形态学图像处理
- 格式:ppt
- 大小:4.34 MB
- 文档页数:104
图像处理中的数学形态学算法在车牌识别中的应用随着车辆数量的不断增加,车牌识别技术在交通管理、安防监控、停车场管理等领域中扮演着重要的角色。
而在车牌识别技术中,数学形态学算法作为一种重要的图像处理工具,具有很高的应用价值。
本文将重点探讨数学形态学算法在车牌识别中的应用,以及其在该领域中的优势和挑战。
一、数学形态学算法简介数学形态学算法是一种基于形状和结构分析的图像处理方法,其基本原理是利用集合论中的膨胀和腐蚀运算来分析图像中的形状和结构特征。
其中,膨胀操作可以扩张图像中的目标物体,而腐蚀操作可以收缩图像中的目标物体。
这些基本的形态学操作可以通过组合和重复应用来提取图像中的目标物体,并进行形状分析和特征提取。
二、数学形态学算法在车牌识别中的应用1. 车牌定位车牌识别的第一步是车牌的定位,即从整个图像中准确定位车牌的位置。
数学形态学算法可以通过腐蚀和膨胀操作来消除图像中的噪声,提取出车牌的边界信息。
通过应用腐蚀和膨胀操作,可以得到一系列形状和尺寸各异的区域,而其中包含车牌的区域往往具有明显的矩形或正方形特征。
因此,通过对这些区域进行形态学分析和筛选,可以有效地定位车牌的位置。
2. 车牌字符分割车牌字符分割是车牌识别的关键步骤之一,其中车牌上的字符需要被正确分割出来以方便后续的字符识别。
数学形态学算法可以通过腐蚀和膨胀操作来分离车牌上的字符,消除字符之间的干扰。
通过应用腐蚀操作,可以收缩车牌上的字符区域,使得字符之间的间隔增大;而通过应用膨胀操作,则可以扩张字符区域,使得字符之间的间隔变小。
通过选择合适的腐蚀和膨胀操作的组合方式,可以有效地实现车牌字符的分割。
3. 车牌字符识别车牌字符识别是车牌识别的最后一步,其中车牌上的字符需要被分析和识别出来。
数学形态学算法可以通过应用开运算和闭运算操作来修复和增强字符区域的形态特征,从而提高字符识别的准确性。
开运算可以消除字符区域之外的噪声,平滑字符区域的边界;而闭运算则可以填充字符区域中的空洞,增强字符区域的连通性。
形态学图像处理
形态学图像处理是一种基于形态学理论的图像处理技术,它是由模式识别、数字信号处理和图像处理领域的研究者们发展起来的。
它主要关注图像中的结构特征,而不是色彩或亮度等特征。
形态学图像处理方法包括:形态学运算、形态学变换和形态学分割。
形态学运算是以图像的形状为基础的处理方法,包括腐蚀(erosion)、膨胀(dilation)、开运算(opening)、闭运算(closing)、击中-击不中(hit-miss)等。
形态学变换是对图像进行形状变换的方法,包括骨架变换(skeleton transform)、平滑变换(smoothing transform)、梯度变换(gradient transform)、拉普拉斯变换(laplacian transform)等。
形态学分割是以形态学运算为基础的图像分割方法,包括区域生长、边缘检测、基于水平集的分割等。
医学图像处理中的形态学操作医学图像处理一直是医学领域里非常重要的研究领域之一,这种领域主要涉及到对人体内部特定区域的图像进行分析、处理和重建。
其中,形态学操作是一种基本的图像分析技术,它可以帮助医生或研究人员更好地对图像进行处理和分析,提取出感兴趣的区域和特征,从而对临床诊断和治疗提供更准确有效的帮助。
形态学操作,简单来说,就是对一个图像或一组图像进行形状变换。
这种变换可以通过一些数学操作来实现,当应用到医学图像处理中时,可以对图像中的结构、纹理和形状等特征进行准确的提取和描述。
中心对称和扩张缩小是形态学操作中常见的两种操作。
中心对称操作可以将原始图像中不规则的区域变为一个规则的圆形;而扩张缩小操作则可以将区域内边缘和中心点位置进行修改,从而改变图像中边缘或内部的形状。
在外科手术前,医生通常需要对患者的CT扫描图像进行分析和处理,以确定手术方式和确保手术的成功。
利用形态学操作可以将图像中的组织区域分割出来,准确描述各个器官的形态和位置。
通过对CT扫描图像进行中心对称操作和扩张缩小操作,可以将其转换为更便于分析的形态,准确描述并确定手术范围。
除了CT扫描图像外,形态学操作还可以应用于MRI图像分析、X光图像分析、超声波图像分析和眼底图像诊断等多个领域。
例如,在糖尿病视网膜病变的诊断中,医生可以利用形态学运算算法来提取图像中的权值特征,从而更好地判断病变区域的位置和范围。
又例如,对血管病变或导致血管壁变薄的其他因素进行分析,形态学运算可以有效提取出血管区域的形态特征,发现狭窄或扩张等异常情况。
总之,形态学操作作为医学图像处理中基本的技术方法之一,可以帮助医生和研究人员更好地分析、诊断和治疗各种疾病。
在医学图像处理的应用中,形态学操作不仅可以提高手术或治疗的成功率,还可以更好地了解人体内部组织和器官的形态特征,推动医学科学的发展。
数学形态学在图像处理方面的基本原理是将图像当做一个集合,以某种形状的结构因子与图像加以求补、移位、交、并的集合运算,不同的集合运算形成了不同形态的数学运算结果[1-2]。
数学形态学在图像处理中可以分为二值数学形态学和灰度数学形态学,二值数学形态学处理图像的原理是数学集合的交与并的运算,而灰度数学形态学主要关注极大值与极小值的运算。
1灰度数学形态学在图像运算中的腐蚀与膨胀假设原灰度图像为f (x ,y ),结构元素为b (x ,y ),其中整数集合为Z ,另设(x ,y )为Z ×Z 中的元素,则f (x ,y ),b (x ,y )分别为图像及结构元素位于(x ,y )的灰度值。
定义1结构元素b (x ,y )对原灰度图像f (x ,y )的形态学腐蚀用f ⊗b 表示为f ⊗b (a ,b )=min{f (a +x ,b +y )-b (x ,y )|(a +x ,b +y )∈D f ,(x ,y )∈D b }(1)式中:D f 与D b 分别表示f (x ,y ),b (x ,y )的定义域。
所谓腐蚀,即腐蚀变换,指的是在结构元素确定的邻域块中选取图像值和结构元素值进行减运算得到的最小值。
定义2将结构元素b (x ,y )对原灰度图像f (x ,y )的数学形态学膨胀描述用f ☉b 表示为f ☉b (a ,b )=max{f (a-x ,b -y )+b (x ,y )|(a-x ,b-y )∈D f ,(x ,y )∈D b 式中:D f 与D b 分别表示f (x ,y ),b (x ,y )的定义域。
根据腐蚀的含义,腐蚀变换是在结构元素确定的邻域块中选取图像值和结构元素值进行减运算得到的最大值。
灰度图像的腐蚀与膨胀变换对比,见图1。
选取3×3的结构元素,对原灰度图像分别进行腐蚀和膨胀运算,从图1-b 能够明显得到腐蚀变换加深了图像整体暗度的结论,同时使图像的边缘更加细腻;从图1-c 能够得到膨胀变换对图像处理结果与腐蚀变换相反的结论[3-4]。
实验三图像形态学处理一.实验目的及要求1.利用MATLAB研究二值形态学图像处理常用算法;2.掌握MATLAB形态学图像处理基本操作函数的使用方法;3.了了解形态学的基本应用。
二、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。
熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。
1.膨胀与腐蚀(Dilation and Erosion)(1)对简单二值图像进行膨胀与腐蚀clear all, close allBW = zeros(9,10);BW(4:6,4:7) = 1;BWSE = strel('square',3)BW1 = imdilate(BW,SE)BW2 = imerode (BW,SE)figure(1),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW1), title(' Dilated Image ');figure(2),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW2), title(' Eroded Image ');修改参数:clear all, close allBW = zeros(9,10);BW(4:8,4:8) = 1;BWSE = strel('square',3)BW1 = imdilate(BW,SE)BW2 = imerode (BW,SE)figure(1),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW1), title(' Dilated Image ');figure(2),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW2), title(' Eroded Image ');(2)对文本图像进行膨胀与腐蚀clear all, close allI = imread('C:\Users\Administrator\Desktop\broken_text.tif'); SE = [0,1,0;1,1,1;0,1,0]BW1 = imdilate(I, SE);BW2 = imerode (I, SE);figure(1),subplot(1,2,1), imshow(I), title(' Original Image ');subplot(1,2,2), imshow(BW1), title(' Dilated Image ');figure(2),subplot(1,2,1), imshow(I), title(' Original Image ');subplot(1,2,2), imshow(BW2) , title(' Eroded Image ');修改参数:clear all, close allI = imread('C:\Users\Administrator\Desktop\broken_text.tif'); SE = [0,0,0;0,0,0;0,0,0]BW1 = imdilate(I, SE);BW2 = imerode (I, SE);figure(1),subplot(1,2,1), imshow(I), title(' Original Image '); subplot(1,2,2), imshow(BW1), title(' Dilated Image '); figure(2),subplot(1,2,1), imshow(I), title(' Original Image '); subplot(1,2,2), imshow(BW2) , title(' Eroded Image ');2. 开、闭运算(Open and Close)clear all, close allI = imread('cameraman.tif');bw = ~im2bw(I,graythresh(I));se = strel('disk',5);bw2 = imopen(bw,se);subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw2), title('After opening')bw3 = imclose(bw,se);figure;subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw3), title('After Closing')修改参数:clear all, close allI = imread('cameraman.tif');bw = ~im2bw(I,graythresh(I));se = strel('disk',8);bw2 = imopen(bw,se);subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw2), title('After opening')bw3 = imclose(bw,se);figure;subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw3), title('After Closing')3. 击中/击不中变换(hit-and-miss operation)clear all, close allbw = [0 0 0 0 0 00 0 1 1 0 00 1 1 1 1 00 1 1 1 1 00 0 1 1 0 00 0 1 0 0 0]interval = [0 -1 -11 1 -10 1 0]bw2 = bwhitmiss(bw,interval)subplot(1,3,1), imshow(bw), title(' Original Image ');subplot(1,3,2), imshow(interval), title(' Interval Image ');subplot(1,3,3), imshow(bw2) , title('after hit/miss transformation');修改参数:clear all, close allbw = [0 0 0 0 0 00 0 1 1 0 00 1 1 1 1 00 1 1 1 1 00 0 1 1 0 00 0 1 0 0 0]interval = [0 0 00 1 00 1 0]bw2 = bwhitmiss(bw,interval)subplot(1,3,1), imshow(bw), title(' Original Image ');subplot(1,3,2), imshow(interval), title(' Interval Image ');subplot(1,3,3), imshow(bw2) , title('after hit/miss transformation')4.细化与骨架抽取clear all, close allBW = ~ imread('logo.tif');BW1 = bwmorph(BW,'thin',Inf);BW2 = bwmorph(BW,'skel',Inf);subplot(1,3,1), imshow(BW), title(' Original Image ');subplot(1,3,2), imshow(BW1), title(' Thinned Image ');subplot(1,3,3), imshow(BW2), title(' Image skeleton');help bwmorph(二)用MATLAB二值数学形态学函数编程提取’rice.gif’图像中的物体边界。