是中心对称图形的是( )A.圆B.等边三角形C.直角三角形D.正五边形【答案】A 【解析】 【分析】根据中心对称图形的概念求解即可. 【详解】解:A 、是中心对称图形,本选项正确;………○…学校:__………○…B 、不是中心对称图形,本选项错误; C 、不是中心对称图形,本选项错误; D 、不是中心对称图形,本选项错误. 故选:A . 【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,绕对称中心旋转180度后两部分重合. 5.9的平方根是( ) A.3 B.3± C.3- D.9【答案】B 【解析】 【分析】根据(±3)2=9,即可得出答案. 【详解】解:∵2(39)±=, ∴9的平方根为:3± 故选:B . 【点睛】本题考查了平方根的知识,掌握平方根的定义是关键,注意一个正数的平方根有两个且互为相反数.6.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A.12B.13C.14D.16【答案】D 【解析】 【分析】用阴影部分扇形个数除以扇形的总个数即可得. 【详解】试卷第4页,总21页解:当转盘停止转动时,指针指向阴影部分的概率是16, 故选:D . 【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等. 7.下列命题中,是真命题的是( ) A.两直线平行,内错角相等 B.两个锐角的和是钝角 C.直角三角形都相似 D.正六边形的内角和为360︒ 【答案】A 【解析】 【分析】利用平行线的性质、钝角及锐角的定义、相似三角形的判定及正多边形的内角和公式分别判断后即可确定正确的选项. 【详解】解:A 、两直线平行,内错角相等,正确,是真命题; B 、两个锐角的和不一定是钝角,故错误,是假命题; C 、所有的直角三角形不一定相似,故错误,是假命题; D 、正六边形的内角和为720︒,故错误,是假命题; 故选:A . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、钝角及锐角的定义、相似三角形的判定及正多边形的内角和公式,难度不大. 8.下列计算正确的是( ) A.236a a a ⋅= B.824a a a ÷= C.2222a a a += D.()2239a a +=+【答案】C 【解析】 【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案. 【详解】解:A 、235a a a ⋅=,故此选项错误; B 、826a a a ÷=,故此选项错误; C 、2222a a a +=,故此选项正确; D 、()22369a a a +=++,故此选项错误; 故选:C . 【点睛】此题主要考查了同底数幂的乘除运算以及完全平方公式、合并同类项,正确掌握相关运算法则是解题关键.9.如果,0a b c ><,那么下列不等式成立的是( ) A.a c b +> B.a c b c +>- C.11ac bc ->- D.()()11a c b c -<-【答案】D 【解析】 【分析】根据不等式的性质即可求出答案. 【详解】 解:∵0c <, ∴11c -<-, ∵a b >,∴()()11a c b c -<-, 故选:D . 【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型. 10.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为( )试卷第6页,总21页○……………………○……○……………………○……A.πB.2πC.3πD.1)π【答案】C 【解析】 【分析】的正三角形.可计算边长为2,据此即可得出表面积. 【详解】的正三角形.∴正三角形的边长2==.∴圆锥的底面圆半径是1,母线长是2, ∴底面周长为2π ∴侧面积为12222ππ⨯⨯=,∵底面积为2r ππ=, ∴全面积是3π. 故选:C . 【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 11.将矩形ABCD 按如图所示的方式折叠,,,BE EG FG 为折痕,若顶点,,A C D 都落在点O 处,且点,,B O G 在同一条直线上,同时点,,E O F 在另一条直线上,则ADAB的值为( )A.65C.32【答案】B 【解析】 【分析】由折叠可得,E ,G 分别为AD ,CD 的中点,设CD=2a ,AD=2b ,根据Rt △BCG 中,CG 2+BC 2=BG 2,可得即a 2+(2b )2=(3a )2,进而得出ADAB的值。
题型(八) 规律与猜想1.(2019四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120B .8461 C .840589 D .760421 【答案】C .考点:1.规律型:图形的变化类;2.综合题.2.(2019四川省达州市)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2019次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2019πB .2034πC .3024πD .3026π【答案】D .[来源:学。
科。
网Z 。
X 。
X 。
K]考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.3.(2019江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A 4处;…按此规律运动到点A 2019处,则点A 2019与点A 0间的距离是( )A .4 B. C .2 D .0【答案】A .【解析】如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=OA5=2,OA6=0,OA7=4,…∵2019÷6=336…1,∴按此规律运动到点A2019处,A2019与A1重合,∴OA2019=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.21世纪教育网4.(2019重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【答案】B.5.(2019山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729[来源:学+科+网]【答案】C考点:探索规律6.(2019浙江宁波第12题)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是( )A.3B.4C.5D.6【答案】A.【解析】根据题意可知,最少知道3个小矩形的周长即可求得大矩形的面积.考点:矩形的性质.7.(2019贵州黔东南州第10题)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2019 B.2019 C.191 D.190【答案】D.8.(2019湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里 D.3里【答案】C考点:等比数列9.(2019浙江湖州第10题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从⨯的正方形网格图形中例如,在44⨯的正方形网格图形(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有2020(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16[来源:学科网]【答案】B【解析】根据图一可知,延AC 或AD 可进行下去,然后到CF ,从而求出,这时可知跳过了3格,然后依次进行下去,而20×20格共21条线,所以可知要进行下去,正好是(20+1)÷7×2=14. 故答案为:14.考点:1、勾股定理,2、规律探索10.(2019山东菏泽第14题)如图,y AB ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到11O AB ∆的位置,使点B 的对应点1B 落在直线x y 33-=上,再将11O AB ∆绕点1B 逆时针旋转到111O B A ∆的位置,使点1O 的对应点2O 落在直线x y 33-=上,依次进行下去......若点B 的坐标是)1,0(,则点12O 的纵坐标为 .【答案】()3333+ 【解析】∵直线x y 33-=∴∠AOB=60°∵在ABO ∆中,OB=1,OA=2,AB=3∴332+=OO ,∵ABO ∆每旋转三次看做一个整体,∴()3336OO 12+=.如图,过点12O 向x 轴画垂线,∵()3336OO 12+=,︒=∠6012OE O ,∴()3333+=OE ,即点12O 的纵坐标为()3333+.[来源:学*科*网]11.(2019浙江湖州第15题)如图,已知30∠AOB =,在射线OA 上取点1O ,以1O 为圆心的圆与OB 相切;在射线1O A 上取点2O ,以2O 为圆心,21O O 为半径的圆与OB 相切;在射线2O A 上取点3O ,以3O 为圆心,32O O 为半径的圆与OB 相切;⋅⋅⋅;在射线9O A 上取点10O ,以10O 为圆心,109O O 为半径的圆与OB 相切.若1O 的半径为1,则10O 的半径长是 .[来源:学+科+网]【答案】512(或29)考点:1、圆的切线,2、30°角的直角三角形12.(2019浙江舟山第15题)如图,把n 个长为1的正方形拼接成一排,求得71tan ,31tan ,1tan 321=∠=∠=∠C BA C BA C BA ,计算=∠C BA 4tan ,……,按此规律,写出=∠C BA n tan (用含n 的代数式表示).【答案】113 , 211n n -+.考点:解直角三角形.13.(2019浙江衢州第16题)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限。
△ABO 沿x 轴正方向作无滑动的翻滚,经第一次翻滚后得△A 1B 1O ,则翻滚3次后点B 的对应点的坐标是__________;翻滚2019次后AB 中点M 经过的路径长为__________【答案】(5;(+896)3π. 14.(2019贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与y 轴重合且点A 的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB 1与第一块三角板的斜边AB 垂直且交y 轴于点B 1;第三块三角板的斜边B 1B 2与第二块三角板的斜边BB 1垂直且交x 轴于点B 2;第四块三角板的斜边B 2B 3与第三块三角板的斜边B 1B 2C 垂直且交y 轴于点B 3;…按此规律继续下去,则点B 2019的坐标为 .【答案】(0,﹣2017)15.(2019江苏徐州第18题)如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,则线段n OA 的长度为 ..2019-2020学年数学中考模拟试卷一、选择题1.如图,在平面直角坐标系中,矩形ABCD 的面积为定值,它的对称中心恰与原点重合,且AB ∥y 轴,CD 交x 轴于点M ,过原点的直线EF 分别交AD 、BC 边于点E 、F ,以EF 为一边作矩形EFGH ,并使EF 的对边GH 所在直线过点M ,若点A 的横坐标逐渐增大,图中矩形EFGH 的面积的大小变化情况是( )A.一直减小B.一直不变C.先减小后增大D.先增大后减小2.O 为等边△ABC 所在平面内一点,若△OAB 、△OBC 、△OAC 都为等腰三角形,则这样的点O 一共有( )A .4B .5C .6D .103.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”,规定:用电量不超过200度按第一阶梯电价收费,用电量超过200度,超过200度的部分按第二阶梯电价收费.图是李博家2018年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为( )A .0.4元,0.8元B .0.5元,0.6元C .0.4元,0.6元D .0.5元,0.8元4.小明希望测量出电线杆AB 的高度,于是在阳光明媚的一天,他在电线杆旁的点D 处立一标杆CD ,使标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一条直线上),量得2ED =米,4DB =米, 1.5CD =米,则电线杆AB 长为( )A .2米B .3米C .4.5米D .5米5+1)20191)2018的结果是( )A +1B 1CD .16.如图,菱形ABCD 的两个顶点B ,D 在反比例函数y =k x的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (﹣2,﹣2),∠ABC =60°,则k 的值是( )A .4B .6C .D .127.设边长为a 的正方形面积为2,下列关于a 的四种说法:① a 是有理数;②a 是方程2x 2-4=0的解;③a 是2的算术平方根;④1<a <2.其中,所有正确说法的序号是( )A .②③B .③④C .②③④D .①②③④8.如图,D 、E 分别是ABC ∆的边AB 、BC 上的点,DE AC ,AE 、CD 相交于点O ,则下列结论一定正确的是( )A .BD EO AD AO =B .CO CE CD CB =C .AB CO BD OD = D .BD OD BE OE= 9.下列运算正确的是( )A .2223x 25x x +=B .2223a 26a a ⋅=C .236(2)8x y x y -=-D .22322m()m n m m n -=-10.如图所示几何体的左视图是( )A. B. C. D.11.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a+b 的值为( )A .B .4CD 12.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BC的值最小( )A .2B .53C .114D .3二、填空题 13.如图,已知抛物线y=ax 2-4x+c(a≠0)与反比例函数y=9x 的图象相交于B 点,且B 点的横坐标为3,抛物线与y 轴交于点C(0,6),A 是抛物线y=ax 2-4x+c 的顶点,P 点是x 轴上一动点,当PA+PB 最小时,P 点的坐标为_______.14.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球________个.15.如图,已知某商店营业大厅自动扶梯AB 的倾斜角为31,自动扶梯的长为10米,则大厅两层之间的高度BC 为__________米.(参考数据:sin310.515=,cos310.857=,tan310.601= )16.如图,在四边形ABCD 中,E 为AB 的中点,DE ⊥AB 于点E ,∠A =66°,∠ABC =90°,BC =AD ,∠C 的度数________.17.已知关于x 的方程212mx x -=有两个不相等的实数根,则m 的取值范围是_______.18.一元二次方程230x x +=的根的判别式的值为____.三、解答题19.(1)计算:2(1)|12cos30︒-++;(2)解方程组:52311x y x y +=⎧⎨+=⎩ 20.如图,把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合,若其长BC 为8,宽AB 为4.(1)求证:△AEF 是等腰三角形.(2)EF = .21.计算:2sin30°+(π-3.14)0|+(12)-1+(-1)2019 22.永康市某校在课改中,开设的选修课有:篮球,足球,排球,羽毛球,乒乓球,学生可根据自己的爱好选修一门,李老师对九(1)班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班共有学生 人,并补全条形统计图;(2)求“篮球”所在扇形圆心角的度数;(3)九(1)班班委4人中,甲选修篮球,乙和丙选修足球,丁选修排球,从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人中恰好为1人选修篮球,1人选修足球的概率.23.某校九(1)班开展数学活动,李明和张华两位同学合作用测角仪测量学校旗杆的高度,李明站在B 点测得旗杆顶端E 点的仰角为45°,张华站在D (D 点在直线FB 上)测得旗杆顶端E 点仰角为15°,已知李明和张华相距(BD )30米,李明的身高(AB )1.6米,张华的身高(CD )1.75米,求旗杆的高EF 的长.(结果精确到0.1.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)24.二孩政策出台后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同(1)甲家庭已有一个男孩,准备再生育一个孩子,则第二个孩子是女孩的概率是 .(2)乙家庭没有孩子,准备生育两个孩子,请利用列表或画树状图求至少有一个男孩的概率.25.(1)(问题发现)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,请判断线段BE与AF的数量关系并写出推断过程;(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(结论运用)在(1)(2)的条件下,若△ABC的面积为2,当正方形CDEF旋转到B,E,F三点在同一直线上时,请直接写出线段AF的长.【参考答案】***一、选择题二、填空题13.(125,0)14.2015.1516.78°17.m>-1且m≠0;18.三、解答题19.(1)2;(2)41 xy=⎧⎨=⎩.【解析】【分析】(1)根据算术平方根、乘方、绝对值,特殊角的三角函数值的定义,把原式转化为实数的加减运算,计算求值即可,(2)利用加减消元法解之即可.【详解】解:(1)原式=1+2×2==2,(2)5 2311x yx y+=⎧⎨+=⎩①②,②﹣①×2得:y=1,把y=1代入①得:x+1=5,解得:x=4,即方程组的解为:41 xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,实数的运算,特殊角的三角函数值,解题的关键:(1)正确掌握绝对值,特殊角的三角函数值的定义,(2)正确掌握加减消元法解二元一次方程组.20.(1)详见解析;(2)【解析】【分析】(1)由矩形的性质以及翻折的性质证明∠AEF=∠AFE即可;(2)设AF=AE=FC=x,在Rt△ABF中,利用勾股定理求出x,作FH⊥AE于H,在Rt△AHF中,利用勾股定理求出AH长,继而求出HE的长,然后在Rt△EFH中,利用勾股定理即可求得EF的长.【详解】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFC,由翻折不变性可知:∠AFE=∠EFC,∴∠AEF=∠AFE,∴AE=AF,∴△AEF是等腰三角形.(2)设AF=AE=FC=x,在Rt△ABF中,∵AF2=AB2+BF2,∴x2=42+(8﹣x)2,∴x=5,作FH⊥AE于H.在Rt △AHF 中,AH 3,∴HE =AE ﹣AH =2,在Rt △EFH 中,EF故答案为:【点睛】本题考查了矩形的性质,折叠的性质,熟练掌握相关知识是解题的关键.注意数形结合思想的运用.21.【解析】【分析】依次计算特殊角的三角函数值,零次幂,去绝对值,负整数幂,再合并即可.【详解】原式=2×12-1+2-1【点睛】本题运用了实数的运算法则和三角函数的特殊值,注意运算的准确性.22.(1)50,图形见解析;(2)72°;(3)13 【解析】【分析】(1)用排球的人数除以它所占的百分比即可得到全班人数,用总人数减去其它选课的人数求出乒乓球的人数,从而补全统计图;(2)用篮球的所占百分比乘以360°即可得到在扇形统计图中“篮球”对应扇形的圆心角的度数;(3)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.【详解】(1)该班共有学生125024%=(人), 乒乓球有50﹣10﹣12﹣9﹣5=14(人),补图如下:故答案为:50;(2)1036072 50︒︒⨯=;(3)根据题意画图如下:用A表示篮球,用B表示足球,用C表示排球;共有12种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占4种,所以选出的2人恰好1人选修篮球,1人选修足球的概率所求的概率为41123P==.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图与扇形统计图.23.旗杆的高EF为12.9米.【解析】【分析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.15m.由李明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+30)m,EN=(x-0.15)m.在Rt△CEN中,由tan∠ECN=ENCN,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.【详解】过点A作AM⊥EF于M,过点C作CN⊥EF于N,∵AB=1.6,CD=1.75,∴MN=0.15m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+30)m,EN=(x-0.15)m,∵∠ECN=15°,∴tan∠ECN=ENCN=0.1530xx-+,即0.1530xx-+≈0.27,解得:x≈11.3,则EF=EM+MF≈11.3+1.6=12.9(m),答:旗杆的高EF为12.9米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.24.(1)12;(2)34【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是男孩的结果数,然后根据概率公式求解.【详解】(1)第二个孩子是女孩的概率=12,故答案为:12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是男孩的结果数为3,所以至少有一个孩子是男孩的概率=34.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)BE AF.见解析;(2)无变化.证明见解析;(3)线段AF11.【解析】【分析】(1)首先证明△ADB是等腰直角三角形,推出AD,再证明AF=AD即可解决问题;(2)先利用三角函数得出2CA CB =,2CF CE =,推出CA CF CB CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出,,即可得出,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.【详解】(1)在Rt △ABC 中,AB =AC ,根据勾股定理得,BC AB , 又∵点D 为BC 的中点,∴AD =12BC AB , ∵四边形CDEF 是正方形,∴AF =EF =AD =2AB =2BE ,∴BE AF .(2)无变化.证明:如图2,在Rt △ABC 中,∵AB =AC ,∴∠ABC =∠ACB =45°,∴sin ∠ABC =CA CB , 在正方形CDEF 中,∠FEC =12∠FED =45°,在Rt △CEF 中,sin ∠FEC =2CF CE =, ∴CF CA CE CB=, ∵∠FCE =∠ACB =45°,∴∠FCE -∠ACE =∠ACB -∠ACE ,∴∠FCA =∠ECB ,∴△ACF ∽△BCE ,∴BE CB AF CA==∴BE AF ,∴线段BE 与AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,,在Rt △BCF 中,,根据勾股定理得,,∴,由(2)知,AF ,∴,当点E 在线段BF 的延长线上时,如图3,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=2CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°,在Rt △CEF 中,sin ∠FEC=2CF CE =, ∴CF CA CE CB=, ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE ,∴∠FCA=∠ECB ,∴△ACF ∽△BCE ,∴BE CB AF CA==∴,由(1)知,,在Rt △BCF 中,,根据勾股定理得,,∴,由(2)知,AF,∴.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF.【点睛】本题是四边形综合题,主要考查了,等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解(2)(3)的关键是判断出△ACF∽△BCE.第三问要分情况讨论.2019-2020学年数学中考模拟试卷一、选择题1.如图,已知点A 是以MN 为直径的半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径ON 上的点.若⊙O 的半径为l ,则AP+BP 的最小值为( )A .2BCD .12.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >bB .a =b >0C .ac >0D .|a|>|c|3.下列四个实数中,最大的实数是( )A.2-B.-1C.04.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接BD .若BD 平分∠ABC ,则下列结论错误的是( )A .BC=2BEB .∠A=∠EDAC .BC=2AD D .BD ⊥AC5.有两个一元二次方程M :ax 2+bx+c =0,N :cx 2+bx+a =0,其中a+c =0,下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .b =0时,方程M 和方程N 有一个相同的根,那么这个根必是x =1C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .ac≠06.一个不透明的盒子里装有除颜色外其他都相同的红球6个和白球若干个,每次随机摸出一个球,记下颜色后放回,摇匀后再摸,通过多次试验发现摸到红球的频率稳定在0.3 左右,则盒子中白球可能有( )A .12个B .14个C .18个D .20个 7.若点P (a-3,a-1)是第二象限内的一点,则a 的取值范围是( )A .3a >B .3a <C .1a >D .13a <<8.如表是小明同学参加“一分钟汉字听写”训练近6次的成绩:则这组数据的平均数和中位数分别是( )A .245个、244个B .244个、244个C .244个、241.5个D .243个、244个9.水库大坝截面的迎水坡AD 的坡比为4:3,背水坡BC 的坡比为1:2,大坝高DE =20m ,坝顶宽CD =10m ,则下底AB 的长为( )A .55mB .60mC .65mD .70m10.如图,等腰直角ABC ∆中,AC BC =,90ACB ∠=︒,点O 在斜边AB 上,且满足:BO OA =,将BOC ∆绕C 点顺时针方向旋转到AQC ∆的位置,则AQC ∠的大小为( )A .100︒B .105︒C .120︒D .135︒ 11.已知抛物线2y ax bx c =++(,,a b c 为常数,0a <),其对称轴是1x =,与x 轴的一个交点在()2,0,()3,0之间.有下列结论:①0abc <;②0a b c -+=;③若此抛物线过()12,y -和()23,y 两点,则12y y <,其中,正确结论的个数为( )A.0B.1C.2D.312.如图,点O 1是△ABC 的外心,以AB 为直径作⊙O 恰好过点O 1,若AC =2,BC =,则AO 1的长是( )A .BC .D .二、填空题 13.已知8,3,m n a a ==则m n a +=_____.14.DNA 分子的直径只有0.0000002cm ,将0.0000002用科学计数法可表示为________.15.如图,铁路的路基是等腰梯形ABCD ,斜坡AD 、BC 的坡度i =1:1.5,路基AE 高为3米,现由单线改为复线,路基需加宽4米,(即AH =4米),加宽后也成等腰梯形,且GH 、BF 斜坡的坡度i'=1:2,若路长为10000米,则加宽的土石方量共是_____立方米.16.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是_____.17.如图,在平行四边形ABCD中,点E是边CD的中点,联结AE、BD交于点F,若BC=a,BA=b,用a、b表示DF=______.18.如图,△ABC中,∠BAC=120°,点D、E在BC上,AD⊥AC,AE⊥AB,且△ADE是等边三角形,若AD =2,则△ABC的周长等于_____.三、解答题19.已知二次函数y=ax2+bx+8,经过点(1,9)和(6,−16).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A.B,与y轴的交点为C,求△ABC的面积。