非稳态导热
- 格式:ppt
- 大小:486.50 KB
- 文档页数:39
第三章 非稳态导热的分析计算3-1 非稳态导热过程分析 一、非稳态导热过程及其特点 导热系统(物体)内温度场随时间变化的导热过程为非稳态导热过程。
在过程的进行中系统内各处的温度是随时间变化的,热流量也是变化的。
这反映了传热过程中系统内的能量随时间的改变。
我们研究非稳态导热过程的意义在于,工程上和自然界存在着大量的非稳态导热过程,如房屋墙壁内的温度变化、炉墙在加热(冷却)过程中的温度变化、物体在炉内的加热或在环境中冷却等。
归纳起来,非稳态导热过程可分为两大类型,其一是周期性的非稳态导热过程,其二是非周期性的非稳态导热过程,通常指物体(或系统)的加热或冷却过程。
这里主要介绍非周期性的非稳态导热过程。
下面以一维非稳态导热为例来分析其过程的主要特征。
今有一无限大平板,突然放入加热炉中加热,平板受炉内烟气环境的加热作用,其温度就会从平板表面向平板中心随时间逐渐升高,其内能也逐渐增加,同时伴随着热流向平板中心的传递。
图3-1显示了大平板加热过程的温度变化的情况。
从图中可见,当0=τ时平板处于均匀的温度0t t =下,随着时间τ的增加平板温度开始变化,并向板中心发展,而后中心温度也逐步升高。
当∞→τ时平板温度将与环境温度拉平,非稳态导热过程结束。
图中温度分布曲线是用相同的∆τ来描绘的。
总之,在非稳态导热过程中物体内的温度和热流都是在不断的变化,而且都是一个不断地从非稳态到稳态的导热过程,也是一个能量从不平衡到平衡的过程。
二、加热或冷却过程的两个重要阶段从图3-1中也可以看出,在平板加热过程的初期,初始温度分布0t t =仍然在影响物体整个的温度分布。
只有物体中心的温度开始变化之后(如图中τ>τ2之后),初始温度分布0t t =的影响才会消失,其后的温度分布就是一条光滑连续的曲线。
据此,我们可以把非稳态导热过程分为两个不同的阶段,即:初始状况阶段――环境的热影响不断向物体内部扩展的过程,也就是物体(或系统)仍然有部分区域受初始温度分布控制的阶段;正规状况阶段――环境对物体的热影响已经扩展到整个物体内部,且仍然继续作用于物体的过程,也就是物体(或系统)的温度分布不再受初始温度分布影响的阶段。
非稳态导热的基本概念例1:设一平壁,初始温度为t0,突然将其投入到温度为t∞的流体中对其进行对称加热。
例2:设一平壁,初始温度为t0,在τ=0时使其左边温度恒为t1,右侧与温度t0的流体进行换热。
非稳态导热的特点:物体内各点温度随时间变化在热量传递过程中,由于温度的变化物体要积蓄(或放出)热量,即使是一维无限大平板对每个于热流垂直的面上热流也不相等。
工程上研究非稳态导热往往要解决以下几个问题:物体中某一部分的温度从初始值上升或下降到某一给定值所需要的时间;物体在非稳态导热过程中的温度分布;从某一时刻起经过一定时间后表面所传递的热量。
求解办法:在给定单值性条件求解导热微分方程。
当一物体表面突然被加热或被冷却时,物体中各点的温度变化及其分布取决于:物体表面与周围环境的热交换条件;换热越强烈,单位时间进入物体的热量(或物体放出)就越多。
物体内温度变化就越剧烈。
物体内部导热条件;导热热阻越小,则为传递一定热量所需的温度梯度就越小。
集总参数法的特点:是一种理想化模型;物体内热阻忽略不计;物体内温度梯度忽略不计,认为整个物体具有相同的温度;通过表面传递的热量立即设整个物体的温度同时发生变化;把一个有分布热容的物体看成是一个集中热容的物体;只考虑与环境间的换热不考虑物体内的导热。
有可能用集总参数法的条件(定性):物体的导热系数要相当大;几何尺寸要相当小;表面换热要弱;表面积要大。
求解示例:问题的提出:有一任意形状的物体,体积为V,表面积为A,具有均匀的初始温度t0,在初始时刻将其置于温度为t∞的流体中,设t0>t∞,表面与流体的对流换热系数为h,物体的参数为ρ、c,导热系数非常大。
求:1.物体内的温度随时间的变化;物体中任意时刻的热流;到某一时刻的总传热量;到某一温度所需的时间。
解:建立物力数学模型讨论:时间常数当时,物体内的过余温度达到初始时的36.8%毕渥数傅立叶数:能用集总参数法处理的条件(定量),要使各点的过余温度偏差小于5%,则要求:1.如Bi 定义为,(L为特征尺度)则要求:Bi≤0.1例题:用电热偶测量管道内气流的温度。