古典回归模型
- 格式:ppt
- 大小:547.55 KB
- 文档页数:34
1.计量经济学是以揭示经济活动中客观存在的_ _为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为_ __、__ _、__ _三者的结合。
2.被解释变量的观测值i Y 与其回归理论值)(Y E 之间的偏差,称为__ _;被解释变量的观测值i Y 与其回归估计值i Y ˆ之间的偏差,称为__ __。
3.在多元线性回归模型中,解释变量间呈现线性关系的现象称为_ 性问题,给计量经济建模带来不利影响,因此需检验和处理它。
4.以时间序列数据为样本建立起来的计量经济模型中的随机误差项往往存在_5.普通最小二乘法得到的参数估计量具有_ _、__ _、_ _统计性质。
1.时间序列数据和横截面数据有何不同?2. 给定一元线性回归模型:t t t X Y μββ++=10 n t ,,2,1 =(1)叙述模型的基本假定;(2)写出参数0β和1β的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质;(4)写出随机扰动项方差的无偏估计公式。
5. 随机误差项包含哪些影响因素?1、判断模型是否存在异方差的主要方法包括 、 、 、 。
2、处理模型中异方差的主要方法是 。
3、检验模型中是否存在序列自相关的方法有 、 、 、 。
4、处理模型中序列自相关的方法是 和 。
5、处理模型中多重共线性的方法 。
1、建立与应用计量经济学模型要经过那些主要步骤?( 8分)。
2、多元回归模型中应用普通最小二乘法的基本假设是什么?(6分)3、在多元线性回归中,t 检验与F 检验有何不同?在一元线性回归分析中,二者是否有等价作用(6分)?1、下列模型是否属于因果关系的计量经济学模型?为什么?(4分)(1)S t =112.0+0.12R t ,其中St 为第t 年农村居民储蓄增加额(单位:亿元),R t 为第t年城镇居民可支配收入总额(单位:亿元)。
(2)S t =112.0+0.12R t-1,其中S t 为第t 年底农村居民储蓄余额(单位:亿元),R t-1为第t-1年农村居民可支配收入总额(单位:亿元)。
《计量经济学》课程综合复习资料一、单选题1.个人保健支出的计量经济模型为:i i i i X D Y μβαα+++=221,其中i Y 为保健年度支出;i X 为个人年度收入;虚拟变量⎩⎨⎧=大学以下大学及以上012i D ;i μ满足古典假定。
则大学以上群体的平均年度保健支出为()。
A.i i i i X D X Y E βα+==12)0,/(B.i i i i X D X Y E βαα++==212)1,/(C.21αα+D.1α答案:B2.假设根据某地区1970——1999年的消费总额Y (亿元)和货币收入总额X (亿元)的年度资料,估计出库伊克模型如下,则()。
216.14323997.0)9166.12()7717.5()6521.1(8136.02518.09057.6ˆ21===-=++-=-DW F R t Y X Y t t tA.分布滞后系数的衰减率为0.1864B.在显著性水平05.0=α下,DW 检验临界值为3.1=l d ,由于3.1216.1=<=l d d ,据此可以推断模型扰动项存在自相关C.即期消费倾向为0.2518,表明收入每增加1元,当期的消费将增加0.2518元D.收入对消费的长期影响乘数为1-t Y 的估计系数0.8136答案:C3.设t u 为随机误差项,则一阶线性自相关是指()。
答案:B4.设线性回归模型为i i i i u x x y +++=33221βββ,下列表明变量之间具有完全多重共线性的是()。
其中v 为随机误差项。
答案:A5.已知模型的形式为u x y 21+β+β=,在用实际数据对模型的参数进行估计的时候,测得DW 统计量为0.52,则广义差分变量是()。
A.1,148.048.0----t t t t x x y yB.117453.0,7453.0----t t t t x x y yC.1152.0,52.0----t t t t x x y yD.1174.0,74.0----t t t t x x y y答案:D6.已知模型的形式为01Y X u ββ=++,在用实际数据对模型的参数进行估计的时候,测得DW 统计量为0.6453,则广义差分变量是()。
上课材料之五第四章古典线性回归模型在引论中,我们推出了满足凯恩斯条件的消费函数与收入有关的一个最普通模型:C=α+βX+ε,其中α>0,0<β<1ε是一个随机扰动。
这是一个标准的古典线性回归模型。
假如我们得到如下例1的数据例1 可支配个人收入和个人消费支出年份可支配收入个人消费1970197119721973197419751976197719781979来源:数据来自总统经济报告,美国政府印刷局,华盛顿特区,1984。
(收入和支出全为1972年的十亿美元)一、线性回归模型及其假定一般地,被估计模型具有如下形式:y i=α+βx i+εi,i=1,…,n,其中y是因变量或称为被解释变量,x是自变量或称为解释变量,i标志n个样本观测值中的一个。
这个形式一般被称作y对x的总体线性回归模型。
在此背景下,y称为被回归量,x称为回归量。
构成古典线性回归模型的一组基本假设为:1. 函数形式:y i=α+βx i+εi,i=1,…,n,2. 干扰项的零均值:对所有i,有:E[εi]=0。
3. 同方差性:对所有i ,有:Var[εi ]=σ2,且2σ是一个常数。
4. 无自相关:对所有i ≠j ,则Cov[εi ,εj ]=0。
5. 回归量和干扰项的非相关:对所有i 和j 有Cov[x i ,εj ]=0。
6. 正态性:对所有i ,εi 满足正态分布N (0,2σ)。
模型假定的几点说明:1、函数形式及其线性模型的转换 具有一般形式i i i x g y f εβα++=)()(对任何形式的g(x)都符合我们关于线性模型的定义。
[例] 一个常用的函数形式是对数线性模型:βAx y =。
取对数得:x y ln ln βα+=。
(A ln =α) 这被称作不变弹性形式。
在这个方程中,y 对于x 的变化的弹性是βη===xd yd x dx y dy ln ln //, 它不随x 而变化。
与之相反,线性模型的弹性是:x xdx dy x x x y dxdy βαββαη+=⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛=。
第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。
第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。
2、按研究内容分为理论计量经济学和应用计量经济学。
理论计量经济学的核心内容是参数估计和模型检验。
应用计量经济学的核心内容是模型设定和模型应用。
第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。
2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。
4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。
线性回归分析双变量模型回归分析的含义回归分析是研究一个叫做因变量的变量对另一个或多个叫做解释变量的变量的统计依赖关系。
其用意在于,通过解释变量的已知值或给定值去估计或预测因变量的总体均值。
双变量回归分析:只考虑一个解释变量。
(一元回归分析,简单回归分析)复回归分析:考虑两个以上解释变量。
(多元回归分析)统计关系与确定性关系统计(依赖)关系:非确定性的关系。
在统计依赖关系中,主要处理的是随机变量,也就是有着概率分布的变量。
特别地,因变量的内在随机性是注定存在的。
例如:农作物收成对气温、降雨、阳光以及施肥的依赖关系便是统计性质的。
这些解释变量固然重要,但是并不能使我们准确地预测农作物的收成。
确定性关系:函数关系。
例如物理学中的各种定律。
)/(221r m m k F回归与因果关系❑回归分析研究因变量对于解释变量的统计依赖关系,但并不一定意味着因果关系。
一个统计关系式,不管多强和多么具有启发性,都永远不能确立因果联系。
❑因果关系的确立必须来自于统计关系以外,最终来自于这种或那种理论(先验的或是理论上的)。
回归分析与相关分析(一)❑相关分析:用相关系数测度变量之间的线性关联程度。
例如:测度统计学成绩和高等数学成绩的的相关系数。
假设测得0.90,说明两者存在较强的线性相关。
❑回归分析:感兴趣的是,如何从给定的解释变量去预测因变量的平均取值。
例如:给定一个学生的高数成绩为80分,他的统计学成绩平均来说应该是多少分。
回归分析与相关分析(二)❑在相关分析中,对称地对待任何两个变量,没有因变量和解释变量的区分。
而且,两个变量都被当作随机变量来处理。
❑在回归分析中,因变量和解释变量的处理方法是不对称的。
因变量被当作是统计的,随机的。
而解释变量被当作是(在重复抽样中)取固定的数值,是非随机的。
(把解释变量假定为非随机,主要是为了研究的便利,在高级计量经济学中,一般不需要这个假定。
)双变量回归模型(一元线性回归模型)双变量回归模型(最简单的回归模型)模型特点因变量(Y)仅依赖于唯一的一个解释变量(X)。
简述古典线性回归模型的基本假定
简述古典线性回归模型的基本假定
古典线性回归模型是一种经典的机器学习方法,它使用最小二乘法,假设目标变量与输入特征存在线性关系,从而对非线性问题进行求解。
古典线性回归模型比较简单,它建立在以下基本假设之上:
1、自变量(X)与因变量(Y)之间存在线性关系:Y = β0 + β1*X1 + β2*X2 + … + βn*Xn;
2、误差项ε的期望值为0;
3、误差项ε与自变量无关,具有相同的方差σ2;
4、自变量之间无相关;
5、误差项ε具有正态分布。
以上基本假设为古典线性回归模型提供了有利条件,并使其具备求精度更高、可解释性更强的特性。
当观察数据与线性关系相符时,古典线性回归模型仍然是一个有效的方式。
如果数据离线性关系较远,古典线性回归模型可能会失败;同时,若在模型建模过程中发现自变量之间存在相关性则可能会导致误差放大。
通过深入了解古典线性回归模型的基本假设,可以在正确地使用模型的前提下最大化模型的效用。