当前位置:文档之家› 金属离子对染色影响

金属离子对染色影响

金属离子对染色影响
金属离子对染色影响

水中金属染色的影响

染色用水中的金属(铁锈等)或金属离子如果含量超标,就会影响染色质量,达不到规定的色相要求。引起色相变化的主要原因有:

1.金属离子-染料结合

金属离子-染料的结合引起色相变化

2.染浴中的金属离子化或金属离子氧化还原反应时染料的还原分解

Fe → Fe3+ + 3e

Fe2+ → Fe3+ + e

3.染浴中金属离子与分散剂作用

影响染料的分散稳定性,降低上染率。

易发生金属离子-分散染料结合的染料只占少数。比如蒽醌染料。其中蒽醌类鲜红色染料,由于金属离子-分散染料结合,使色相由红转为红中带蓝。

金属离子-染料结合程度与金属离子的种类有关。Fe2+、Fe3+、Cu2+对染料影响较大。Mg2+、Ca2+对染料的影响虽然较小,但是,当浓度较高时也会对染色产生不良影响。

在染色时,为了防止金属离子的影响,可并用金属螯合剂。对于Fe2+、Fe3+、Cu2+可选用在酸~中性染浴中有效的含EDTA或NTA的金属螯合剂。而对

Mg2+、Ca2+一般可使用聚羧酸类金属螯合剂。

但是,伴随着金属离子化而产生的还原反应,用金属螯合剂是无法解决的,必须另想办法解决。

染浴中如果含有铁粉,Fe离子化成Fe2+ 或Fe3+时产生还原性,离子被金属螯合剂螯合。比如Fe2+与金属螯合剂结合后:Fe2+-EDTA=Fe3+-EDTA+e,因此仅使用金属螯合剂是无法防止还原的。

使用氧化剂能有效防止还原影响,但是剂量得适当。染浴Fe2+含有量为500ppm时,添加1g/L的氯酸钠即可。如果用量过多,氯酸纳的氧化性会对染料产生不良影响,因此不希望使用氯酸纳。金属含量较少时,可使用间硝基苯磺酸纳(Sodium Metanitro benzne Sulfonate)等防止还原。

酸性染浴易引起铁粉或Fe2+等的还原分解。由还原分解引起的不良影响请看下表所示例子。

实际上,由助剂引起的还原分解在日常生产中较为常见。在使用易受影响的染料染色时,建议并用没有还原分解反应的助剂。

由金属引起的还原分解反应: Sumikaron Navy

Blue S-GL Sumikaron Turq.

Blue S-GL

备注 深度 色相 深度

色相 无添加 标准 标准 标准

标准 铁粉 33mg/L -2 2R 0

0~1Y 铁离子+还原反应的影响 三氯化铁 (FeCl3·6H2O)

15mg/L -1 0 0

0 铁离子的影响 50mg/L -1 0 0 0~1Y 氯化亚铁 (FeCl2·4H2O)

1

5mg/L

-1 1R 0 0 铁离子+还原反应的影响

50mg/L -3 4R 0 0~1Y

几种吸附材料处理重金属废水的效果

摘要:用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词:吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法 [1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法[2]。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处理7 h,4000转下离心分离30 min,洗涤,120 ℃下烘干过夜。改性高岭土的处理过程为:取5 g高岭土加入2 g SiO2,1 g Na2CO3,1 g KClO3放入研钵中研细,混匀,置于高温炉中,控制温度在800 ℃,恒温3 h。活性炭直接取自于资环实验室。黄褐土采自于安徽科技学院种植科技园,土壤样品采集后,风干,过100目筛备用[4]。

(环境管理)重金属离子污染

重金属离子污染 水体重金属离子污染是指含有重金属离子的污染物进入水体对水体造成的污染。矿冶、机械制造、化工、电子、仪表等工业生产过程中产生的重金属废水(含有铬、镉、铜、汞、镍、锌等重金属离子)是对水体污染最严重和对人类危害最大的工业废水之一。废水中的重金属是各种常用水处理方法不能分解破坏的,而只能转移它们的存在位置和转变它们的物理化学状态。因此,重金属废水应当在产生地点就地处理,不同其他废水混合。如果用含有重金属离子的污泥和废水作为肥料和灌溉农田,会使土壤受污染,造成农作物中及进入水体后造成水生生物中重金属离子的富集,通过食物链对人体产生严重危害。 镉:自1995年起,居住在日本富山市神通川下游地区的一些农民得了一种奇怪的病。得病初期,患者只感到腰、背和手足等处关节疼痛,后来发展为神经痛。患者走起路来像鸭子一样摇摇摆摆,晚上睡在床上经常痛得直喊“痛……”因此这种病被称为“痛痛病”,又称为“骨痛病”。得了这种病,人的身高缩短,骨骼变形、易折,轻微活动,甚至咳嗽一声,都可能导致骨折。一些人痛不欲生,自杀身亡。经过调查,造成这种骨痛病的原因是神通川上游的炼锌厂长年累月排放含镉的废水,当地农民长期饮用受到镉污染的河水,并且食用此水灌溉生长的稻米,于是镉便通过食物链进入人体,在体内逐渐积聚,引起镉中毒,造成“骨痛病。 汞: 五十年代初期,在日本九州熊本县水俣镇,由于人食用受甲基汞毒害的鱼类而导致甲基汞中毒,导致中毒者283人,其中60人死亡。症状:口齿不清、步履不稳、面部痴呆进而耳聋眼瞎、全身麻木,最后精神失常,身体弯曲至死亡。其产生的原因是由于工厂生产氯乙烯和醋酸乙烯时采用氯化汞、硫酸、催化剂,把含有机汞的废水、废渣排入水俣湾,使鱼、贝壳类受污染。 锰: 四十多年前,日本有个村庄发生了一起可怕的集体“发疯”事件,有16个村民突然一起“发疯”了。这些“疯子”一会儿哭哭啼啼,一会儿又哈哈大笑;发作时两手乱摇,颤抖不止,而下肢发硬直,如此反复发作,直至“疯死”。这起集体“发疯”事件经多方研究调查,发现这些人喝的是同一口水井中的水,考察水井,又在旁边挖出了大量废旧、破烂的干电池。原来这是水井的水受干电池中某些有害成份污染而造成的。据环境科学研究表明,废旧干电池中的锌、二氧化锰等成分长期埋在地下,会

络合态重金属解决方案

含EDTA的重金属废水解决方案 重金属废水主要来自矿山排水、有色金属冶炼厂除尘排水、有色金属加工厂酸洗水、电镀厂镀件洗涤水、钢铁厂酸洗排水,以及电解、农药、医药、烟草、油漆、颜料等工业生产。废水中的重金属并不是以单一的重金属离子形式存在,而是与一些络合物(如EDTA, DTPA, NTA)结合在一起。EDTA (乙二胺四乙酸)是螯合剂的代表性物质,此外,EDTA对土壤重金属的去除效果明显高于等量的水和阳离子表面活性剂,是目前应用最普遍的重金属污染土壤的修复剂,但这些含EDTA的重金属萃取液将会进入水体.由于 EDTA的强络合性和难生物降解性,在水体中易与碱金属、稀土元素和过渡金属等形成稳定的络合物,成为重金属离子很好的保护伞,増加了处理含 EDTA的重金属废水的难度。重金属去除剂具有在相对低的pH条件下使金属高度分离、形成的金属螯合物易于脱水和稳定等特点。因此,用重金属去除剂去除废水中溶解性重金属离子是一种有效的方法。 传统的工业处理方法是往废水中添加碱(一般是氢氧化钙、石灰石、生石灰等)提高其PH值,使镍离子、铜离子等重金属离子生成难溶性的氢氧化物沉淀,从而降低废水中重金属离子含量而达到国家规定的排放标准。但是此种方法也存在较大的弊端:1、产生较大两的污泥,密度低,含水率高,污泥处置费用较为昂贵;2、还有些金属氢氧化物沉淀是两性的,在弱酸性或者其他条件下,沉淀会溶解,重金属再次进入废水中;3、有些有机重金属废水含有大量的螯合物、络合剂、配合物等大分子有机物,这些络合剂与重金属螯合形成的物质很稳定,抑制金属氢氧化物沉淀的形成。 河北美星环保科技有限公司研发出第三代重金属去除剂产品,其具有以下特点:1、重金属去除剂能够处理EDTA重金属废水中的重金属离子.在没有EDTA 的条件下, Cd2+ ,Cu2+和Pb2+的去除率达到100%,而Zn2+的除率则比较低。 2、随着c(EDTA)的增加,废水中重金属离子的去除率下降;随着重金属去除剂的增加,废水中重金属离子的去除率上升.在相同重金属去除剂用量条件下,对废水中Cd2+,Cu2+和Pb2+的去除率Zn 高。 3、EDTA能够有效地萃取尾矿砂中的重金属,特别是对Cd和Pb具有很高的萃取率.工程实例进一步表明,重金属去除

海藻酸对重金属离子的吸附能力

高分子材料进展 ------海藻酸钠吸附重金属离子的文献综述 高材071 郑剑 200738575113 (嘉兴学院生化学院, 浙江嘉兴) 2009年12月26日 摘要:概述了海藻酸钠在重金属污染治理方面的应用及国内外研究现状和发展前景.分别从海藻酸钠作为吸附剂直接吸附和作为固定化细胞的载 体以及与其他物质联合使用,分析了对重金属的去除效果及对固定化 细胞的影响。分析表明,海藻酸钠以其特有的结构和性质在重金属污 染治理方面有较好的应用,具有广闻的发展前景。 关键词:海藻酸钠;重金属;固定化;甲壳胺;凝胶球 前言 由于人类社会的发展,使得越来越多的污染物质排放到环境中,其中重金属污染问题尤为严重。由于重金属一般具有较大的毒性、高的移动性和低的中毒浓度,在水体中不能被生物降解,某种重金属还可在微生物作用下转化为毒性更强的重金属化合物。人通过饮水及食物链的作用,使重金属在体内富集而中毒,甚至导致死亡。如何科学有效地解决重金属对水体的污染已经成为世界各国政府以及广大环保工作者研究的热点之一。目前,重金属废水处理最常用的方法:化学沉淀法、活性炭吸附法、离子交换法、气浮法等。【1】但这些传统的方法由于存在沉淀物二次污染及操作费用和原材料成本过高等原因,不适宜处理低浓度的重金

属废水。因此,人们都在寻求适于处理低浓度重金属废水的新方法。目前,固定化细胞技术在废水处理中受到重视,特别是处理重金属废水时效果良好,且表现出巨大的潜力,成为今年来国内外学者研究的热点。不同的固定化方法对固定化载物有不同的要求,为了增强固定化效果,保证生物的活性,提高固定化细胞对重金属离子的去除性,科学工作者纷纷在寻求和研究理想的固定化载体。【2】海藻酸钠是褐藻类的天然高分子,是一种无毒,亲水性的天然多糖类化合物,它是由β—l,4结构的D型甘露糖醛酸钠盐和α-l,4结构的L型古罗糖醛酸钠盐共聚而成,其结构见图l【3】。海藻酸钠具有良好的溶解特性(可溶于水,不溶于有机溶剂),良好的粘性、生物相容性、成膜性等特点,近些年来在国内外引起人们的关注。但是,海藻酸钠有很大的亲水性,成膜后强度、弹性不够理想,需对其进行改性。【4】 图一:海藻酸钠的结构 海藻酸钠(C 5H 7 4 COONa) n 是海藻酸的钠盐,由于海藻酸钠分子中含有大量游 离的羧基,能够与金属离子发生反应,吸附时重金属离子与其中的金属离子(Na2+)发生离子交换,因此具有吸附重金属离子的能力,可以作为吸附重金属的吸附剂。 1作为吸附剂直接吸附重金属 由于海藻酸钠分子中含有大量游离的羧基,能够与金属离子发生反应,吸附时重金属离子与海藻酸钠中的Na+离子发生离子交换,因此具有吸附金属离子的能力。研究表明,海藻酸钠对汞、铜、镉等重金属离子都具有一定的吸附能力。可以作为吸附重金属的吸附剂。 秦益民等【5】为了研究不同种类的海藻酸纤维对铜离子的吸附性能,用盐酸及硫酸钠水溶液处理海藻酸钙纤维,分别得到海藻酸及海藻酸钙钠纤维。并且,。把三种纤维分别与合铜离子的水溶液接触后,在不同的时问段测试溶液中铜离子的浓度。结果显示:海藻酸、海藻酸钙及海藻酸钙钠纤维对铜离子均有较好的吸

金属离子与蛋白质的相互作用

金属离子与血清白蛋白的相互作用 一、实验目的: 测定过渡金属离子对蛋白质功能的影响 二、实验原理: 金属离子在许多生命过程中发挥关键作用,研究金属离子与蛋白质的结合作用是生命科学的重要内容,是化学和生命科学研究的前沿领域。血清白蛋白是哺乳动物血浆中含量最丰富的蛋白质,它能够储存和转运众多的内源性和外源性物质。由于血清白蛋白在生理上的重要性和易于分离、提纯,从上世纪50年度(国内80年代末)开始,人们对血清白蛋白与金属离子(和药物分子等)的相互作用展开了大量研究,以期在分子水平上揭示相关生命过程的奥秘。 许多蛋白质含有金属离子,金属离子对蛋白质发挥生物学功能起着关键性的作用。在人体基因组编码的蛋白质中,超过30%的蛋白质含有一个或多个金属离子;所有酶中,超过40%的蛋白质含有金属离子,它们在生命活动过程中发挥着各样的生物学功能。许多人类的疾病与金属离子-蛋白质的异常相互作用相关。 目前用于研究金属离子与蛋白质相互作用的研究方法主要有:(1)紫外-可见吸收光谱法;(2)荧光光谱法;(3)平衡透析法;(4)毛细管电泳法;(5)电泳法等。 (一)紫外-可见光谱法 蛋白质通常有3个明显不同的紫外吸收带:(1)210nm以下的吸收来自肽键的吸收以及许多构象因素;(2)210-250nm为芳香族和其他残基的吸收、某些氢键的吸收、与其他构象和螺旋相关的相互作用等多种因素;(3)250-290nm附近为芳香族的残基,其中酪氨酸残基在278nm(Tyr,260-290nm)附近有强吸收,色氨酸残基(Trp)在290nm附近有强吸收,而苯丙氨酸(Phe,250-260nm)的吸收较弱。外界因素如溶剂极性以及pH等会影响吸收光谱。 当金属离子与蛋白质结合时,蛋白质或金属离子吸收光谱的强度或者谱带位置会发生变化,可分为两种情况:(1)蛋白质微扰的金属离子光谱变化,可以推断金属离子的配位环境;(2)金属离子微扰的蛋白质光谱变化,可以推断生色基微环境及蛋白质结构的变化。通过对光谱的比较分析和计算,可以推断金属离子与蛋白质的结合情况。若蛋白质的吸收峰增强,则可认为小分子进入蛋白质的疏

工业废水中金属离子的去除方法

1 化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点: (1)中和沉淀后,废水中若pH 值高,需要中和处理后才可排放; (2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al 等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH 值,实行分段沉淀;(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理; (4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。 与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH 值在7—9 之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。2氧化还原处理 化学还原法 电镀废水中的Cr 主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3 沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3 法、铁屑法、SO2 法等。 应用化学还原法处理含Cr 废水,碱化时一般用石灰,但废渣多;用NaOH 或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。 铁氧体法 铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr 废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH 值至8 左右,使Fe 离子和Cr 离子产生氢氧化物沉淀。通入空气搅拌并加入氢氧化物不断反应,

不同金属离子对酶活性的影响

金属离子对酶活性的影响 实验目的:1、了解金属离子对酶活性的影响; 2、掌握不同金属离子对酶活性作用结果的测量方法 实验原理: 酸性磷酸酯酶广泛分布于动物和植物中,植物的种子、霉菌、肝脏和人体的前列腺中。它对生物体核苷酸、磷蛋白和磷脂的代谢,骨的生成和磷酸的利用,都起着重要作用。磷酸酶是一种能够将对应底物去磷酸化的酶,通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。 本实验选用绿豆芽作材料,从中提取酸性磷酸酯酶。以人工合成的对硝基苯磷酸酯(NPP)作底物,水解产生对硝基苯酚和磷酸。在碱性溶液中,对硝基酚盐离子在405nm处光吸收强烈,而底物没有这种特性。凡是能提高酶活性的物质统称为酶的激活剂。无机离子和一些金属离子对酶有激活作用,可以作为酶的激活剂。其中钾离子是酸性磷酸酯酶的一种激活剂,它在酶与底物之间起了桥梁作用,形成了酶—金属离子—底物三元复合物,从而更有利于底物与酶的活性中心部位的结合。而氯离子和钠离子对酸性磷酸酯酶的活性

没有什么影响.一些重金属离子如铜离子,对酶活性具有抑制作用。 实验用品: 1、仪器:恒温水浴箱、试管架、试管、分光光度计、 比色皿、吸头、滴管、移液枪、移液管 2、试剂:1.2mmol/L NPP 100ml 、0.3mol/L NaOH 250ml 、酸性磷酸酯酶、pH5.0的柠檬酸缓冲液 1000ml 、2mmol/L FeSO4 、2mmol/LCuSO4、 MnCl22mmol/L 、MgSO42mmol/L、 KCl 2mmol/L EDTA、实验步骤: 调零FeSO 4 CuSO 4 MnCl 2 MgSO 4 EDTA KCl 空白 对照 0 1 2 3 4 5 6 7 NPP (ml) 1 1 1 1 1 1 1 1 酶液 (ml) 1 1 1 1 1 1 1 1 金属离 子(m l) 1 1 1 1 1 1 1 1

螯合剂种类总结及其在不同pH下的对金属离子的螯合能力比较

螯合剂的种类及其在不同pH值条件下螯合剂的螯合常数 一、螯合剂与螯合物 具有可供配位孤电子对的分子、原子或离子的化合物能够与具有空轨道的金属离子形成配位键,该化合物称为络合物,如能与配位金属离子形成环状结构的化合物称为螯合剂,形成的络合物称为螯合物。螯合剂中至少含有一对孤电子对,而金属离子必须有空的价电子轨道,孤电子对填充入金属离子空轨道,电子对属2个原子共享,形成配位键,中心金属离子空轨道杂化。不同的提供孤电子对的配位体分别与不同金属离子形成正四面体、正六面体、正八面体的螯合物。 1.类型 1.1无机类螯合剂 聚磷酸盐螯合剂: 主要是三聚磷酸钠(STPP)、六偏磷酸钠、焦磷酸钠为主,含磷酸基空间配位基团。 特点:高温下会发生水解而分解,使螯合能力减弱或丧失。而且其螯合能力受pH值影响较大,一般只适合在碱性条件下作螯合剂。 1.2有机类螯合剂 形态分析表明螯合剂提取的重金属主要来源于可交换态或酸溶态、还原态和氧化态。1.21羧酸型 (1)氨基羧酸类:含羧基和胺(氨基)配位基团, 如乙二胺四乙酸(EDTA),氨基三乙酸(又称次氮基三乙酸NTA),二亚乙基三胺五乙酸(DTPA)及其盐等。如:EDTA的4个酸和2个胺(—NRR′)的部分都可作为配体的齿,两个氮原子和四个氧原子可提供形成配位键的电子对。 特点:络合能力强,络合稳定常数大,耐碱性好,但分散力弱且不易被生物降解。(2)羟基羧酸类含羟基、羧基配位基团 这类羧酸主要是柠檬酸(CA)、酒石酸(TA)和葡萄糖酸(GA)。 特点:可生物降解,在酸性条件下羟基与羧基不会离解为氧负离子,因而络合能力很弱,不适宜在酸性介质中应用。 (3)羟氨基羧酸类 这类酸用作螯合剂的典型代表是羟乙基乙二胺三乙酸(HEDTA)和二羟乙基甘氨酸

碳材料对重金属离子的吸附性实验

碳材料对重金属的吸附及gamma射线辐照还原 一:碳材料的选择 活性炭;活性炭纤维;碳纳米管;磁性多孔碳材料;氧化石墨烯①。 材料的选择主要考虑材料的吸附容量和吸附速度,还需要考虑材料的机械强度,选择性跟抗干扰性。然后再对材料进行一系列的预处理。 常用的处理方法: 1 化学试剂处理 2 辐射照射处理 3 共聚接枝 比如具有吸附能力碳纳米管(CNTs)的预处理,就是选用一定浓度的过氧化氢,次氯酸钠,硝酸,高锰酸钾溶液。吸附能力增强的几个原因。 二:材料的吸附 材料的吸附性实验,即是一种探究性优化实验。 资料中一般用材料吸附一些生活生产中常见的重金属污染物。如:镉离子,铜离子,铅离子,铬离子等等。随即研究这种材料在不同时间,不同的pH,不同的吸附剂用量。依此得出这种材料最佳的吸附条件。 最后绘制等温吸附曲线。用朗缪尔,弗罗因德等温吸附方程式拟合。继而进一步分析这种材料的吸附机理。 三:gamma射线的辐照还原 辐照还原的实质就是对已经吸附的重金属离子进行解析。使这种吸附材料能够重复利用。 附录: ①:其吸附机理可大致分为三大类:10 不发生化学反应,由分子间的相互引力

产生吸附力即物理吸附。20 发生化学反应,通过化学键力引起的化学吸附。30 由于静电引力使重金属离子聚集到吸附剂表面的带电点上,置换出吸附剂原有的离子的交换吸附。 活性炭对金属离子的吸附机理是金属离子在活性炭表面的离子交换吸附,同时还有金属离子同其表面含氧基团之间的化学吸附以及金属离子在其表面沉积而产生的物理吸附。 两个常用的等温式:langmuir,freundlich

斜对角线原则 材料的吸附容量和吸附速度,还需要考虑材料的机械强度,选择性跟抗干扰性。孔径跟比表面积。 材料对金属离子吸附效果的依赖性。 酸处理跟碱处理 酸处理会增加含氧官能团,酸性官能团,从而提高亲水性跟离子交换性能 碱处理会增加微孔数目。 典型制备方法: 将ACF GAC反复用蒸馏水冲洗至溶液的pH不变,再于80℃干燥过夜。 干燥过的ACF GAC 中分别加入1.0mol/l 硝酸溶液加热煮沸3h,再用蒸馏水洗涤,于80℃干燥过夜。 碱处理即把硝酸改为KOH溶液。 负载ZnO-GAC 碳纳米管吸附性好坏明显依赖溶液的PH和碳纳米管的表面状态。

矿物药中金属离子的药用机理

矿物药中金属离子的药用机理 矿物药是中药中一种药物概念,其中的金属离子起主要的药物作用,概括起来有一下两个方面: 1)金属离子与中药有效成分反应的减毒增效的机理; 2)金属离子与体内生物分子(如氨基酸、蛋白质)的作用机理。 首先中药复方由多种草药和矿物药等成份按照“君臣佐使”的原则配伍,可以达到增效减毒的目的。就是考虑到疾病的复杂性,试图用多种作用机理不同的药物成份同时作用于多个靶点,达到增强疗效,减少副作用的目的。通过对矿物药进行炒炭、酒炙、醋炙、盐炙、蜜炙、煅制、蒸制、复制、制霜等多种炮制方法以达到其减毒增效的目的。如芒硝粗制品含Pb,一般要用萝卜汁,经过滤、重结晶后,达到除去杂质、缓和药性、增强降气消导的目的。天然朱砂含Hg,不纯净,尤其含Pb量常高达0.1%。杂质中还含有游离汞和可溶性汞盐,后者毒性极大。经水飞后重金属Pb、可溶性汞盐和游离汞绝大部分被 除去,从而降低了毒性。雄黄含硫,有时含有砷的氧化物As2O3,其对中枢神经系统、心血管系统和胃肠系统均有毒性,易致死[7]。经水飞法处理后的雄黄,可溶性砷盐、游离砷及其他金属元素含量降低。硇砂生品有毒,具有腐蚀性,经提净法炮制后,使药物纯净,毒性降低。硇砂除主要成分外,尚含微量有毒元素钡、铅、砷、汞及硫化物等,炮制后含量降低。某些药物在高温下有利于钙的游离,从而释放出可溶性的钙离子,由于钙离子能促进血液凝固,因此中药炒炭后,产生的可溶性钙离子就有可能缩短血液凝固时间,而起到止血作用。 其次,矿物药中许多中金顺离子对集体有很大的毒害作用。矿物类中药中可含有铅、汞、砷等重金属成分,过量应用会导致药源性铅、汞和砷等重金属中毒。矿物类中药有些是天然的或粗制的金属 矿物结晶,有些是经冶炼、升华的精制品。一些常见含有汞、砷、铅、铜等重金属成分的单味中药或与其他中药配制的复方中成药,广泛用于治疗皮肤病、癫痫、肿瘤、关节炎等疑难杂症,若使用不当,可引起重金属中毒。 一些微量元素与人的生存和健康息息相关,其摄入过量、不足或缺乏都会不同程度地引起人体生理异常或发生疾病。微量元素最突出的作用是与生命活力

三种常见重金属的处理方法的比较

三种常见的处理方法的比较 一、石灰中和法 1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由pH 计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为9~11;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下: 石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。 1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物———矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等, 否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用。 二、硫化沉淀法

重金属离子的吸附性材料

摘要:许多工业废水如金属冶炼和矿物开采过程中含有铬,铜,铅,锌,镍等重金属离子这些废水中有可能含有较高浓度的重金属离子,这些重金属离子必须要从水中去除这些废水如果不经处理直接进入排水系统将对后续的生物处理产生影响含有CO32-的碳羟磷灰石碳羟磷灰石比纯羟基磷灰石HAP在室温下能更好地固化水溶性重金属离子Pb2+、Cd2+、Hg2+等在前人研究的基础上,为降低污水处理的成本,本文以废弃的鸡蛋壳为原料,尿素为添加剂,采用掺杂技术,合成新型的碳羟磷灰石吸附剂,用以处理含重金属离子废水最佳的制备条件是将经过预处理的鸡蛋壳磨成粉末,过30目筛,按摩尔质量比为11的比例加入到H3PO4溶液中并控制pH值在1~3,在30~40℃反应2~3h,过滤去除不溶物,按照11的比例添加尿素和CaOH2粉末,用NaOH调节pH值在9~12,在50~60℃条件下热处理24h,反应产物经冷却后,用1%的NH4Cl洗涤至中性,在60℃下干燥并粉碎得到碳羟磷灰石粉末利用扫描电镜和能谱仪对产物进行了观察、分析本研究中对碳羟磷灰石吸附重金属分为两个部分,包括碳羟磷灰石对单种重金属的吸附和碳羟磷灰石对重金属的同时吸附,分别考察单种金属离子和混合溶液的重金属离子浓度、pH值、时间、吸附温度对吸附效果的影响绘制了吸附等温线,对吸附过程的动力学和热力学进行了研究,然后又对吸附了重金属离子的产品进行了观察、分析最后对吸附了Zn2+的碳羟磷灰石分别用0.2molL的NaCl、0.2molL的NaNO3、pH=3.93的HAC、pH=4.93的HAC、0.05molL的CaCl2和0.1molL的CaCl2和超声波进行解吸研究结果表明碳羟磷灰石对Cd2+、Cu2+、Zn2+和Pb2+具有较强的吸附效果用2.5gL的碳羟磷灰石处理Cd2+废水,在Cd2+初始浓度为80mgL、温度为40℃左右、pH值为6、作用时间1h的条件下,去除率为93%左右碳羟磷灰石对Cd2+的吸附等温线符合Freundlich和Langmuir两种模式用2.5gL的碳羟磷灰石处理Cu2+废水,在Cu2+初始浓度为60mgL、温度为40℃左右、pH值为6、作用时间1h的条件下,去除率为93.17%碳羟磷灰石对Cu2+的吸附等温线符合Freundlich和Langmuir 两种模式用2.5gL的CHAP处理Zn2+废水,在Zn2+初始浓度为100mgL、温度为40℃左右、pH值为6~7、作用时间45min的条件下,去除率为98.67%CHAP对Zn2+的吸附等温线符合Langmuir和Freundlich两种模式CHAP对重金属离子的吸附在低pH条件下主要是离子交换吸附和表面吸附,在高pH条件下易形成氢氧化物沉淀碳羟磷灰石对Zn2+的热力学研究表明,碳羟磷灰石吸附Zn2+的过程是吸热过程共存离子吸附研究表明四种重金属离子共存时使得每种重金属离子的吸附容量均降低,因为共存的金属离子对结合位点相互竞争结合解吸实验表明各种解吸剂对Zn2+的解吸能力有限,这表明碳羟磷灰石对重金属离子有较好的亲和力在对吸附了重金属离子的碳羟磷灰石进行观察发现,吸附了重金属的样品表明有针尖状结构 标题:工业废水重金属离子吸附剂碳羟磷灰石吸附性能 桔子皮纤维素化学改性生物吸附剂制备方法重金属吸附吸附动力学

重金属离子有哪些

重金属离子有哪些?重金属离子主要是Cr6+、U6+、Te3+、Co3+、Se6+、Pu3+、Hg2+,Mn4+等 备注:重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。 哪些重金属离子可以使蛋白质变性 下面一段是我从我的化学选修书上摘下来的(自己打上来的): 蛋白质受热到一定温度就会发生不可逆的凝固,凝固后不能在水中溶解,这种变化叫做变性。除了加热以外,在紫外线、X射线、强酸、强碱,铅、铜、汞等重金属的盐类,以及一些有机化合物如甲醛、酒精、苯甲酸等作用下,蛋白质均能发生变性。蛋白质变性后,不仅丧失了原有的可溶性,同时也失去了生理活性。 重金属指比重大于5的金属,(一般指密度大于4.5克每立方厘米的金属)约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 铁锰同时存在的地下水中,要测锰离子浓度,如何消除铁离子对它的影响? 最近在测定地下水锰离子浓度的时候,铁离子发生很大的干扰,我不知道如何消除,我用的方法是高碘酸钾分光光度法测定锰,不过高碘酸钾好像和铁也反应,导致测试结果偏高!有没有高手能解决这个问题的?小弟先谢谢了!注意:曝气除铁在测定锰,这种方法不能用,因为氢氧化铁会吸附锰离子,导致测试结果偏低。

这是典型的共存离子的干扰和消除。常采用A 控制酸度B 加掩蔽剂C 分离干扰离子 所以建议:可加入氟化钠,使其与铁离子生成无色络合物[FeF6]3- 来消除干扰。 1楼的方法是看到3价铁离子可以和铁单质反应生成亚铁离子,但这种方法不推荐,因为高碘酸存在强氧化性,即使不存在氧化性,亚铁离子本身也存在绿颜色 重金属捕捉剂 一、重金属捕捉剂别名: 重金属离子捕捉剂、重金属离子捕集剂、重金属离子去除剂、重金属离子吸附剂、重金属离子螯合剂等 二、应用范围: 在常温下与较宽的PH范围内能与废水中Hg 、Cd 、Cu 、Pb 、Mn 、Ni 、Zn 、Cr3+等多种重金属离子迅速反应,生成不溶于水的絮状沉淀物,并能生成较大的矾花,从而达到捕集去除重金属离子的目的。 1、常规重金属废水处理,矿山、电镀、电子、线路板等行业排放废水重金属离子捕捉。 2 、核电站反应堆、铀钍的湿法冶金厂、医院、同位素试验堆及生产堆等放射性废水金属离子捕捉。 3、应用在垃圾焚烧发电方面的飞灰重金属治理方面有独特功效。 三、稳定性与灵敏性 1、稳定性: 本品与重金属离子形成稳定的聚合物,在强酸和强碱性环境下均不会析出重金属离子,在-100度至300度的温度范围内重金属螯合物也非常稳定,在自然环境条件下,可保持长达数百年的聚合物稳定性。

重金属对人体的危害

重金属对人体的危害 一、什么叫重金属 重金属指比重大于4或5的金属,约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 从环境污染方面看,重金属是指汞、镉、铅以及“类金属”-----砷等生物毒性显著的重金属。对人体毒害最大的有5种:铅、汞、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。 二、废水中重金属的来源 1.铅的来源。 水体中的铅一般来自于冶炼、制造和使用铅制品的工矿企业,尤其是来自有色金属冶炼过程中所排出的含铅废水、废气和废渣。铅常被用作原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业。铅板制作工艺中排放的酸性废水(pH<3)铅浓度最高,电镀废液产生的废水铅浓度也很高。 2.镉的来源。 镉是一种灰白色的金属,自然界中主要以二价形式存在。镉电镀可以为钢、铁等提供一种抗腐蚀性的保护层,具有吸附性好且镀层均匀光洁等特点,因此工业上90%的福用于电镀颜料、塑料稳定剂、合金及电池等行业,含镉废水的来源还包括金属矿山的采选、冶炼、电解、农药、医药、电镀、纺织印染等行业的生产过程中。 3.汞的来源。 汞俗称水银,是地壳中相当稀少的一种元素。但是当今社会人类活动很大程度上造成了水体汞污染。水体中汞污染主要来自氯碱、塑料、电池、电子等工业排放的废水以及废旧医疗器械的处置。除此之外,节能灯和荧光灯的废弃也会带来汞污染。中国就是全球汞使用量和排放量最大的国家。 4.砷的来源 砷污染的主要来源为:(1)砷化物的开采和冶炼。特别是在我国流传广泛的土法炼砷,常造成砷对环境的持续污染;(2)在某些有色金属的开发和冶炼中,常常有或多或少的砷化物排出,污染周围环境;(3)砷化物的广泛利用,如含砷农药的生产和使用,又如作为玻璃、木材、制革、纺织、化工、陶器、颜料、化肥等工业的原材料,均增加了环境中的砷污染量;(4)煤的燃烧,可致不同程度的砷污染。 5.铜的来源 铜的化合物以一价或二价状态存在。在天然水中,溶解的铜量随pH值的升高而降低。在冶炼、金属加工、机器制造、有机合成及其他工业的废水中都含有铜,

重金属离子有哪些

重金属离子有哪些? 重金属离子主要是Cr6+、U6+、Te3+、Co3+、Se6+、Pu3+、Hg2+,Mn4+等备注:重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。 哪些重金属离子可以使蛋白质变性 下面一段是我从我的化学选修书上摘下来的(自己打上来的): 蛋白质受热到一定温度就会发生不可逆的凝固,凝固后不能在水中溶解,这种变化叫做变性。除了加热以外,在紫外线、X射线、强酸、强碱,铅、铜、汞等重金属的盐类,以及一些有机化合物如甲醛、酒精、苯甲酸等作用下,蛋白质均能发生变性。蛋白质变性后,不仅丧失了原有的可溶性,同时也失去了生理活性。 重金属指比重大于5的金属,(一般指密度大于4.5克每立方厘米的金属)约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 铁锰同时存在的地下水中,要测锰离子浓度,如何消除铁离子对它的影响? 最近在测定地下水锰离子浓度的时候,铁离子发生很大的干扰,我不知道如何消除,我用的方法是高碘酸钾分光光度法测定锰,不过高碘酸钾好像和铁也反应,导致测试结果偏高!有没有高手能解决这个问题的?小弟先谢谢了!注意:曝气除铁在测定锰,这种方法不能用,因为氢氧化铁会吸附锰离子,导致测试结果偏低。 这是典型的共存离子的干扰和消除。常采用A 控制酸度B 加掩蔽剂C 分离干扰离子 所以建议:可加入氟化钠,使其与铁离子生成无色络合物[FeF6]3- 来消除干扰。 1楼的方法是看到3价铁离子可以和铁单质反应生成亚铁离子,但这种方法不推荐,因为高碘酸存在强氧化性,即使不存在氧化性,亚铁离子本身也存在绿颜色 重金属捕捉剂 一、重金属捕捉剂别名:

重金属铬污染土壤修复技术研究进展

摘要 本文概述了淋洗法修复重金属污染土壤的机理和淋洗剂的主要种类及应用研究进展。提出高效环保淋洗剂的开发,以及快速淋洗设备的研制及过程集成,是今后重金属铬污染土壤淋洗修复技术的重要研究方向。重金属作为一种持久性污染物已越来越多地被关注和重视. 重金属矿山的开采利用是造成当今世界重金属污染的主要原因,并已经严重威胁和影响人类的生存和发展.本文从我国重金属铬的利用入手,淋洗法是修复重金属铬污染土壤的一种快速、有效的方法。其中淋洗剂是决定淋洗修复技术成败和是否产生二次环境污染的重要因素。 关键词:重金属;铬污染土壤;淋洗法;修复 ABSTRACT This article summarizes the elution method to repair the mechanism of heavy metal contaminated soil and the main types and application research progress of spray lotion. Put forward the development of efficient environmental protection spray lotion, as well as the rapid development and process of leaching device integration, is the heavy metal chromium leaching of soil bioremediation technology of the important research direction. Heavy metals, as a kind of persistent pollutant has increasingly concern and attention. Heavy metal mine exploitation is the main reason for the heavy metal pollution in the world, and has a serious threat and influence human survival and development. In this paper, from the use of our country heavy metal chromium, elution method is one of the repair of heavy metal chromium contaminated soil rapid and effective method. The spray lotion is to determine whether success of injector repair technology and important factor in the production of secondary pollution of the environment. Key words :Heavy metals; Chromium contaminated soil; Elution method; repair

重金属离子

4 离子溶出问题 矿渣的离子溶出安全性问题也很重要,在保证其作为水泥混合材应具备的稳定性能的同时,还应确保其离子溶出不会涉及放射性物质和重金属等安全性问题。 随着世界环境问题的日益突出和可持续发展战略的要求,人们越来越关注各种类型废弃物的处理和利用,期望将这些废弃物资源化加以利用随着工业废渣建材资源化的力度加大和各种混凝土掺合料外加剂的开发利用,使得水泥和混凝土中重金属离子的种类和含量不断增加,这样在其使用过程中,在某些条件下是否会溶出释放出来而导致二次环境污染。这是当前国际水泥混凝土界共同关心的一个新课题。 荷兰自1996年1月起就实行了一项法规,即用于地下或作基础用的任何建筑材料都必须通过环境影响评估试验。这项法规尽管只在荷兰有效,但它确告诉我们,不仅要掌握材料的使用性能和耐久性能,而且还必须了解其使用后对环境可能产生的影响。由于在高温形成过程中有机组分已大部分分解或挥发,因此就目前的认识水平来说,在水泥和混凝土材料的环境影响分析中尚可只考虑其中的无机有害组分的溶出问题。 1 重金属离子的种类及其危害 Pb、Hg、Cd、Cr和As、Cr6+等这些重金属元素对生态环境和人类健康都有较大的影响。 ⑴Pb的危害 铅可在人体和动物组织中蓄积,铅的主要毒性效应是导致贫血症、神经机能失调和肾损伤。铅对植物的危害,主要是影响植物的光合作用和蒸腾作用,长期施用含铅的污泥或污水灌溉,有可能影响土壤中氮的转化。铅对水生生物的安全浓度为0.16 mg·L-1。铅是我国实施排放总量控制的指标之一。 ⑵Hg的危害 汞及其化合物属于剧毒物质,可在体内蓄积,进入人体的无机汞离子可转换为毒性更大的有机汞,经食物链进入人体,引起全身中毒。汞的污染源主要是仪表厂、食盐电解、贵金属冶炼、温度计及军工等工业废水中,汞也是我国实施排放总量控制的指标之一。

相关主题
文本预览
相关文档 最新文档