函数的基本概念及表示法
- 格式:doc
- 大小:241.00 KB
- 文档页数:5
函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。
它在数学和其他领域中有着广泛的应用。
本文将介绍函数的基本概念以及一些常见的函数类型。
1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式表示。
2. 函数的表示方法函数可以通过不同的方式进行表示。
常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。
- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。
图像可以帮助我们更直观地理解函数的性质。
- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。
3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。
函数的值域是指函数的所有可能输出值,即函数的取值范围。
定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。
4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。
线性函数的图像为一条直线,具有常等差的特点。
4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。
幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。
4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。
指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。
4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。
对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。
4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
八年级上册函数知识点总结函数是数学中重要的基本概念之一。
学习函数不仅是数学学习的重点之一,而且在学习物理、化学、经济等科学中也具有重要作用。
函数的概念和应用是本章的重点内容。
下面就来一起回顾一下八年级上册主要的函数知识点。
一、函数的概念函数是一种对应关系,它把一个数集中的每个数都唯一地对应到另一个数集中的一个数上。
在函数中,我们通常用符号 y=f(x) 来表示,其中 x 称为自变量,y 称为因变量,f(x) 称为函数名。
二、函数的表示方法函数可以用图像、显式公式、隐式公式、数据表、文字语言等方式表示。
1. 图像表示法:函数图像是函数概念的直观反映,函数的图像通常在平面直角坐标系中表示,自变量通常在横轴上,因变量在纵轴上。
2. 显式公式:显式函数公式是指用已知的代数式或数式,直接表达出 y 与 x 之间的关系式。
例如:y=2x+3。
3. 隐式公式:隐式函数公式是指不用具体的公式把y 表达出来,而是通过给定的条件解出 y 与 x 之间的关系式。
例如:x^2+y^2=4。
4. 数据表:将函数的各种数值列成一张表格,其中自变量和函数值成对出现。
可以用表格的方式来表示函数。
5. 文字语言:对函数的描述可以用文字语言来表示,例如:函数 y=2x+3 表示一个自变量为 x 的函数,因变量 y 等于自变量 x 的两倍加上 3。
三、函数的性质和分类1. 单调性:函数单调增加表示随着自变量的增加,因变量也相应地增加;函数单调减少表示随着自变量的增加,因变量反而减少。
2. 奇偶性:当函数中自变量为 x 和 -x 时,如果有函数值f(x)=f(-x),那么函数具有偶对称性;如果有函数值 f(x)=-f(-x),那么函数具有奇对称性。
3. 周期性:如果一个函数 f(x+T)=f(x),其中 T>0,那么函数就具有周期性。
4. 分类:函数也可以根据函数名中的代数式或数式的特征分类。
例如,一次函数 f(x)=kx 、二次函数 f(x)=ax^2+bx+c、反比例函数f(x)=k/x、指数函数 f(x)=a^x、对数函数 f(x)=loga(x) 等。
函数的基本概念与表示方法在数学的广袤天地中,函数就像是一座桥梁,连接着不同的数量关系和变化规律。
它不仅是数学研究的重要对象,也是解决实际问题的有力工具。
让我们一起走进函数的世界,去探寻它的基本概念和表示方法。
函数是什么呢?简单来说,函数是一种特殊的对应关系。
想象有两个集合,一个集合中的元素通过某种规则与另一个集合中的元素一一对应,这个规则就是函数。
比如说,我们有一个集合是学生的学号,另一个集合是对应的学生成绩。
当给定一个学号,就能通过特定的规则找到对应的成绩,这就是一个函数关系。
函数通常用符号“f”“g”等来表示。
假设我们有一个函数 f,它把集合A 中的元素 x 映射到集合 B 中的元素 y,我们就可以写成 f(x) = y 。
这里的 x 叫做自变量,y 叫做因变量。
自变量是主动变化的量,因变量则是随着自变量的变化而变化的量。
函数有几个重要的特点。
首先,对于集合 A 中的每一个自变量 x,都必须有唯一确定的因变量 y 与之对应。
也就是说,一个自变量不能对应多个不同的因变量。
其次,集合 A 中的元素都要有“用武之地”,不能有被“冷落”的元素。
这两个特点保证了函数关系的确定性和完整性。
函数的表示方法有很多种,最常见的有解析法、列表法和图像法。
解析法就是用数学表达式来表示函数关系。
比如,y = 2x + 1 就是一个用解析法表示的函数。
这种方法简洁明了,能够清晰地展示自变量和因变量之间的数量关系。
通过这个表达式,我们可以很容易地计算出当 x 取不同值时 y 的值。
列表法是将自变量和对应的因变量列成表格的形式。
比如,我们要表示一个人的体重随年龄的变化,就可以列出这样一个表格:|年龄(岁)| 10 | 15 | 20 | 25 | 30 |||||||||体重(kg)| 30 | 45 | 55 | 60 | 65 |列表法直观清晰,对于一些离散的数据或者有限的取值范围,使用列表法非常方便。
图像法则是用图形来表示函数关系。
第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。
(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。
函数的基本概念与运算函数是数学中的重要概念,广泛应用于各个领域,包括物理、经济学以及计算机科学等。
在数学中,函数是一种表达两个集合之间关系的工具,通过给定一个输入值,函数可以计算出对应的输出值。
本文将介绍函数的基本概念、符号表示和常见的函数运算。
一、函数的定义与表示函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的元素。
设集合A和集合B,如果对于A中的每个元素a,都存在唯一的b属于B与之对应,则可以说存在一个函数f将a映射到b。
函数可以用不同的表示方法来表示,最常见的表示形式为函数符号和函数图像。
函数符号表示通常使用f(x)的形式,其中f是函数名,x是自变量。
f(x)表示函数对于输入x所对应的输出值。
例如,f(x) = 2x表示一个对应关系,将自变量x乘以2得到相应的输出值。
函数图像表示是通过绘制输入-输出对的关系来表示函数。
通过在坐标系中描绘函数图像,可以更直观地理解函数的性质和变化趋势。
二、函数的基本运算函数之间常常进行各种运算,包括加法、减法、乘法和除法等。
下面将介绍这些基本的函数运算。
1. 加法:设有函数f(x)和g(x),它们的和函数记作h(x) = f(x) + g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相加得到h(x)的输出值。
2. 减法:设有函数f(x)和g(x),它们的差函数记作h(x) = f(x) - g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相减得到h(x)的输出值。
3. 乘法:设有函数f(x)和g(x),它们的乘积函数记作h(x) = f(x) *g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相乘得到h(x)的输出值。
4. 除法:设有函数f(x)和g(x),其中g(x) ≠ 0,它们的商函数记作h(x) = f(x) / g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相除得到h(x)的输出值。
高中数学函数基础知识高中数学中,函数是一个非常重要的概念,贯穿于整个数学学科的各个领域中。
掌握函数基础知识,对于高中学生来说是至关重要的。
本文将系统地介绍高中数学函数的基础知识,帮助学生更好地理解和掌握这一概念。
1. 函数的定义函数是一种特殊的关系,即对每一个定义域中的元素,有且只有一个对应的值。
通俗地讲,函数就是一种“输入-输出”的关系,每个输入对应唯一的输出。
数学上用符号f(x) 来表示函数,其中x 表示自变量,f(x) 表示因变量。
形式化地定义,若对于每个 x∈X,存在唯一的 y∈Y,使得对于每个 x,都有唯一的 y 与之对应,则称 f 为定义在 X 上的函数,其中 X 为定义域,Y 为值域。
2. 函数的图象与性质函数的图象是函数 f(x) 在直角坐标系中的几何表示。
通过绘制函数的图象,我们可以直观地看出函数的性质,如单调性、奇偶性、周期性等。
对于一元函数 f(x),其图象通常是一条曲线或者曲线段。
通过观察函数的图象,我们可以更深入地理解函数的性质。
3. 函数的表示方法函数可以通过各种形式进行表示,常见的表示方法包括解析式表示、列表法、集合法等。
其中,解析式表示是最常见的形式,如 f(x) = x²表示一个函数关系。
此外,函数还可以通过函数图像、函数表格等形式进行表示,以便更加清晰地展示函数的性质。
4. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
这些基本函数在数学中起着重要的作用,通过熟练掌握这些基本函数的性质和图象,可以更好地理解和运用函数的相关知识。
5. 函数的运算函数之间可以进行各种运算,如加法、减法、乘法、除法、复合运算等。
通过函数的运算,可以得到新的函数,对于复杂的函数关系可以通过适当的运算进行简化和分解,便于进行进一步的分析和求解。
6. 函数的应用函数在现实生活中有着广泛的应用,如描述物体的运动规律、经济学中的供求关系、生物学中的生长模型等。
函数的定义及表示一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()yf x ,xA 其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a ,所有函数值构成的集合{()}y yf x xA ,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2x xk kZ ππ,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()y f u =,()u g x =,(),x a b ∈,(),u m n ∈,那么[()]yf x 称为复合函数,u 称为中间变量,它的取值范围是()g x的值域.注意:函数的定义域必须写成集合或区间的形式.二、映射,是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x在B 定义:设A B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射,这时称y是x在映射f的作用下的象,记作()f x,于是y f x()x称为y的原象,映射f也可记为::f A Bx f x()f x构成的集合叫做映射f的其中A叫做映射f的定义域(函数定义域的推广).由所有象()f A.值域.通常记作()、以及对应法则,三者缺一不可;:f A B,集合A中每一个元素映射三要素:集合A B在集合B中都有唯一的元素与之对应,从A到B的对应关系为一对一或多对一,绝对不可以一对多,但也许B中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c (0)a或2()[()]()F x a f x bf x c (0)a类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y ,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc ya xb xc (1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c d ac=+±≠均为常数t =[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆一.选择题(共12小题)1.(2018春•东安区校级期末)集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.f:x→y=12x B.f:x→y=2﹣xC.f:x→y=23x D.f:x→y=√x2.(2018春•青山区校级期末)已知函数y=√(a−1)x2+ax+1的值域为[0,+∞),求a的取值范围为()A.a≥1B.a>1C.a≤1D.a<13.(2016秋•芗城区校级期末)下列图形中可以是某个函数的图象的是()A.B.C.D.4.(2016秋•宁城县期末)下列函数与函数y=x 相等的是( ) A .y =(√x)2 B .y =√x 2C .y =(√x 3)3D .y =x 2x5.(2016秋•湖北期末)已知函数f (x )的定义域为[﹣1,5],在同一坐标系下,函数y=f (x )的图象与直线x=1的交点个数为( ) A .0个 B .1个C .2个D .0个或者2个6.(2016秋•天门期末)已知函数f (x )的定义域为[﹣2,2],在同一坐标系下,函数y=f (x )的图象与直线x=1的交点个数为( ) A .0个 B .1个C .2个D .0个或者2个7.(2018•乌鲁木齐二模)若集合A ={x|x(x +1)≥0},B ={y|y =√x −1},则( ) A .A=B B .A ⊆B C .A ∪B=RD .B ⊆A8.(2018•乌鲁木齐二模)若集合A={x |x (x ﹣1)<0},B={y |y=x 2},则( )A .A=B B .A ⊆BC.A∪B=R D.B⊆A9.(2018•河南模拟)已知函数f(x)=5﹣1og3x,x∈(3,27],则f(x)的值域是()A.(2,4]B.[2,4)C.[﹣4,4)D.(6,9]10.(2018•济宁一模)已知函数f(x)={lnxx,x>1e x+1,x≤1,则函数f(x)的值域为()A.(0,e+1]B.(0,e+1)C.(0,1e]∪(1,e+1)D.(0,1e]∪(1,e+1]11.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4B.3lnx+4C.3lnx D.3e x12.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为()A.1B.﹣1C.﹣32D.32二.填空题(共4小题)13.(2017秋•杨浦区校级期末)设f(x)=x2√x−1,g(x)=√x−1x,则f(x)•g(x)=.14.(2018春•海安县校级月考)若f(2x)=3x2+1,则函数f(x)的解析式是.15.(2018•徐汇区二模)函数f(x)=lg(3x﹣2x)的定义域为.16.(2017秋•海陵区校级期中)若g(x)=x2+x,x∈{﹣1,1}的值域为.三.解答题(共2小题)17.求函数y=e x+1e x+2值域.18.求下列函数的值域.(1)y=√x−4;√x+3(2)y=2x﹣3+√13−4x;(3)y=√1+x+√1−x.。
小学函数知识点总结一、函数的概念1. 什么是函数函数是数学中的一个重要概念,简单地说,函数就是一种对应关系。
在数学中,一个函数就是一个变量的规则,它把一个输入值映射到一个输出值。
2. 函数的符号表示我们通常用f(x)来表示一个函数,其中x是自变量,f(x)是因变量。
3. 自变量和因变量在函数中,自变量是输入的值,因变量是输出的值。
自变量的取值范围叫做定义域,而因变量的取值范围叫做值域。
4. 函数的图像函数的图像是自变量和因变量之间的关系,在数学中,我们通常用坐标轴上的点来表示函数的图像。
二、函数的性质1. 奇函数和偶函数如果对于任意x,都有f(-x)=-f(x),那么这个函数就叫做奇函数;如果对于任意x,都有f(-x)=f(x),那么这个函数就叫做偶函数。
2. 单调性如果对于自变量的增加,因变量也随之增加,那么这个函数就叫做递增函数;如果对于自变量的增加,因变量却减小,那么这个函数就叫做递减函数。
3. 周期性如果存在一个正数T,使得对于任意x,有f(x+T)=f(x),那么这个函数就叫做周期函数。
4. 基本性质函数的定义域和值域、奇偶性、单调性、周期性等是函数的基本性质,可以通过这些性质来判断函数的特点。
三、函数的表示方法1. 表达式表示函数可以通过一个公式或表达式来表示,我们可以通过这个公式或表达式来求出函数在任意一个自变量下的因变量的数值。
2. 函数图象表示函数的图象是自变量和因变量之间的关系,在坐标系中,函数的图象可以通过一系列的点来表示。
3. 函数表表示函数表是另一种表示函数的方法,通过列出一系列自变量和对应的因变量的数值来表示函数。
四、基本函数1. 线性函数线性函数是一种最简单的函数,它的表达式通常是f(x)=kx+b,其中k和b是常数。
2. 幂函数幂函数是一个以x为自变量,指数为正整数的函数,它的表达式通常是f(x)=x^n,其中n是正整数。
3. 指数函数指数函数是一个以x为自变量,以指数为底的函数,它的表达式通常是f(x)=a^x,其中a是一个常数且大于0。
基本初等函数知识点一、函数的概念:函数是自变量与因变量之间的一种对应关系。
其中,自变量是函数的输入,因变量是函数的输出。
函数可以用来描述不同变量之间的关系或者用来描述一些变量随着另一个变量的变化而发生的变化。
二、函数的表示法:函数可以用不同的表示法来表示。
最常见的表示法有解析式表示法、图像表示法和表格表示法。
例如,一元一次函数y=ax+b就是一个常见的初等函数。
三、函数的性质:1.定义域和值域:函数的定义域是自变量的取值范围,值域是函数的因变量的可能取值范围。
2.奇偶性:对于函数f(x),如果对于任意x,有f(-x)=f(x)成立,则函数具有偶性;如果对于任意x,有f(-x)=-f(x)成立,则函数具有奇性。
3.单调性:如果对于任意x1>x2,有f(x1)>f(x2)成立,则函数为递增函数;如果对于任意x1>x2,有f(x1)<f(x2)成立,则函数为递减函数。
4.周期性:如果对于任意x,有f(x+T)=f(x)成立,则函数具有周期T。
四、常见初等函数的性质和图像:1.常数函数:f(x)=c(c为常数),图像为平行于x轴的一条直线。
2. 一次函数:f(x) = ax + b(a和b为常数),图像为一条直线,斜率a决定了直线的倾斜程度,b为与y轴交点的纵坐标。
3.幂函数:f(x)=x^n(n为常数),图像的形状与n的奇偶性以及正负有关,例如,当n为正奇数时,图像的右上和左下部分都在x轴上方。
4.指数函数:f(x)=a^x(a为常数且大于0且不等于1),图像呈现出一种快速增长的趋势。
5. 对数函数:f(x) = loga(x)(a为常数且大于0且不等于1),图像为一条光滑的上升曲线,a决定了函数增长的速度。
五、初等函数的运算:1.四则运算:对于两个初等函数f(x)和g(x),可以进行加减乘除运算,得到新的初等函数。
2.复合运算:对于两个初等函数f(x)和g(x),可以将g(x)的值代入f(x)进行运算,得到新的初等函数。
函数的基本概念函数是数学中一个非常重要的概念,广泛应用于各个领域的数学问题求解和实际生活中的应用。
在数学中,函数是指两个集合之间的一种特殊关系,它把一个集合的每一个元素都唯一地对应到另一个集合的元素上。
1、函数的定义函数可以简单地理解为一种对应关系,形式上可以表示为:f: A→B,其中A和B是两个集合,称为定义域和值域。
对于A中的每一个元素a,函数f把它映射到B中的一个唯一元素上,我们用f(a)表示这个映射后的结果。
例如,我们可以定义一个简单的函数f: ℝ→ℝ,它把实数集合映射到实数集合上,其中f(x) = x^2。
对于任意实数x,函数f会把它映射到x的平方上。
2、函数的特性函数具有一些重要的特性,例如:(1)定义域和值域:函数的定义域是指所有可以输入的元素组成的集合,值域是指函数的输出结果组成的集合。
在定义函数时,需要明确指定定义域和值域。
(2)单射性:单射性是指不同的输入元素对应不同的输出元素。
即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b。
(3)满射性:满射性是指每一个值域中的元素都有对应的定义域中的元素,即对于任意b∈B,都存在a∈A,使得f(a) = b。
(4)一一对应:一一对应是指函数同时具有单射性和满射性。
即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b,并且对于任意b∈B,都存在唯一的a∈A,使得f(a) = b。
3、函数的图像函数的图像是函数的可视化表示方式,它可以帮助我们更直观地理解函数。
函数的图像通常是在笛卡尔坐标系中绘制的,横坐标表示定义域的元素,纵坐标表示对应的函数值。
以函数f(x) = x^2为例,我们可以将其图像绘制为一个抛物线。
当x 取负值时,函数值也是正数,所以抛物线在原点的左侧也有对应的点。
4、函数的表示方法除了使用公式的形式表示函数外,函数还可以使用其他方式进行表示。
常见的函数表示方法有:(1)函数表格:函数表格是一种简洁明了的表示方式,可以把函数的输入和输出结果都列在表格中。
函数的概念与基本初等函数第一节 函数及其表示1.函数的有关概念函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域.常见求函数定义域类型:①偶次根式:偶次根式根号内的式字大于等于零,如若y=)(x f ,则0)(≥x f . ②分式:分式分母不为零,即若)()(x g x f y =,则0)(≠x g . ③对数式:对数式真数大于零,即若)(log x f y a =,其中a>0且a≠1,则0)(>x f ④对于)(tan x f y =,则有Z k k x f ∈+≠,2)(ππ抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.2.函数的三要素:定义域、值域和对应关系.3.函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.4.相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.5.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.6.求函数解析式的4种方法及适用条件(1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).。
函数概念及表示法教案一、引言函数在数学中是一个常见且重要的概念,它在各个领域都有广泛的应用。
本教案旨在介绍函数的基本概念以及表示法,帮助学生理解函数的本质与特点,并能够熟练运用函数的表示方法。
二、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
形式化地说,设集合A和B,如果对于任意的a∈A,存在唯一的b∈B与之对应,那么我们就说存在一个从A到B的函数。
三、函数的表示法1. 函数的映射表表示法以映射表的形式表示函数,将集合A中的元素与集合B中的元素一一对应。
例如,对于函数f:A→B,可以使用以下形式表示: 2. 函数的解析式表示法使用方程或者公式来表示函数的规律。
例如,考虑函数f(x)=2x+1,其中x为实数。
这个函数表达了将实数x映射为2x+1的规则。
3. 函数的图像表示法将函数的映射关系可视化为图像,横轴表示定义域内的元素,纵轴表示值域内的元素。
函数的图像可以直观地展示函数的变化趋势。
例如,对于函数f(x)=2x+1,其图像为一条斜率为2的直线。
四、函数的性质1. 定义域和值域函数的定义域是输入变量的取值范围,值域是输出变量的取值范围。
通过确定定义域和值域,可以限定函数的输入和输出。
2. 奇偶性如果对于任意的x∈定义域,有f(-x)=-f(x),则函数为奇函数;如果对于任意的x∈定义域,有f(-x)=f(x),则函数为偶函数。
奇偶性可以由图像的对称性来判断。
3. 单调性如果对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则函数为增函数;如果当x1<x2时,有f(x1)>f(x2),则函数为减函数。
4. 极值与最值若函数在某个点处的函数值大于或小于它邻近的函数值,则称该点为极值点。
最大极值即为函数的最大值,最小极值即为函数的最小值。
函数的概念及其表示方法【知识点一】函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域.2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:{x|a≤x≤b}=[a,b];;;.【知识点二】函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.【知识点三】映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象.注意:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.规律方法指导1.函数定义域的求法(1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.(2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.(3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.2.如何确定象与原象对于给出原象要求象的问题,只需将原象代入对应关系中,即可求出象.对于给出象,要求原象的问题,可先假设原象,再代入对应关系中得已知的象,从而求出原象;也可根据对应关系,由象逆推出原象.3.函数值域的求法实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的"最高点"和"最低点",观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些"分式"函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.经典例题透析类型一、函数概念1.下列各组函数是否表示同一个函数?(1)(2)(3)(4)思路点拨:对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.解:(1),对应关系不同,因此是不同的函数;(2)的定义域不同,因此是不同的函数;(3)的定义域相同,对应关系相同,因此是相同的函数;(4)定义域相同,对应关系相同,自变量用不同字面表示,仍为同一函数.总结升华:函数概念含有三个要素,即定义域,值域和对应法则,其中核心是对应法则,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.举一反三:【变式1】判断下列命题的真假(1)y=x-1与是同一函数;(2)与y=|x|是同一函数;(3)是同一函数;(4)与g(x)=x2-|x|是同一函数.答:从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.2.求下列函数的定义域(用区间表示).(1);(2);(3).思路点拨:由定义域概念可知定义域是使函数有意义的自变量的取值范围.解:(1)的定义域为x2-2≠0,;(2);(3).总结升华:使解析式有意义的常见形式有①分式分母不为零;②偶次根式中,被开方数非负.当函数解析式是由多个式子构成时,要使这多个式子对同一个自变量x有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.举一反三:【变式1】求下列函数的定义域:(1);(2);(3).思路点拨:(1)中有分式,只要分母不为0即可;(2)中既有分式又有二次根式,需使分式和根式都有意义;(3)只要使得两个根式都有意义即可.解:(1)当|x-2|-3=0,即x=-1或x=5时,无意义,当|x-2|-3≠0,即x≠-1且x≠5时,分式有意义,所以函数的定义域是(-∞,-1)∪(-1,5)∪(5,+∞);(2)要使函数有意义,须使,所以函数的定义域是;(3)要使函数有意义,须使,所以函数的定义域为{-2}.总结升华:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合;(即求各集合的交集)(5)满足实际问题有意义.3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1).思路点拨:由函数f(x)符号的含义,f(3)表示在x=3时,f(x)表达式的函数值.解:f(3)=3×32+5×3-2=27+15-2=40;;;.举一反三:【变式1】已知函数.(1)求函数的定义域;(2)求f(-3),的值;(3)当a>0时,求f(a)×f(a-1)的值.解:(1)由;(2);;(3)当a>0时,.【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:(1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x))思路点拨:根据函数符号的意义,可以知道f(g(2))表示的是函数f(x)在x=g(2)处的函数值,其它同理可得.解:(1)f(2)=2×22-3×2-25=-23;g(2)=2×2-5=-1;(2)f(g(2))=f(-1)=2×(-1)2-3×(-1)-25=-20;g(f(2))=g(-23)=2×(-23)-5=-51;(3)f(g(x))=f(2x-5)=2×(2x-5)2-3×(2x-5)-25=8x2-46x+40;g(f(x))=g(2x2-3x-25)=2×(2x2-3x-25)-5=4x2-6x-55.总结升华:求函数值时,遇到本例题中(2)(3)(这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如f(g(x)),里层函数就是g(x),外层函数就是f(x),其对应关系可以理解为,类似的g(f(x))为,类似的函数,需要先求出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.4. 求值域(用区间表示):(1)y=x2-2x+4;.思路点拨:求函数的值域必须合理利用旧知识,把现有问题进行转化.解:(1)y=x2-2x+4=(x-1)2+3≥3,∴值域为[3,+∞);(2);(3);(4),∴函数的值域为(-∞,1)∪(1,+∞).类型二、映射与函数5. 下列对应关系中,哪些是从A到B的映射,哪些不是?如果不是映射,如何修改可以使其成为映射?(1)A=R,B=R,对应法则f:取倒数;(2)A={平面内的三角形},B={平面内的圆},对应法则f:作三角形的外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f:作圆的内接三角形.思路点拨:根据定义分析是否满足“A中任意”和“B中唯一”.解:(1)不是映射,集合A中的元素0在集合B中没有元素与之对应,不满足“A中任意”;若把A改为A={x|x≠0}或者把对应法则改为“加1”等就可成为映射;(2)是映射,集合A中的任意一个元素(三角形),在集合B中都有唯一的元素(该三角形的外接圆)与之对应,这是因为不共线的三点可以确定一个圆;(3)不是映射,集合A中的任意一个元素(圆),在集合B中有无穷多个元素(该圆的内接三角形有无数个)与之对应,不满足“B中唯一”的限制;若将对应法则改为:以该圆上某定点为顶点作正三角形便可成为映射.总结升华:将不是映射的对应改为映射可以从出发集A、终止集B和对应法则f三个角度入手.举一反三:【变式1】判断下列两个对应是否是集合A到集合B的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N*,B={0,1},对应法则f:x→x除以2得的余数;③A=N,B={0,1,2},f:x→x被3除所得的余数;④设X={0,1,2,3,4},思路点拨:判断是否构成映射应注意:①A中元素的剩余;②“多对一”“一对一”构成,而“一对多”不构成映射.解:①构成映射,②构成映射,③构成映射,④不构成映射,0没有象.【变式2】已知映射f:A→B,在f的作用下,判断下列说法是否正确?(1)任取x∈A,都有唯一的y∈B与x对应;(2)A中的某个元素在B中可以没有象;(3)A中的某个元素在B中可以有两个以上的象;(4)A中的不同的元素在B中有不同的象;(5)B中的元素在A中都有原象;(6)B中的元素在A中可以有两个或两个以上的原象.答:(1)、(6)的说法是正确的,(2)、(3)、(4)、(5)说法不正确.【变式3】下列对应哪些是从A到B的映射?是从A到B的一一映射吗?是从A到B的函数吗?(1)A=N,B={1,-1},f:x→y=(-1)x;(2)A=N,B=N+,f:x→y=|x-3|;(3)A=R,B=R,(4)A=Z,B=N,f:x→y=|x|;(5)A=N,B=Z,f:x→y=|x|;(6)A=N,B=N,f:x→y=|x|.答:(1)、(4)、(5)、(6)是从A到B的映射也是从A到B的函数,但只有(6)是从A到B的一一映射;(2)、(3)不是从A到B的映射也不是从A到B的函数.6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素的象,B中元素的原象.解:∴A中元素的象为故.举一反三:【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什么?解:(1)由已知f:x→x2-2x-1,所以A中元素的象为;又因为x2-2x-1=-1有x=0或x=2,因为A={x|x>0},所以B中元素-1的原象为2;(2)由已知f:(x,y)→(x-y,x+y),所以A中元素(1,3)的象为(1-3,1+3),即(-2,4);又因为由有x=2,y=1,所以B中元素(1,3)的原象为(2,1).类型三、函数的表示方法7. 求函数的解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x).思路点拨:求函数的表达式可由两种途径.解:(1)∵f(2x-1)=x2,∴令t=2x-1,则;(2)f(x+1)=2x2+1,由对应法则特征可得:f(x)=2(x-1)2+1即:f(x)=2x2-4x+3.举一反三:【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)].解:(1)(法1)f(x+1)=x2+4x+2=(x+1)2+2(x+1)-1∴f(x)=x2+2x-1;(法2)令x+1=t,∴x=t-1,∴f(t)=(t-1)2+4(t-1)+2=t2+2t-1∴f(x)=x2+2x-1;(法3)设f(x)=ax2+bx+c则f(x+1)=a(x+1)2+b(x+1)+c∴a(x+1)2+b(x+1)+c=x2+4x+2;(2)∵-1<0,∴f(-1)=2·(-1)+6=4f[f(-1)]=f(4)=16.总结升华:求函数解析式常用方法:(1)换元法;(2)配凑法;(3)定义法;(4)待定系数法等.注意:用换元法解求对应法则问题时,要关注新变元的范围.8.作出下列函数的图象.(1);(2);(3);(4).思路点拨:(1)直接画出图象上孤立的点;(2)(3)先去掉绝对值符号化为分段函数.解:(1),∴图象为一条直线上5个孤立的点;(2)为分段函数,图象是两条射线;(3)为分段函数,图象是去掉端点的两条射线;(4)图象是抛物线.所作函数图象分别如图所示:类型四、分段函数9. 已知,求f(0),f[f(-1)]的值.思路点拨:分段函数求值,必须注意自变量在不同范围内取值时的不同对应关系.解:f(0)=2×02+1=1f[f(-1)]=f[2×(-1)+3]=f(1)=2×12+1=3.举一反三:【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值.解:由分段函数特点,作出f(x)图象如下:∴如图,可得:f(1)=2;f(-1)=-1;f(0)=;f{f[f(-1)+1]}=f{f[-1+1]}=f{f(0)}=f()=+1.10. 某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相并画出函数的图象.解:设票价为y元,里程为x公里,由空调汽车票价制定的规定,可得到以下函数解析式:根据这个函数解析式,可画出函数图象,如下图所示:举一反三:【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),Ⅰ. 写出y1,y2与x之间的函数关系式?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?Ⅲ. 若某人预计一个月内使用话费200元,应选择哪种通讯方式?解:Ⅰ:y1=50+0.4x,y2=0.6x;Ⅱ:当y1=y2时,50+0.4x=0.6x,∴0.2x=50,x=250∴当一个月内通话250分钟时,两种通讯方式费用相同;Ⅲ:若某人预计月付资费200元,采用第一种方式:200=50+0.4x,0.4x=150 ∴x=375(分钟)采用第二种方式:200=0.6x,∴应采用第一种(全球通)方式.一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵B.⑵、⑶C.⑷D.⑶、⑸2.函数y=的定义域是()A.-1≤x≤1B.x≤-1或x≥1 C.0≤x≤1 D.{-1,1}3.函数的值域是( )A.(-∞,)∪(,+∞)B.(-∞,)∪(,+∞)C.R D.(-∞,)∪(,+∞)4.下列从集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从集合A到集合B的映射的个数是( )A.1 B. 2 C. 3 D.45.已知映射f:A→B,在f的作用下,下列说法中不正确的是( )A.A中每个元素必有象,但B中元素不一定有原象B.B中元素可以有两个原象6.点(x,y)在映射f下的象是(2x-y,2x+y),求点(4,6)在f下的原象( )A.(,1)B.(1,3) C.(2,6)D.(-1,-3)7.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列各表达式中不表示从P到Q的映射的是( )A.y=B.y=C.y=x D.y=x28.下列图象能够成为某个函数图象的是( )9.函数的图象与直线的公共点数目是( )A.B.C.或D.或10.已知集合,且,使中元素和中的元素对应,则的值分别为( )A.B.C.D.11.已知,若,则的值是( )A.B.或C.,或D.12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( )A.沿轴向右平移个单位B.沿轴向右平移个单位C.沿轴向左平移个单位D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.4.若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.2.求函数的值域.3.根据下列条件,求函数的解析式:(1)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(2)已知f(x-3)=x2+2x+1,求f(x+3);(3)已知;一、选择题1.设函数,则的表达式是( )A.B.C.D.2.函数满足则常数等于( )A.3 B.-3 C.D.3.已知,那么等于( )A.15 B.1 C.3 D.304.已知函数定义域是,则的定义域是( )A.B.C.D.5.函数的值域是( )A.B.C.D.6.已知,则的解析式为( )A.B.C.D.二、填空题1.若函数,则=_______________.2.若函数,则=_______________.3.函数的值域是_______________.4.已知,则不等式的解集是_______________.5.设函数,当时,的值有正有负,则实数的范围_______________.三、解答题1.设是方程的两实根,当为何值时,有最小值?求出这个最小值.2.求下列函数的定义域(1);(2).3.求下列函数的值域(1);(2).综合探究1.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中,纵轴表示离学校的距离,横轴表示出发后的时间,如图四个图象中较符合该学生走法的是( )2.如图所表示的函数解析式是( )A. B.C. D. 3.函数的图象是( )。
题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ⎛⎫
⎪⎝⎭
.
设121,2,,,,,n n f i i i ⎛⎫= ⎪⎝⎭ ,12
1,2,,,,,n n g j j j ⎛⎫= ⎪⎝⎭ (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n
个整数的一个排列).定义g f 12
1,2,,,,,n n i i i ⎛⎫= ⎪⎝⎭ 121,2,,,,,n n j j j ⎛⎫
⎪⎝⎭ ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则⎪
⎪⎭
⎫
⎝⎛⎪⎪⎭⎫
⎝⎛4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟).
做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟.
题三:3,10
()((5)),10x x f x f f x x -≥⎧=⎨+<⎩
,则f (5)=
题四:集合R 到集合R 的映射f (是一个函数),满足:(1)25f x x -=+. 请问:这里的法则f 是
题五:下面的解答对吗?为什么?
(1)43-=x y 的值域是[4,5]-,则它的定义域是]3,0[. (2)432
-=x y 的值域是]5,4[-,则它的定义域是]3,3[-. 如果不对,怎么改?
题一:设二次函数f (x )=ax 2+bx +c (a ≠0).问:是否存在常数a ,b ,c ,使函数f (x )同时满足下列条件:(1) f (x )的图象过点(-1,0);(2)对一切x ∈R ,都有21
()(1)2
x f x x ≤≤
+.
题一:两家通讯公司的手机上网卡套餐资费如下表:
(注:1 M =1024KB ,1 G =1024M )
已知某人手机的月流量平均为4 G ,他最适合的套餐业务为( )
A. 甲公司130元3G
B. 乙公司130元3G
C. 甲公司200元6G
D. 乙公司180元5G 练习:
题一:已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x +1,x 2+1),求A 中元素2在B 中的对应元素和B 中元素(
32,5
4
)在A 中的对应元素.
题二:设集合A ={2,4,6,8,10},B ={1,9,25,49,81,100},下面的对应关系f 能构成
A 到
B 的映射的是( ) A. f :x →(x -1)2 B. f :x →(2x -3)2 C. f :x →-2x -1 D. f :x →(2x -1)2
题三:根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧
c
x
,x <A ,c
A ,x ≥A
(A ,
c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )
A .75,25
B .75,16
C .60,25
D .60,16 题四:函数y =x (x -2)的定义域为[a ,b ],值域为[-1,3],则点(a ,b )的轨迹是图中的( )
A. 点H (1,3)和F (-1,1)
B. 线段EF 、GH
C. 线段EH 、FG
D. 线段EF 、EH
题五:已知函数f (x )=⎩
⎪⎨⎪⎧
3x +2,x <1,
x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.
题六:已知函数f (x )=⎩
⎪⎨⎪⎧
x 2+2ax ,x ≥2,
2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.
题七:从盛满20升纯酒精的容器里倒出1升,然后用水填满,再倒出1升混合溶液后又用水填满,这样继续进行,如果倒第k (k ≥1)次时共倒出纯酒精x 升,倒第k +1次时共倒出纯酒精f (x )升,则f (x )的函数表达式为( )
A. f (x )=
2019x B. f (x )=2019x +1 C. f (x )=20x D. f (x )=20
x
+1
题八:若函数f (x )=x
ax +b
(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.
题九:下列四个命题正确的有________.
①函数是其定义域到值域的映射; ②y =x -3+2-x 是函数;
③函数y =2x (x ∈N )的图象是一条直线;
④y =⎩
⎪⎨⎪⎧
x 2,x ≥0,-x 2,x <0的图象是抛物线.
题十:已知函数f (x )的定义域是[-1,2],则函数y =f (x )+f (-x )的定义域是( )
A.[-1,1]
B.[-2,2]
C.[-1,2]
D.[-2,1]
题十一:设x ≥0时,f (x )=2;x <0时,f (x )=1,又规定:g (x )=3f (x -1) -f (x -2 )
2
(x >0),
试写出y =g (x )的表达式,并画出其图象.
题十二: 二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.
(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.
题十三:如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.
(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;
(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?
(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?
题十四: 动点P 从单位正方形ABCD 的顶点A 出发,顺次经过B ,C ,D 绕边界一周,当x 表示点
P 的行程,y 表示P A 的长时,求y 关于x 的解析式,并求f ⎝⎛⎭⎫
52的值.
函数的基本概念及表示法
讲义参考答案
金题精讲
题一:
1,2,3,4,5
2,4,5,3,1
⎛⎫
⎪
⎝⎭
题二:最佳时间为3.75题三:8 题四:乘2加7
题五:(1)对,(2)错,它的定义域可以是[满分冲刺
题一:
111
,,
424 a b c
===
思维拓展题一:D。