先进制造技术 第十单元
- 格式:doc
- 大小:87.50 KB
- 文档页数:13
- - -先进制造技术的开展及体系构造目录摘要1关键词11 知识经济条件下制造业的开展11.1 制造系统的定义和涵11.2 制造业的开展21.3 制造业的变革及挑战22 先进制造技术的技术构成及特点22.1 先进制造技术的定义22.2 先进制造技术的技术构成22.3 先进制造技术的特点33 先进制造技术的分类34 先进制造技术在国外的开展34.1 兴旺国家制造业的开展34.2先进制造技术在我国的开展45 先进制造技术的开展趋势及技术前沿45.1 先进制造技术的开展趋势45.2 先进制造技术的技术前沿46总结5参考文献5先进制造技术的开展及体系构造摘要:介绍了什么是先进制造技术,阐述了在当今社会条件下先进制造技术的重要作用,综述了国外先进制造技术的开展,讨论了先进制造技术的涵、特点、体系构造及分类,指出我国先进制造技术的优先开展方向。
关键词:制造业;制造系统;先进制造技术1 知识经济条件下制造业的开展1.1 制造系统的定义和涵制造系统是制造业的根本组成实体。
制造过程及其涉及的硬件、软件和人员组成的一个将制造资源转变成产品的有机整体,称为制造系统。
制造系统从构造、功能、过程三个方面又有各自不同的定义。
制造技术是完成制造活动所需的一切手段的总和。
1.2 制造业的开展在知识经济条件下,制造业正在发生质的飞跃,制造业成为参与市场竞争的主体,是国民经济的支柱产业。
知识经济对制造工业的影响表现在对产品和消费观念的改变,产品设计和制造过程的数字化和智能化,以及经营和制造活动的全球化等。
越来越多的人认识到一个没有工业根底和制造业的城市是没有根基的城市。
1.3 制造业的变革及挑战科学技术的开展和市场需求的不断变化,促进制造业生产规模沿着"小批量"少品种大批量"多品种变批量〞方向开展,资源配置沿着"劳动密集-设备密集-信息密集-知识密集〞的方向开展,生产方式沿着"手工-机械化-刚性流水自动化-柔性自动化-智能自动化〞方向开展。
先进制造技术复习题填空题1.制造过程产品从设计、生产、使用、维修、报废、回收等的全过程,也称为产品生命周期。
2.制造业将制造资源利用制造技术,通过制造过程,转化为供人们利用或利用的工业品或生活消费品的行业。
3.制造生产的运行过程,包括市场分析、产品设计、工艺规划、制造装配、检验出厂、产品销售、售后服务、报废、回收、再利用等。
4.恩格斯指出:“直立和劳动创造了人类,而劳动是从制造工具开始的。
动物所做到的最多是收集,而人则从事生产。
5.现代制造技术的四个基本特征是柔性化、集成化、智能化和网络化。
6.上个世纪70年代,美国不重视制造业,把制造业称为“夕阳工业“,结果导致美国80年代的经济衰退。
7.第三次产业革命的标志:原子弹、电子计算机、晶体管、集成电路、微电子技术等。
8.二十一世纪人类的科学与技术包括物质科学,生命科学、信息技术、生物技术、纳米技术。
9.人大常委会副委员长宋健指出:“制造业是实现现代工业的水之源、木之本。
是实现工业化的保障和原动力,是国家实力的脊梁,是支持共和国大厦的基石。
没有强大制造能力的国家永远成不了经济强国。
“10.制造业市场竞争的新特点:知识到技术到产品更新的更短。
11.典型FMS的三个子系统是:加工系统、物流系统、控制系统。
12根据滑台的驱动方式不同,分为液压滑台和机械滑台。
13.FMS中央管理计算机肩负的任务:控制、监控、监视。
14.1HY25表示通用部件系列代号为HY的液压滑台,其主参数为 25 。
15.CAE含义是计算机辅助分析技术,CIMS含义是计算机集成制造系统,FMC含义是小型柔性制造技术、 FMS含义是柔性加工技术。
16.微细加工中的三束加工是指激光束加工、电子束、离子束。
17.零件分类编码的结构形式为“行”与“列”,每一列称为码域、每一行称为码位。
18.CAD/CAM系统的基本功能有图片图像处理 , 产品与过程建模 , 信息储存与管理 , 工程计算分析与优化。
第一次作业1.先进制造技术的构成有哪些?答:(1) 主技术群:①设计技术群;②制造工艺技术群;(2) 支撑技术群:①信息技术;②标准和框架;③机床和工具技术;④传感器和控制技术;(3) 制造基础技术:①质量管理②用户/供应商交互作用③工作人员培训和教育④监督和评测⑤技术获取合理用2.狭义的制造和广义的制造的概念是什么?答:狭义的制造,是指生产车间内与物流有关的加工和装配过程;广义的制造,则包含市场分析、产品设计、工艺设计、生产准备、加工装配、质量保证、生产过程管理、市场营销、售前售后服务,以及报废后的回收处理等整个产品生命周期内一系列相互联系的生产活动。
3.制造系统的结构、功能和过程是什么?答:结构:是制造过程所涉及的硬件、软件、人员所组成的具有特定功能的有机整体。
功能:输入制造系统的资源通过制造过程输出产品过程:制造生产的运行过程,包括市场分析、产品设计、工艺规划、制造装配、检验出厂、产品销售、售后服务、报废、回收、再利用等。
4.现代设计技术内涵是什么?答:现代设计技术是以满足应市产品的质量、性能、时间、成本、价格综合效益最优为目的,以计算机辅助设计技术为主体,以知识为依托,以多种科学方法及技术为手段,研究、改进、创造产品活动过程所用到的技术群体的总称。
5.现代设计技术的体系结构是什么?答:(1) 基础技术:是指传统的设计理论与方法。
(2) 主体技术:计算机科学与设计技术结合产生技术(3) 支撑技术:指现代设计方法学、可信性设计技术、试验设计技术。
(4) 应用技术:是针对实用目的解决各类具体产品设计领域的技术6. CAE技术的基本概念是什么?答:CAE仿真技术是以数学理论、相似原理、计算方法、评估理论为基本理论,以计算机技术、信息技术、图形图像技术、系统工程技术以及与仿真应用领域有关的专业技术为基础,以计算机和各种物理效能设备为工具,利用系统模型对实际的或设想的系统进行动态试验研究的一门多学科综合性交叉技术。
《先进制造技术》试题及参考答案一、AMST多层次先进制造技术体系由哪几个部分组成?(15分)答:第一个层次是优质、高效、低耗、清洁基础制造技术。
铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺至今仍是生产中大量采用、经济适用的技术,这些基础工艺经过优化而形成的优质、高效、低耗、清洁基础制造技术是先进制造技术的核心及重要组成部分。
这些基础技术主要有精密下料、精密塑性成形、精密铸造、精密加工、精密测量、毛坯强韧化、精密热处理、优质高效连接技术、功能性防护涂。
层及各种与设计有关的基础技术、各种现代管理技术。
第二个层次是新型的制造单元技术。
这事在市场需求及新兴产业的带动下,制造技术与电子、信息、新材料、新能源、环境科学、系统工程、现代管理等高新技术结合而形成的崭新制造技术,如制造业自动化单元技术、极限加工技术、质量与可靠性技术、系统管理技术、CADE/CAM、清洁生产技术、新材料成形加工技术、激光与高密度能源加工技术、工艺模拟及工艺设计优化技术等。
第三个层次是先进制造集成技术。
这是应用信息技术和系统管理技术,通过网络与数据库对上述两个层次的技术集成而形成的,如FMS、CIMS、IMS 以及虚拟制造技术等。
二、为什么有了数控机床,还要有FMS?(20分)答:FMS被定义为:“柔性制造系统是由数控加工设备、物料运储装置和计算机控制系统等组成的自动化制造系统。
它包括多个柔性制造单元,能根据制造任务或生产环境的变化迅速进行调整,以适应多品种、中小批量生产。
”其优点:a.工序集中如选用多功能机床、加工中心等,以减少工位数和减轻物流负担,保证加工质量。
b.控制功能强、扩展性好如选用模块化结构,外部通信功能和内部管理功能强,有内装可编程序控制器,有用户宏程序的数控系统,以易于与上下料、检测等辅助装置连接和增加各种辅助功能,方便系统调整与扩展,以及减轻通信网络和上级控制器的负载。
C.高刚度、高精度、高速度选用切削功能强,加工质量稳定,生产效率高的机床。
先进制造技术习题答案超精密加⼯部分作业题1. 超精密加⼯⽅法主要有哪⼏种?各适合于什么材料的超精密加⼯?答:1.加⼯⽅法有:1)机械能量法(切削加⼯、磨削加⼯、切(割)断加⼯、磨粒加⼯等)。
2)热能量法(电极加⼯、激光加⼯、电⼦束加⼯、离⼦束加⼯等)。
3)电⽓、化学能量法(电解加⼯、电解研磨、化学研磨、蚀刻等)。
2.适于材料:1)超精密切削:主要⽤于加⼯铝合⾦、铜合⾦、Ti合⾦、⾮电解镍等;2)超精密磨削:主要加⼯⿊⾊⾦属和脆性材料。
如:合⾦钢、钛合⾦、玻璃、陶瓷、单晶硅等;3)超精密研磨和抛光:主要⽤于加⼯⾼表⾯质量和⾼平⾯度的集成电路芯⽚和光学平⾯及蓝宝⽯窗⼝等.2. 超精密切削中,影响加⼯精度的主要因素有哪些?答:1.给定的精度指标。
2.加⼯机械的直线运动和回转运动精度。
3.加⼯机械的定位精度;4.加⼯机械、⼯具及⼯件的刚度;5.加⼯机械、⼯具、⼯件的振动;6.加⼯机械、⼯具、⼯件的热变形;7.⼯具的尺⼨及形状精度;8.加⼯机械、⼯具、⼯件的磨损和磨伤;9.⼯具、⼯件的定位安装精度;10.⼯件在前道⼯序加⼯中的尺⼨、形状的误差及其误差分散的程度;11.⼯件材质及其物理、机械性能;12.⼯件的形状和尺⼨;13.⼯件材料的不均匀性;14.加⼯单位的⼤⼩(去除、结合、变形等);15.测量技术与数据处理;16.加⼯者的知识及技术熟练程度;17.加⼯环境的⼒、振动、热、清洁程度;3. 超精密切削时,最⼩理论极限切削厚度是多少?最⼩切削厚度与⼑刃刃⼝半径ρ是什么关系?答:1nm到30nm的切削。
⼑刃刃⼝半径ρ越⼤,最⼩切削厚度越⼤。
4. 离⼦束加⼯的原理是什么?有哪⼏部分组成?举例说明其应⽤。
答:原理:也是在真空条件下,将氩、氪、⼭等隋性⽓体,通过离⼦源产⽣离⼦束并经过加速、集束、聚焦后,投射到⼯什表⾯的加⼯部位,以实现去除材料的加⼯组成:离⼦源系统、真空系统、控制系统、电源系统举例:1)⽤于从⼯件上去除加⼯的离⼦刻蚀加⼯;2)⽤于给⼯件表⾯添加材料的离⼦镀膜加⼯;3)⽤于表⾯改性的离⼦注⼊加⼯等5. 电⼦束加⼯的原理是什么?有哪⼏部分组成?举例说明其应⽤。
先进制造技术发展现状与未来趋势先进制造技术发展现状与未来趋势摘要:简要介绍了先进制造技术的内涵、特点、构成及分类。
并且分析了当前国外先进制造技术的发展现状,特别是对当今一些发达国家的先进制造技术的地位进行了介绍,进一步提出先进制造技术的重点研究领域。
阐述了各国21世纪的发展趋势,而且还根据我国的国情概述了我国的发展状况和今后的发展趋势。
关键词:先进制造技术、发展现状、未来趋势引言资源、环境、人口是当今人类社会面临的三大主要问题,由于人们的生活条件得到大大的提高,对身边的物质条件要求也越来越高,以至于传统的制造技术已经达不到人们的物质文明方面的要求,而且传统的制造技术往往又是消耗不可再生能源的根源所在。
因此,根据人们对精神和物质的追求,我们不得不发展先进制造技术一满足人们的各种需求。
近些年来,我们为了更高的物质追求,消耗了很多的能源,一直破坏了我们身边的生态环境。
让人们时刻感觉到自己的生存存在着威胁。
因此为了改善环境来满足自己和后代的生存需求。
近年来 ,围绕生态环境问题 ,人们提出了“既满足当代人的需求 ,又不对子孙后代满足其需要之能力构成危害的发展”的“可持续发展战略”。
可持续发展战略的思想具有极为丰富的内涵,它将生态环境与经济发展联结为一个互为因果的有机整体,认为经济发展要考虑到自然生态环境的长期承载能力,使环境和资源既能满足经济发展的需要,又使其作为人类生存的要素之一而直接满足人类长远生存的需要,从而形成了一种综合性的发展战略。
特别是机械制造行业,创造人类财富的支柱产业 ,正在大量消耗人类社会的有限资源 ,并且是造成当前环境污染问题的主要根源之一。
为此 ,机械行业实施可持续发展战略已势在必行。
因此,先进制造技术是机械行业的发展趋势。
1.先进制造技术的内涵、特点、构成与分类1.1先进制造技术的内涵先进制造技术(AMT)是以人为主体,以计算机技术为支柱,以提高综合效益为目的,是传统制造业不断地吸收机械、信息、材料、能源、环保等高新技术及现代系统管理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测管理及售后服务的制造全过程,以实现优质、高效、低耗、清洁、敏捷制造,并取得理想技术经济效果的前沿制造技术的总称。
第一章先进制造技术概述1.先进制造技术是什么?答: 先进制造技术(Advance Manufacturing Technology,AMT)是传统制造技术、信息技术、计算机技术、自动化技术与管理科学等多学科先进技术的综合,并应用于制造工程之中所形成的一个学科体系。
2.发展趋势:精密化,柔性化,网络化,虚拟化,智能化,清洁化,集成化,全球化3.很多国家特别是美国把制定制造业发展战略列为重中之重,原因是什么?答: ①世界经济发展的趋势表明,制造业是一个国家经济发展的基石,也是增强国家竞争力的基础;②制造业是解决就业矛盾的一个重要领域,也是21世纪提高一个国家整体就业水平的重要基础;③制造业不仅是高新技术的载体,而且也是高新技术发展的动力。
1.什么是制造系统?制造技术?答: 制造过程及其所涉及的硬件包括人员、生产设备、材料、能源和各种辅助装置以及有关软件包括制造理论、制造技术(制造工艺和制造方法等)和制造信息等组成了一个具有特定功能的有机整体,称之为制造系统。
制造技术是按照人们所需的目的,运用知识和技能,利用客观物质工具,是原材料转变为产品的技术总称。
2.制造业面临着新的历史性发展机遇和更加严峻的挑战?答:(1)产品生命周期缩短。
现代科技以日新月异的速度发展,新产品层出不穷。
产品的生命周期(一个产品从开发设计到被市场淘汰所经历的时间)大大缩短。
(2)用户需求多样化。
用户追求多样化和个性化已逐渐成为世界的潮流。
(3)大市场和大竞争。
世界市场的开放程度越来越大。
随着计算机通信技术的迅速发展和信息高速公路的建立,使得全球集成制造有实现的可能。
这样可以使资源更充分地利用,原料和产品的运输距离得以更显著地缩短,交货期也能得到进一步缩短,产业分工的国际化已成为发展潮流。
(4)交货期成为竞争的第一要素。
根据客户对产品需求的变化,要求迅速作出反应,已经成为压倒一切的竞争要素。
(5)信息化和智能化。
计算机技术的发展和广泛的应用,使企业的控制进一步信息化和智能化,使企业的工作内容、对象和方法发生了根本的改变。
先进制造技术复习题一、填空题1.先进制造技术包含主体技术群、支撑技术群和制造技术环境三个技术群。
2.先进制造基础技术的特点除了保证优质、高效、低耗外,还应包括无污染。
3.微细加工中的三束加工是指电子束,离子束,激光束。
4.绿色制造技术是指在保证产品的功能、质量、成本的前提下,综合考虑环境影响和资源效率的现代制造模式。
5.超高速机床主轴的结构常采用交流伺服电动机内置式集成结构,这种主轴通常被称为空气轴承主轴。
6.快速原型制造常用的工艺方法光固化成形,叠层实体制造,选择性激光烧结,熔融沉积制造。
7.虚拟制造技术是以信息技术、仿真技术、虚拟现实技术为支持,在产品设计或制造系统的物理实现之前,就能使人体会或感受到未来产品的性能或者制造系统的状态,从而可以作出前瞻性的决策与优化实施方案。
8.大规模集成电路的微细制作方法有外延生长,氧化,光刻,选择扩散,真空镀膜。
9.优化设计的两个前提条件以数学规划为理论基础,以计算机为基础。
10.快速原型制造技术的熔丝沉积成形法通常采用的原材料是热塑性材料。
,和绿色1.高速加工机床的进给系统机构大多采用(a)a.直线电机b.滑动丝杠传动机构c.摩擦传动机构2.机床进给伺服系统常用的检测角位移的原件是(d)a.感应同步器;b.光栅;c.容栅;d.脉冲编码器3.ERP的含义是(c)a.制造资源计划b.物料需求计划c.企业资源计划d.产品数据管理4.下列哪种说法不符合绿色制造的的思想(c)a.对生态环境无害b.资源利用率高,能源消耗低c.为企业创造利润5.计算机集成制造技术强调(c)a.企业的经营管理b.企业的虚拟制造c.企业的功能集成6.FMS非常适合(c)a.大批大量生产方式b.品种单一、中等批量生产方式c.多品种、变批量生产方式7.在进行纳米级测量非导体的零件表面形貌时,常采用的测量仪器为(c)a.光学显微镜b.扫描隧道显微镜c.原子力显微镜8.光刻加工的工艺过程为:(c)a.①氧化②沉积③曝光④显影⑤还原⑦清洗b.①氧化②涂胶③曝光④显影⑤去胶⑦扩散c.①氧化②涂胶③曝光④显影⑤去胶⑦还原9.光刻加工采用的曝光技术中具有最高分辨率的是(c)a.电子束曝光技术b.离子束曝光技术c.X射线曝光技术10.硅微体刻蚀加工和硅微面刻蚀加工的区别在于(a)a.体刻蚀加工对基体材料进行加工,而面刻蚀加工不对衬底材料进行加工;b.体刻蚀加工不对基体材料进行加工,而面刻蚀加工对衬底材料进行加工;c.体刻蚀加工可获得高纵横比的结构,而面刻蚀加工只能获得较低纵横比的结构;11.工业机器人有多种分类方式,下列不属于按驱动方式分类的是(d)a.气压传动机器人;b.液压传动机器人;c.电器传动机器人;d.智能机器人;12.在进行纳米级测量两个导体的表面形貌时,常采用的测量仪器为(b)a.电镜b.扫描隧道显微镜c.图像处理技术13.微细加工技术中的刻蚀工艺可分为下列哪两种(b)a离子束刻蚀、激光刻蚀b.干法刻蚀、湿法刻蚀c.溅射加工、直写加工14.衡量机器人技术水平的主要指标是(a)a.自由度b.工作空间c.提取重力d.运动速度15.a.集中控制方式b.主从控制方式c.分散控制方式d.点位式16.CIMS的两个支撑子系统是(c)a.工程设计自动化子系统、管理信息子系统;b.制造自动化子系统、质量保证子系统c.计算机网络子系统、数据库子系统17.下列不是制造自动化分系统的是(a)1、先进制造技术的概念先进制造技术是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。
10 Rapid Prototyping and Manufacturing10.1 Introduction10.1.1 What Is RP&MManufacturing community is facing two important challenging tasks:(1) Substantial reduction of product development time; and (2) improvement on the flexibility for manufacturing small batch and diversified products. Computer-aided design and manufacturing (CAD and CAM) have significantly improved the traditional product design and manufacturing. However, there are a number of obstacles in true integration of computer-aided design with computer-aided manufacturing for rapid development of new products. Although substantial research has been done in the past for computer-aided design and manufacturing integration, such as feature recognition, CNC programming and process planning, the gap between CAD and CAM remains unfilled in the following aspects:(1) Rapid creation of 3D models and prototypes.(2) Cost-effective production of patterns and moulds with complex surfaces.To substantially shorten the time for developing patterns, moulds, and prototypes, some manufacturing enterprises have started to use rapid prototyping (RP) methods for complex patterns making and component prototyping. Over the past few years, a variety of new rapid manufacturing technologies, generally called Rapid Prototyping and Manufacturing (RP&M), have emerged; the technologies developed include Stereolithography (SL), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM), and Three Dimensional Printing (3D Printing). These technologies are capable of directly generating physical objects from CAD databases. They have a common important feature: the prototype part is produced by adding materials rather than removing materials, that is, a part is first modeled by a geometric modeler such as a solid modeler and then is mathematically sectioned (sliced) into a series of parallelcross-section pieces. For each piece, the curing or binding paths are generated. These curing or binding paths are directly used to instruct the machine for producing the part by solidifying or binding a line of material. After a layer is built, a new layer is built on the previous one in the same way. Thus, the model is built layer by layer from the bottom to top.10.1.2 The History of RP&MAs usual with invention, one individual's impatience was the propellant for the rapid prototyping industry, now barely two decades old. Its father, CharlesW Hull, founded 3D Systems of Valencia, Calif. in 1986. As an engineer, Hull had always been bothered by the long time it took to make prototype models of plastic. They had to be machined by hand, he recalls. If more than one was needed, generally the case in industry, molds for making plastic prototypes had to be individually machined.Hull had been working for a small company that used ultraviolet lamps toharden photosensitive plastic coatings on glass and other objects. One of his insights was to substitute a laser for an ultraviolet lamp. "But taking thatinsight to a practical machine came slowly," Hull recalls, and required several years of Edison-style inspiration. (In fact, a prototyping machine based on conventional UV light was developed in 1998 by The Institute of Advanced Manufacturing Technology, Xi'an Jiaotong University, China).The result was the first prototyping machine, introduced by 3D Systems in 1987. It could fabricate small, transparent plastic parts from CAD drawings in hours or at most days. The machine builds the model in layers, from the bottom up. A laser, which causes molecules of a photosensitive liquid resin to polymerize, scans above a vessel filled with the resin. The laser first traces the outline of a layer on the resin's surface. Next, like an artist shading a panel in a pencil drawing, the beam crisscrosses the whole outlined area to harden it. Then the platform holding the model sinks so the layer is barely awash inliquid resin, the laser goes to work solidifying another layer atop it, and so on. When the translucent object is fabricated, it is raised from the vat, dripping like a mermaid just emerged from the sea. Hull dubbed the process stereolithography, and it still dominates RP.Before long other inventors jumped in. Michael Feygin, an immigrant Russian engineer, hit on the idea of building prototypes from inexpensiveslices of paper. His company, Helisys of Torrance, Calif., makes remarkably sturdy objects by a process called laminated-object manufacturing (LOM). A CO2 laser traces each layer by burning, moving like a crazed ice dancer carving a turn here, a straight line there. Successive layers are bonded by adhesive. Heisys's machines have modeled auto steering wheels, bumpers and other shapes that feel like wood to the touchThe early RP machines could make a metal prototype only in an indirect way. First a plastic model had to be "invested", or clad in a heat-resistant material such as a ceramic. Then the model was "sacrificed" by melting, just as the ancient Egyptians melted a wax model inside a mold to clear the way for a bronze casting. This leaves a mold suitable for making a metal or plastic prototype.Extrude Hone, a company in Irwin, Pa., is getting ready to market a machine, based on MIT's ink-jet technology, that will make not only metal molds but also salable metal parts. In Extrude Hone's machine, powdered steelis hardened with a binder and infiltrated with bronze powder to create a material that is 100% metal.Powerful new lasers may also open doors to direct manufacturing. Such laser systems are being explored at national laboratories such as Sandia andLos Alamos, as well as at the University of Michigan, Penn State, and elsewhere. They may soon be available commercially. In the Sandia system, a 1000-watt neodymium YAG (yttrium-aluminum-gallium) laser melts powdered materials such as stainless and tool steels, magnetic alloys, nickel-based superalloys, titanium, and tungsten in layers to produce the final part.Some experts look to a manufacturing future extensively liberated from today's noisy, hot routines. Instead of molds and machine tools, these visionaries foresee rows of lasers building parts, 3-D printers fashioning convoluted shapes no CNC machine can carve, and silent ceramic part-makers replacing the traditional noisy factory din. Many products turned out in future factories could be designed to take advantage of rapid-manufacturing techniques. Implantable drug-release devices, with medicine sealed in, couldbe made in a single operation, since 3-D printers can make a sandwich-like product.10.2 Rapid Prototyping and Manufacturing TechnologiesAs mentioned earlier, there are several technologies available for model production based on the principle of "growing" or "additive" manufacturing. The major differences among these technologies are in two aspects: (1) materials used; (2) part building techniques. The following sections will explain in detail these rapid prototyping technologies with respect to the above two aspects. 10.2.1 StereolithographyStereolithography apparatus (SLA) was invented by Charle Hull of 3D Systems Inc. It is the first commercially available rapid prototyper and is considered as the most widely used prototyping machine. The material used is liquid photo-curable resin, acrylate. Under the initiation of photons, small molecules (monomers) are polymerized into large molecules.111 Based on this principle, the part is built in a vat of liquid resin as shown in Fig.10.1. The SLA machine creates the prototype by tracing layer cross-sections on the surface of the liquid photopo-lymer pool with a laser beam. Unlike the contouring or zigzag cutter movement used in CNC machining, the beam traces in parallel lines, or vectorizing first in one direction and then in the orthogonal direction. An elevator table in the resin vat rests just below the liquid surface whose depth is the light absorption limit. The laser beam is deflected horizontally in X and Y axes by galvanometer-driven mirrors so that it moves across the surface of the resin to produce a solid pattern. After a layer is built, the elevator drops a user-specified distance and a new coating of liquid resin covers the solidified layer. A wiper helps spread the viscous polymer over for building the next Layer.The laser draws a new layer on the top of the previous one. In this way, the model is built layer by layer from bottom to top. When all layers are completed, the prototype is about 95% cured. Post-curing is needed to completely solidify the prototype. This is done in a fluorescent oven where ultraviolet light floods the object (prototype).10.2.2 Selective Laser SinteringDTM Corp. (Austin TX) offers an alternative to liquid-curing systems with its Selective laser sintering (SLS) systems which were developed by Carl Deckard and Joseph Beaman at the Mechanical Engineering Department of University of Texas at Austin. SLS uses a carbon dioxide laser to sinter successive layers of powder instead of liquid. In SLS processes, a thin layer ofpowder is applied by a counter-rotating roller mechanism onto the work place. The powder material is preheated to a temperature slightly below its melting point. The laser beam traces the cross-section on the powder surface to heat up the powder to the sintering temperature so that the powder scanned by the laser is bonded. The powder that is not scanned by the laser will remain in place to serve as the support to the next layer of powder, which aids in reducing distortion. When a layer of the cross-section is completed, the roller levels another layer of powder over the sintered one for the next pass. Fig. 10.2 shows the working principle of SLS. The product may suffer shrinkage and warpage due to sintering and cooling. These two factors can be partly eliminated by choosing powder particles which have a small size, and a high aspect ratio and air flow temperature above the softening point of the powder, but below the sintering point.10.2.3 Fused Deposition ModellingAnother rapid prototyping system, developed by Stratasys Inc., constructs parts based on deposition of extruded thermoplastic materials, is called FDM process.In an FDM process as shown in Fig. 10.3, a spool of thermoplastic filament feeds into a heated FDM extrusion head. The movement of the FDM head is controlled by computer. Inside the flying extrusion head, the filament is melted into liquid (10 above the melting temperature) by a resistant heater. The head traces an exact outline of each cross-section layer of the part. As the head moves horizontally in X and Y axes, the thermoplastic material is extruded outof a nozzle by a precision pump. The material solidifies in 1/10 second as it is directed onto the workplace. After one layer is finished, the extrusion head moves up a programmed distance in Z direction for building the next layer. Each layer is bonded to the previous layer through thermal heating.10.2.4 Laminated Object Manufacturing (LOM)The LOM processes produce parts from bonded paper plastic, metal or composite sheet stock. LOM machines bond a layer of sheet material to a stack of previously formed laminations, and then a laser beam follows the contour of the part cross-section generated by CAD to cut it to the required shape. The layers can be glued or welded together and the excess material of every sheet is either removed by vacuum suction or remains as next layer's support. Fig. 10.4 shows the working principle of LOM.10.2.5 Three-Dimensional PrintingThree-dimensional printing (3D Printing) was developed at Massachusetts Institute of Technology. In the 3D Printing process, a 3D model is sliced into2D cross-section layers in computer. A layer of powder is spread on the top of the piston, the powder bed, in a cylinder, and then an inkjet printing head projects droplets of binder material onto the powder at the place where the solidification is required according to the information from the computer model. After one layer is completed, the piston drops a predefined distance and a new layer of powder is spread out and selectively glued. When the whole partis completed, heat treatment is required to enhance the bonding of the glued powder, and then the unbonded powder is removed. Fig.l0.5 shows the working process of 3D Printing10.5 Problems and ResearchRP&M is still in its infancy. The physical models made by most of these systems can not be used as working parts, mostly due to material and economic constraints. The major problems in the current RP&M systems include: part accuracy, limited material variety and mechanical performance.10.5.1 The Problem About Part AccuracyA large number of factors limit the ability of rapid prototyping systems to create parts as accurate as the CAD designs on which they are based. The most common sources of error among the RP&M systems could be categorized as mathematical, process-related or material-related.(1) Mathematical errors include facet approximation of the part surfaces in the standard input to RP&M systems, limited layer resolution along the Z axis, such as stairsteps and accuracy of vertical dimensions. Alternative data preparation methods based on CSG solid modeling which can input precise part surface to RP&M systems are under development. Parts are represented with CSG and a ray-tracing algorithm is used to generate the curing path. Carnegie-Mellon University (CMU) uses a 5-axis CNC mill to remove the excess material to shape the geometry of the layer in a newly developed RP&M system (shape deposition manufacturing) which can eliminate the stairsteps. This 5-axis mill could also be used to maintain the accuracy of vertical dimensions by milling away the excess thickness.(2) Process-related errors affect the shape of the layer in the X-Y plane and along the Z axis, the registration between different layers and the overall 3D shape. These errors are mainly dependent on the accuracy of the RP&M machines and operators' experiences.(3) Major material related errors are shrinkage and distortion. The shrinkage is a by-product of solidification-the cooling down of material with rapid prototyping processes. Predictable dimensional shrinkage can be compensated for by scaling the CAD model. Sometimes, the shrinkage is not identical along X, Y and Z axes. During the processes of building parts, stresses due to shrinkage may be locked into parts. Eventually, these stresses may cause the part to creep and distort. There may be several ways to minimize the effect of shrinkage: selection of appropriate manufacturing control parameters, development or exploration of materials with relatively small shrinkages or stressfree properties, and stress relief methods. All these approaches requirein-depth research on the materials and understanding of the processes. For the SLA system, 3D System's STAR(staggered alternative retract) Weave method can limit some of the distortion by curing more resin in the vat, and hatching the inside cross-section area on each layer. Many researchers have conducted serious study on the physical and chemical characteristics of the materials used in stereolithography systems. In Stratasys Inc. experimental research formanufacturing control parameters and material selection is carried out forFDM system. The in-depth research on FDM processes results in system refinements in accuracy, speed and surface finish. The physical mechanismsthat drive the SLS process are being studied in University of Texas. The physical and chemical properties of materials in 3D Printing are being studied for better product dimensions. Japanese Synthetic Rubber Co. Ltd. And DMEC Ltd. developed a new resin for stereolithography, which was effective in reducing the distortion. DuPont Imaging Systems also developed a low-shrinkage resin for its stereolithography systcm-SOMOS. CMU uses a method of striking metallic balls or shots under pressure on each solidifiedlayer to relieve large stresses generated during the processes of depositingmetal material for its rapid prototyping systems.10.5.2 The Problem About MaterialsThe current RP&M systems use very limited types of materials. Parts built by RP&M systems tend to be weak and fragile compared to those made conventionally from metals and engineering plastics. Some materials for theRP&M machines are expensive or toxic. Most of the research and development efforts have been focused on improving part materials, which are carried out in two different directions.One is that plastic companies with products already on the market, particularly those based on SL, SLS and FDM, have developed plastics with better physical properties-less brittle, lower shrink, lower viscous resin and similar to the end-user applications. Chemists developed a new less-brittle polymer that is used in 3D System's SLA-500. Another method for improving the mechanical properties of the material uses fibre-resin composites composed of glass, carbon, or graphite fibre bonded together by polymeric resin andcured into a solid part. Some researchers are trying to mix ceramics powder in the photopolymer resin to create ceramic green bodies such as structural ceramic parts and refractory ceramic parts for investment casting using stereolithography systems.The other direction is to focus on metals. The users of RP&M technologies tend to build models with materials whose properties are similar to the materials they might use in their end-use applications. Metal is most-commonly used in current industry. All rapid prototyping machines onthe market can be used to produce metal parts indirectly through various casting processes such as investment casting. The direct production of metal parts is still in development. CUM is developing a metal based RP&Msystem-Shape Deposition in which a part is built by successively depositing molten metal materials such as zinc, steel and copper in thin layers. WithMIT's 3D Printing technique, a ceramic shell or mould complete with corescan be produced with a direct monolithic casting shell fabrication process.Then an alloy is poured into the shell to cast a functional metal part. The University of Texas is pursuing the direct sintering of metal powder (SLS). Several metal mixtures are used in the SLS process to produce metallic parts,such as low melting-point binary metal powders: Cu-70Pb-3OSn solder, Cu-Sn and Ni-Sn; and high temperature materials: prealloyed 90Cu-IOSn bronzemixed with Ni powder.10快速原型制造10.1简介10.1.1什么是RP&M制造社会面临两个重要的挑战性的任务:(1)大幅减少产品开发时间;和(2)的改善在灵活制造小批量,多样化的产品。