第一章决策支持系统概述.pptx
- 格式:pptx
- 大小:8.33 MB
- 文档页数:255
决策支持系统概述决策支持系统(DSS)是一种帮助管理者做出决策的信息系统。
它集成了数据收集、数据分析、模型构建和解决方案评估等技术工具,以提供定性和定量的决策支持。
DSS的目标是通过使管理者能够更好地评估和选择各种决策方案来提高决策质量和效率。
决策支持系统的基本构成包括数据仓库、模型和分析工具以及用户接口。
数据仓库用于存储和管理各种关键数据,包括历史数据、实时数据和外部数据等。
模型和分析工具提供了各种算法和方法,如统计分析、优化模型、模拟和决策树等,用于分析数据并生成决策结果。
用户接口是管理者与DSS交互的方式,可以是图形用户界面、自然语言处理或者其他形式。
1.数据分析:决策支持系统能够从数据仓库中提取数据,并通过各种分析工具对数据进行定性和定量的分析。
这些分析可以帮助管理者了解当前的业务情况和趋势,从而作出合适的决策。
2.模型构建:决策支持系统能够根据具体的问题和需求构建各种模型。
这些模型可以是统计模型、优化模型、模拟模型等,通过运行模型可以产生各种方案,并对不同方案进行评估。
3.解决方案评估:决策支持系统能够对各种决策方案进行评估和比较。
它可以根据不同的指标和权重对方案进行综合评估,并为管理者提供决策参考。
4.知识管理:决策支持系统可以帮助管理者收集和管理各种关键知识和信息。
它可以通过知识库、专家系统和数据挖掘等技术,将知识和经验转化为可用的决策支持。
5.沟通和协作:决策支持系统可以提供各种协作工具,帮助多个决策者之间进行沟通和协作。
这些工具可以包括电子邮件、在线会议和共享文档等,以促进团队决策的效率和准确性。
使用决策支持系统可以带来许多好处。
首先,它可以提高决策的质量和效率,通过提供准确和全面的信息,帮助管理者做出明智的决策。
其次,它可以降低决策的风险,通过模拟和评估不同的方案,管理者可以更好地估计每个方案的风险和回报。
最后,它可以提高组织的竞争力,通过加强决策者之间的沟通和协作,决策支持系统可以促进团队决策的效率和准确性,从而提高组织的整体竞争力。
《决策支持系统》课程讲稿第一篇:《决策支持系统》课程讲稿决策支持系统课前导入第一章决策支持系统概述第一节决策支持系统的形成和发展决策支持系统(DSS)是20世纪70年代初由美国的Scott Morton在《管理决策系统》中首先提出,于20世纪80年代迅速发展起来。
λ管理信息系统λ管理科学/运筹学λ决策支持系统管理科学与运筹学是运用模型辅助决策,体现在单模型辅助决策上,这样以来,对于多模型辅助决策问题,在决策支持系统出现之前要靠人来实现模型间的联合和协调。
决策支持系统的出现要解决由计算机自动组织和协调多模型的运行以及数据库中大量数据的存取及处理,达到更高层次的辅助决策能力。
决策支持系统具有以下6个特性:①用定量方式辅助决策,而不是代替决策②使用大量的数据和多个模型③支持决策制定过程④为多个管理层次上的用户提供决策支持⑤能支持相互独立的决策和相互依赖的决策⑥用于半结构化决策领域λ专家系统专家系统也是一种很有效的辅助决策系统。
它是利用专家的知识,特别是经验知识经过推理得出辅助决策结论,专家系统辅助决策的方式属于定性分析。
λ智能决策支持系统智能决策支持系统是以决策支持系统为主体,结合人工智能技术形成的系统。
除专家系统这种典型的人工智能技术以外,还有神经网络、机器学习、遗传算法以及自然语言理解等多种人工智能技术。
λ经理信息系统λ决策支持系统的发展决策支持系统的技术进步经历以下四个阶段:①单模型辅助决策②交互建模的DSS ③组合模型的DSS ④智能的DSS 第二节决策支持系统概念R.H.Spraque和E.D.Carlson对DSS的定义:ν决策支持系统具有交互式计算机系统的特征,帮助决策者利用数据和模型去解决半结构化问题。
S.S.Mittra对DSS的定义:ν决策支持系统是从数据库中找出必要的数据,并利用数学模型的功能,为用户产生所需要的信息。
DSS是在MIS的基础上发展起来的,都是以数据库系统为基础,都需要进行数据处理,也都能在不同程度上为用户提供辅助决策信息。