二次方程根的分布与二次函数在闭区间上的最值
- 格式:doc
- 大小:469.50 KB
- 文档页数:6
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求; 2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
微专题11二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m<<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩在区间(,)m n 内有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.【答案】(20,0]-【解析】由命题甲:关于x的不等式240mx mx+-<的解集为R,当0m=时,不等式40-<恒成立;当0m≠时,则满足2160mm m<⎧⎨∆=+<⎩,解得160m-<<,综上可得160m-<≤.由命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根,则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-,可得200m -<≤,即实数m 的取值范围为(20,0]-.故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________.【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意.当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤,当1a =时,方程有且仅有一个负实数根1x =-,当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <.所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”.故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.【答案】125k ≤-或3k >【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,31113b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-.(2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内,所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩,解得1125<<a ,故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221 260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【答案】(1)1m <-(2)7554m -<<-(3)1m ≤-【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--.故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤,所以实数a 的取值范围是16(5,]3.故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数 a 的取值范围是_____.【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于 2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.【答案】()3,0-【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是()3,0-.故答案为:()3,0-.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,那么a 的取值范围是()A .2275a -<<B .25a >C .27a <-D .2011a -<<【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a<-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是()A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D.{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足:①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2-若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-,95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-==-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,,0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A .13B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线,根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21.故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .5B .6C .7D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <,所以k 最大整数值是1.故答案为:1.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =-,又12t ≤≤,2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x .(1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==.(2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以211212121241111194(4)()(5)54444x x x x x x x x x x ⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭,当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意,124x x ∴+的最小值为94.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是()A .4B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-,解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥,当c =2时,等号成立,所以其最小值是2,故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是()A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+ ,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331k k k==++,6k ,∴1106k < ,3102k < ,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是()A .12a x x b <<<B .12x a b x <<<C .12a x b x <<<D .12x a x b<<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<.故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈.(1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<;(ⅱ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <.综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点.所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>,由求根公式得3x =因为函数()g a ()3,+∞上单调递增,所以()332x g >=31012x <<-.所以123111x x x ++.所以a 的取值范围是21,22⎛- ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为()A .1B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <.因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是()A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5mf x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或则54m -<<-,即(5,4)m ∈--故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=()A .3B .6C.D.【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,12||x x -===.故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是().A .(,0)(1,)-∞⋃+∞B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩,解得103-<<a ,故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <,故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件.故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若AB ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+-由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是()A .{}12a a -<<B .{}21a a -<<C .{}2a a <-D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-.故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是().A .24a b=B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c ++<的解集为12(,)x x ,且12||4x x -=,则4c =【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231 314 a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误;对于D :若不等式2x ax bc ++<的解集为12(,)x x ,即20x ax b c ++-<的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=,则12||4x x -==,解得4c =,所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是()A .4m =B .5m =C .1m =D .12=-m 【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =.当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得2=±x 但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是()A .3-B .18C .14D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是()A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误;对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为()A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f f m f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-,又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <-,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞)【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-,所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1-【解析】由()()2320x x x -+-≤,得23020x x x ⎧-≥⎪⎨+-≤⎪⎩或23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得13x ≤≤,所以集合{|31A x x =-≤≤-或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则()()3030f f ⎧-≤⎪⎨≤⎪⎩,即9312093120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题;239mx x ∴≤+,即93m x x ≤+;96x x +≥(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--,则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩,∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a=-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,1a ∈--(2)[]1,2x ∃∈,()22130x a x +-+>成立,即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在x ⎡∈⎣上单调递增,在)x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =-故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <-则k 的取值范围为(),2∞--.。
二次函数知识点及题型归纳总结知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)b -+∞上递减,当bx =-时,;24()4ac b f x a -=.(2) 当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,图2-9令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==;(2) 若02b p x a <-<,则(),()2bm f M f q a =-=;(3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=;(4) 若2bq a-≥,则(),()m f q M f p ==.三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示.四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立00a >⎧⇔⎨∆<⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩.注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型归纳及思路提示题型1 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ). A. m A ∀∈ ,都有(3)0f m +> B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<变式2 已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ).A. 12()()f x f x <B. 12()()f x f x =C. 12()()f x f x >D. 1()f x 与2()f x 的大小不能确定例 2.42 (2012江苏13)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c < ()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x ax x b c +=-⎧⎨=-⎩,12||x x -==6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=.变式1 (2012浙江理17)设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =. 变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________. 题型2 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围. 分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m 的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围. 变式2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围.例2.44 已知方程32230(,,)x ax bx c a b cR +++=∈的三个实根可分别作为一个椭圆、一个双曲线、一个).A. )+∞ B.)+∞ C.)+∞ D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---.32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围. 题型3 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a)x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系. 解析 2()21f x x ax =--,抛物线()y f x =开口向上,对称轴x a =.(1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --.(2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-.(4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.例2.47 已知二次函数2()23f x x x =--,若()f x 在[,1]t t +上的最小值为()g t ,求()g t 的表达式. 分析 本题考查“定轴动区间”问题,求给定的二次函数在动区间上的最值,利用数形结合及分类讨论思想求解.解析 根据二次函数的解析式知1x =为其对称轴,分析对称轴与区间的位置关系,如图2-13所示.(b)(c)图2-13(a )x(1) 当1t >时,如图2-13(a )所示,2()()23g t f t t t ==--;(2) 当11t +<,即0t <时,如图2-13(b )所示,2()(1)4g t f t t =+=-; (3) 当11t t ≤≤+,即01t ≤≤时,如图2-13(c )所示,()(1)4g t f ==-.因此224(0)()4(01)23(1)t t g t t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩.变式1 已知二次函数()f x 满足(1)(1)f x f x +=-,且(0)0,(1)1f f ==,若()f x 在区间[,]m n 上的值域是[,]m n ,求,m n 的值.变式2 (2012北京东城期末理8)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴围成的图形面积为A.8B.6C.4D.2最有效训练1.函数2263,[1,1]y x x x =-+∈-,则y 的最小值是( ).A. 32-B. 3C. 1-D.不存在 2.已知,,a b c 成等比数列,则函数2y ax bx c =++的图像与x 轴的交点个数为( ). A. 0 B. 1 C. 2 D. 0或13. 函数y =x 2+mx +1的图像关于直线x =1对称的充要条件是( ). A. m =-2 B. m =2 C. m =-1 D. m =14. 已知函数ƒ(x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( ). A. ∀x ∈(0,1),都有ƒ(x )>0 B. ∀x ∈(0,1),都有ƒ(x )<0 C. ∃x 0∈(0,1),都有ƒ(x 0)=0 D. ∃x 0∈(0,1),都有ƒ(x 0)>05. 已知点A(0,2),B(2,0),若点C在函数y=x2的图像上,则使得∆ABC的面积为2的点C的个数为( ).A. 4B. 3C. 2D. 16. 已知函数ƒ(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任意实数x,ƒ(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ).A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)7. 若函数ƒ(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则ƒ(x)max=________.8. 关于x的方程2x2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是________.9. 当x∈[0,2]时,函数ƒ(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是________.10.已知二次函数ƒ(x)=ax2-x+c(x∈R)的值域为[0,+∞),则c aa c+++22的最小值为________.11.已知定义域为R的函数ƒ(x)满足ƒ(ƒ(x)-x2+x)=ƒ(x)-x2+x.(1)若ƒ(2)=3,求ƒ(1),又若ƒ(0)=a,求ƒ(a);(2)设有且仅有一个实数x0,使得ƒ(x0)=x0,求函数ƒ(x)的解析式.12.已知二次函数ƒ(x)=x2+mx+1(x∈Z),且关于x的方程ƒ(x)=2在区间(-3,12)内有两个不同的实根.(1)求ƒ(x)的解析式;(2)若x∈[1,t](t>1)时,总有ƒ(x-4)≤4x成立,求t的最大值.。
二次方程根的分布与二次函数在闭区间上的最值归纳21、一元二次方程ax bx c 0根的分布情况设方程ax bx c 0 a 0的不等两根为X|,X2且X i x?,相应的二次函数为f x ax bx c 0,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间夕卜,即在区间两侧为2,(图形分别如下)需满足的条件是f n 0 f n 0对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在 m, n 有以下特殊情况:1 若f m 0或f n 0,则此时f mg f n 0不成立,但对于这种情况是知道了方程有一根为 m 或n ,可以求出另外一根, 然后可以根据另一根在区间 m,n ,从而可以求出参数的值。
如方程mx 2 m 2 x 2 0、 2 2 2在区间1,3上有一根,因为f 10,所以mx m 2 x 2 x 1 mx 2,另一根为 ,由13m m2得 m 2即为所求;3 2方程有且只有一根,且这个根在区间m, n ,即 0,此时由 0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给疋的区间, 如右不在,舍去相应的参数。
如方程x 4mx 2m 6 0有且 一根在区间 3,0 ,求m 的取值围。
分析:①由f 3gf 0 0 即 14m 15 m3 0得出 3 15 m;②由0即 16m 2 4 2m146 0得出m 31 或 m —,2 当m1时,根x23,0 ,即m31满足题意;当m 时,根x 323,0,故 m-不满足题意; 2综上分析,得出3 m至或14m1根的分布练习题例1、已知二次方程 2m 1 x 2 2mx m 1 0有一正根和一负根,数 m 的取值围。
1解:由 2m 1 gf 0 0即 2m 1 m 1 0,从而得m 1即为所求的围。
二次方程根的分布口诀二次方程根的分布口诀,那可是数学学习中的一把“利器”!咱们先来说说啥是二次方程。
就比如说$ax^2 + bx + c = 0$($a ≠ 0$)这样的式子就是二次方程。
那根的分布是啥呢?简单说,就是研究这个方程的根在某个区间内的情况。
这根的分布口诀啊,就像是一个神秘的魔法咒语,掌握了它,解决问题就能事半功倍。
比如说“左负右正中间零,左正右负两边零”,这口诀听起来是不是有点像绕口令?别着急,咱们慢慢解释。
“左负右正中间零”意思是,如果二次函数的图像与$x$轴的交点在左边是负数,右边是正数,那么对称轴就在中间,也就是对称轴对应的$x$值是零。
“左正右负两边零”呢,就是反过来,如果左边是正数,右边是负数,那根就在对称轴的两边,也就是对称轴对应的$x$值是零。
我记得有一次给学生讲这个知识点,有个小家伙一脸懵地看着我,嘴里嘟囔着:“老师,这也太难懂啦!”我就耐心地给他举了个例子。
假设咱们有个二次方程$x^2 - 3x + 2 = 0$,咱们先把它变成二次函数$y = x^2 - 3x + 2$,然后画出它的图像。
这图像就像一个弯弯的彩虹,对称轴是$x = \frac{3}{2}$。
当$x = 1$和$x = 2$的时候,函数值为零,这两个点就是方程的根。
这时候你看,左边的根$1$是负数,右边的根$2$是正数,这不就符合“左负右正中间零”嘛!还有啊,像“大于取两边,小于取中间”这个口诀也很有用。
比如说方程$(x - 1)(x - 2) > 0$,要找它的解集,就是$x < 1$或者$x > 2$,这就是“大于取两边”。
要是方程$(x - 1)(x - 2) < 0$,解集就是$1 <x < 2$,这就是“小于取中间”。
学习这根的分布口诀,可不能死记硬背,得结合实际例子多练习。
有一回,我布置了一道关于二次方程根的分布的作业题。
有个学生做得一塌糊涂,我把他叫到办公室,一点点给他分析。
专题06:二次方程根的分布与二次函数在闭区间上的最值归纳精讲温故知新1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a例1:1.(多选)若关于x 的方程2(1)+2=0x m x m ---的两根为正数(包含等根),则m 的取值可以是( )A .122--B.-C .1.9 D .1.99【答案】BCD 【解析】 【分析】由一元二次函数零点的分布可得答案. 【详解】由题意,构建函数2()(1)2f x x m x m =--+-,因为关于x 的方程2(1)20x m x m --+-=的两根为正数(包含等根), 所以()()()2Δ142010200m m m f ⎧=---⎪-⎪>⎨⎪>⎪⎩, 解得122m -+<, 故选:BCD. 2.已知函数()2()23f x x ax a a R =-+-∈.(1)若1a =时,求()f x 在区间1[,3]2上的最大值和最小值; (2)若()f x 的一个零点小于0,另一个零点大于0,求a 的范围. 【答案】(1) max 5y =;min 1y = ;(2)3a > 【分析】(1)求出函数的对称轴,再判断对称轴与区间的位置关系,从而得到函数的最值; (2)由题意得(0)0f <,即可得到答案; 【详解】(1)当1a =时,函数的对称轴为11[,3]2x =∈,∴min ()(1)1f x f ==,15(),(3)524f f ==, ∴max ()5f x =。
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程ax2bx 0根的分布情况设方程ax2 bx 0 a = 0的不等两根为X i, X2且x i :::X2,相应的二次函数为f x =ax2■ bx ■ c = 0,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间m,n夕卜,即在区间两侧为:::m,x2• n ,(图形分别如下)需满足的条件是对以上的根的分布表中一些特殊情况作说明: (1) 两根有且仅有一根在 m,n 内有以下特殊情况:1 若f m =0或f n =0,贝眦时f m|_f n :: 0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间 m,n 内,从而可以求出参数的值。
如方 程 mx 2-m ・2x ・2=0在区间 1 , 3E 有一根,因为 f1=0 , 所以222mx 2 - m2x ^ x-1 mx-2,另一根为一,由13得 m ::: 2即为所求; mm 32 方程有且只有一根, 且这个根在区间 m,n 内,即丄=0,此时由厶=0可以求出参数的值, 然后 再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程x 2 -4 m x 2 m 6 = 0有且一根在区间-3,0内,求m 的取值范围。
分析:①由15f -3Lf 0 :: (即卩 14m 15 m 3 :: 0得出 -3 :: m ;②由• ; -0即 16m 2-4 2m 6;=0得 143 3出m~-1或m ,当m = -1时,根x=-2三i 3。
,即m=-1满足题意;当m 时,根2 23 15-3, 0,故m 不满足题意;综上分析,得出 -3:::m 或m=-1』 2 14根的分布练习题例1、已知二次方程 2m 1 x 2 -2mx ■ m -1 =0有一正根和一负根,求实数 m 的取值范围。
二次方程根的分布与二次函数在闭区间上的最值1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a)()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 综合结论(不讨论a)——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩二、典例分析例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
解:由 ()()2100m f +< 即 ()()2110m m +-<,从而得112m -<<即为所求的范围。
例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。
解:由()()0102200m f ∆>⎧⎪-+⎪->⎨⎪>⎪⎩⇒ ()218010m m m m ⎧+->⎪>-⎨⎪>⎩ ⇒ 3223220m m m ⎧<->+⎪⎨>⎪⎩或 ⇒ 0322m <<-或322m >+即为所求的范围。
例3、已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围。
解:由 ()()210m f +< 即 ()()2210m m ++< ⇒ 122m -<<即为所求的范围。
例4、已知二次方程()22340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。
解:由题意有方程在区间()0,1上只有一个正根,则()()010f f < ⇒ ()4310m +< ⇒ 13m <-即为所求范围。
2、二次函数在闭区间[]n m ,上的最大、最小值问题探讨设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:ab n m 2-<< n a b m <-<2即[]n m ab ,2∈- n m ab<<-2 图象最大、最小值()()()()n f x f m f x f ==min max()()(){}()⎪⎭⎫⎝⎛-==a b f x f m f n f x f 2,max min max()()()()m f x f n f x f ==min max对于开口向下的情况,讨论类似。
其实无论开口向上还是向下,都只有以下两种结论:(1)若[]n m a b ,2∈-,则()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,max max ,()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,min min ; (2)若[]n m ab,2∉-,则()()(){}n f m f x f ,max max =,()()(){}n f m f x f ,min min = 另外,当二次函数开口向上时,自变量的取值离开对称轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开对称轴轴越远,则对应的函数值越小。
二次函数在闭区间上的最值练习二次函数在闭区间上求最值,讨论的情况无非就是从三个方面入手:开口方向、对称轴以及闭区间,以下三个例题各代表一种情况。
例1、求函数()[]221,1,3f x x ax x =-+∈的最小值。
(定区间动轴)解:对称轴0x a =(1)当1a <时,()min 122y f a ==-; (2)当13a ≤≤时,()2min 1y f a a ==-;(3)当3a >时,()min 3106y f a ==-改:1.本题若修改为求函数的最大值,过程又如何?解:(1)当2a <时,()()max 3106f x f a ==-; (2)当2a ≥时,()()max 122f x f a ==-。
2.本题若修改为求函数的最值,讨论又该怎样进行?解:(1)当1a <时,()()max 3106f x f a ==-,()()min 122f x f a ==-;(2)当12a ≤<时, ()()max 3106f x f a ==-,()()2min 1f x f a a ==-; (3)当23a ≤<时,()()max 122f x f a ==-,()()2min 1f x f a a ==-; (4)当3a ≥时, ()()max 122f x f a ==-,()()min 3106f x f a ==-。
例2、求函数243y x x =-+在区间[],1t t +上的最小值。
(定轴动区间) 解:对称轴02x =(1)当2t <即2t >时,()2min 43y f t t t ==-+;(2)当21t t ≤≤+即12t ≤≤时,()min 21y f ==-;(3)当21t >+即1t <时,()2min 12y f t t t =+=-例3、函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。
解:对称轴[]012,3x =∉,故函数()f x 在区间[]2,3上单调。
(1)当0a >时,函数()f x 在区间[]2,3上是增函数,故()()()()max min32f x f f x f ⎧=⎪⎨=⎪⎩ ⇒ 32522a b b ++=⎧⎨+=⎩ ⇒ 10a b =⎧⎨=⎩; (2)当0a <时,函数()f x 在区间[]2,3上是减函数,故()()()()max min23f x f f x f ⎧=⎪⎨=⎪⎩ ⇒ 25322b a b +=⎧⎨++=⎩⇒ 13a b =-⎧⎨=⎩。