电力机车控制基础理论
- 格式:ppt
- 大小:444.00 KB
- 文档页数:44
电力机车工作原理标题:电力机车工作原理引言概述:电力机车是铁路运输中常见的一种机车类型,其工作原理是通过电力驱动机车运行。
了解电力机车的工作原理可以帮助我们更好地理解铁路运输系统的运作方式。
一、电力机车的基本构成1.1 电机:电力机车的关键部件之一,用于将电能转化为机械能,驱动机车运行。
1.2 变压器:用于将高压电能转化为适合电机工作的低压电能。
1.3 控制系统:控制机车的运行速度和方向,确保机车安全稳定地运行。
二、电力机车的供电系统2.1 接触网:供应电力机车的电能来源,通常通过接触网与机车上的受电弓接触传输电能。
2.2 受电弓:连接接触网和机车的部件,负责接受接触网传输的电能。
2.3 集电装置:将受电弓接收到的电能传输给机车内部的电气系统。
三、电力机车的牵引系统3.1 牵引变流器:将接收到的电能转化为适合电机的交流电,以驱动电机运行。
3.2 传动系统:将电机的动力传递给机车的车轮,推动机车行驶。
3.3 制动系统:用于控制机车的速度和停车,确保机车在行驶过程中安全平稳。
四、电力机车的辅助系统4.1 空气压缩机:为机车提供制动、悬挂和空调等系统所需的气压。
4.2 冷却系统:保持机车内部电气设备的正常工作温度,避免过热损坏。
4.3 供电系统:为机车内部各种设备提供电能,确保机车正常运行。
五、电力机车的运行控制5.1 速度控制:通过控制电机的转速和电力输出,调节机车的运行速度。
5.2 方向控制:通过控制电机的运行方向,实现机车的前进、后退等运行方向。
5.3 紧急制动:在紧急情况下,启动机车的制动系统,迅速停止机车的运行,确保安全。
结论:电力机车是铁路运输中重要的机车类型,其工作原理涉及多个方面的技术和系统。
通过了解电力机车的工作原理,我们可以更好地理解铁路运输系统的运行方式,提高对铁路运输的安全性和效率。
电⼒机车基础知识论⽂⽬录1、电⼒机车概述 (2)2、电⼒机车基本构造 (3)3、电⼒机车⼯作原理 (5)⼀、电⼒机车概述电⼒机车本⾝不带原动机,靠接受接触⽹送来的电能作为能源,由机车转向架上的牵引电动机驱动机车的车轮。
电⼒机车具有功率⼤、热效率⾼、速度快、过载能⼒强和运⾏可靠等主要优点,⽽且不污染环境,特别适⽤于运输繁忙的铁路⼲线和隧道多,坡度⼤的⼭区铁路。
电⼒机车的能源是从接触⽹上获取的电能,接触⽹供给电⼒机车的电流有直流和交流两种。
由于电流性质不同,所⽤的电⼒机车也不⼀样,基本上可以分为直-直流型电⼒机车、交-直流型电⼒机车、交-直-交流型电⼒机车三类。
直-直型电⼒机车采⽤直流制供电,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触⽹上。
因此,电⼒机车可直接从接触⽹上取得直流电供给直流串励牵引电动机使⽤,简化了机车上的设备。
直流制的缺点是接触⽹的电压低,⼀般为1500V或3000 V,接触导线要求很粗,要消耗⼤量的有⾊⾦属,加⼤了建设投资。
交—直型电⼒机车在交流制中,⽬前世界上⼤多数国家都采⽤⼯频(50Hz)交流制,或25Hz低频交流制。
在这种供电制下,牵引变电所将三相交流电改变成25 kV⼯业频率单相交流电,再由串励电动机把交流电变成直流电⽤于机车运作。
由于接触⽹电压⽐直流制时提⾼了很多,接触导线的直径可以相对减⼩,减少了有⾊⾦属的消耗和建设投资。
因此,⼯频交流制得到了⼴泛采⽤,世界上绝⼤多数电⼒机车也是交—直流电⼒机车。
交—直—交电⼒机车,采⽤直流串励电动机的最⼤优点是调速简单,只要改变电动机的端电压,就能很⽅便地在较⼤范围内实现对机车的调速。
但是这种电机由于带有整流⼦,使制造和维修很复杂,体积也较⼤。
⽽交流⽆整流⼦牵引电动机(即三相异步电动机)在制造、性能、功能、体积、重量、成本、及可靠性等⽅⾯远⽐整流⼦电机优越得多。
它之所以迟迟不能在电⼒机车上应⽤,主要原因是调速⽐较困难。
电力机车工作原理
电力机车是一种以电力作为动力源的铁路机车,其工作原理是通过电力传动系
统将电能转换为机械能,驱动机车运行。
1. 电力供应系统
电力机车的电力供应系统主要包括接触网、供电装置和电池组。
接触网是通过
电缆与供电装置连接,将电能传输到机车上。
供电装置负责将接触网提供的交流电转换为直流电,供给机电和辅助设备使用。
电池组则提供机车启动和停车时的电能。
2. 电力传动系统
电力传动系统是电力机车的核心部份,主要由机电、牵引变流器和控制系统组成。
机电是将电能转换为机械能的装置,通过电力传动系统将机电产生的动力传递到车轮上,推动机车行驶。
牵引变流器负责将供电装置提供的直流电转换为机电所需的交流电,并控制机电的转速和转向。
控制系统则根据驾驶员的指令,控制牵引变流器和机电的工作状态,实现机车的加速、减速和制动。
3. 制动系统
电力机车的制动系统包括电阻制动和空气制动。
电阻制动是通过将机电产生的
电能转化为热能,通过电阻器散热来减速机车。
空气制动则是通过压缩空气作用于车轮的制动盘,实现机车的制动。
4. 辅助设备
电力机车还配备了各种辅助设备,如空调系统、照明系统、制冷系统等,以提
供舒适的驾驶环境和保证机车正常运行。
总结:
电力机车的工作原理是通过电力供应系统将电能传输到机车上,再通过电力传动系统将电能转换为机械能,驱动机车行驶。
制动系统和辅助设备则保证机车的安全和正常运行。
电力机车具有动力强、加速快、能耗低等优点,是现代铁路运输中重要的机车类型之一。
电力机车工作原理引言概述:电力机车是一种使用电力作为动力源的机车,它通过电力系统将电能转化为机械能,推动列车运行。
本文将详细介绍电力机车的工作原理,包括电力系统、传动系统、控制系统和辅助系统四个方面。
一、电力系统1.1 电源系统:电力机车的电源系统通常由架空供电和蓄电池两部分组成。
架空供电是通过接触网将交流电输送到机车上,而蓄电池则用于提供启动电流和应对断电情况。
1.2 变压器:电力机车中的变压器起到将高压的交流电转换为适合机车使用的低压电的作用。
变压器通过绕组和铁芯的相互作用,实现电能的传递和转换。
1.3 逆变器:逆变器是电力机车中的关键部件,它将直流电转换为交流电,供给电动机使用。
逆变器通过控制晶闸管等器件的导通和关断,实现电能的转换和调节。
二、传动系统2.1 电动机:电力机车中的电动机是将电能转化为机械能的核心部件。
电动机通过电磁感应原理,将交流电转换为旋转力,推动车轮运动。
2.2 齿轮传动:电力机车的传动系统通常采用齿轮传动方式。
齿轮箱通过齿轮的啮合和传动,将电动机输出的转矩和转速传递给车轮,实现列车的运动。
2.3 制动系统:电力机车的制动系统包括电阻制动和空气制动两种方式。
电阻制动通过将电动机的输出电能转化为热能来减速,而空气制动则通过增加车轮的摩擦力来实现制动。
三、控制系统3.1 牵引控制:电力机车的牵引控制系统用于调节电动机的转矩和转速,以实现列车的加速和减速。
通过控制电动机的电流和电压,牵引控制系统能够有效地控制机车的运行状态。
3.2 制动控制:制动控制系统用于控制电力机车的制动力度和制动方式。
通过调节电阻制动和空气制动的工作状态,制动控制系统能够实现列车的安全停车。
3.3 保护系统:电力机车的保护系统用于监测和保护机车的各个部件。
例如,温度保护器可以监测电动机的温度,当温度过高时会自动切断电源,以防止电动机过热。
四、辅助系统4.1 空调系统:电力机车通常配备有空调系统,以提供舒适的工作环境给机车乘务员。
电力机车工作原理引言概述:电力机车是铁路运输中常见的一种机车类型,它通过电力驱动实现牵引列车运行。
了解电力机车的工作原理对于理解铁路运输系统的运行机制非常重要。
本文将详细介绍电力机车的工作原理,帮助读者更好地了解这一关键的铁路运输设备。
一、电力机车的基本组成1.1 牵引系统:主要由牵引电机、传动系统和牵引电源组成。
1.2 控制系统:包括牵引控制系统、制动控制系统和辅助控制系统。
1.3 供电系统:主要由接触网、变电站和接触网供电设备组成。
二、电力机车的工作原理2.1 牵引系统工作原理:牵引电机受电源供电后,通过传动系统将动力传递到车轮,实现机车的运行。
2.2 控制系统工作原理:牵引控制系统通过控制电机的工作状态和功率输出,实现机车的加速、减速和定速运行。
2.3 供电系统工作原理:接触网向机车提供直流电源,变电站将交流电转换为直流电,接触网供电设备保证电力传输的稳定性和可靠性。
三、电力机车的牵引特点3.1 高效节能:电力机车利用电能驱动,具有高效节能的特点,相比内燃机车更环保。
3.2 高速牵引:电力机车在高速运行时具有较好的牵引性能,适用于长距离高速列车运行。
3.3 可调速运行:电力机车能够根据需要实现可调速运行,实现列车的平稳运行和减少磨损。
四、电力机车的维护与管理4.1 定期检修:电力机车需要进行定期的检修和保养,确保各部件的正常工作状态。
4.2 故障排除:及时解决电力机车的故障问题,保证机车的正常运行。
4.3 数据监测:通过数据监测和分析,提高电力机车的运行效率和可靠性。
五、电力机车的发展趋势5.1 智能化技术:电力机车将逐渐引入智能化技术,提高运行效率和安全性。
5.2 绿色环保:电力机车将更加注重环保和节能,减少对环境的影响。
5.3 高速化发展:电力机车将继续发展高速化技术,适应高速铁路的需求。
总结:通过本文的介绍,读者可以更全面地了解电力机车的工作原理和特点,以及未来的发展趋势。
电力机车作为铁路运输中的重要组成部分,将继续发挥重要作用,为铁路运输系统的发展做出贡献。
电力机车控制课程标准电力机车控制课程标准可以涵盖以下方面:电力机车控制理论、电力机车控制系统、电力机车控制操作等。
电力机车控制理论部分是电力机车控制课程的核心内容。
该部分主要介绍机车控制的基本原理、控制理论和相关知识。
包括电力机车的基本概念、组成部分及其作用和功能,电力机车控制的分类和基本原理等。
此外,还需要介绍电力机车的车载设备控制、车辆系、道岔控制等相关理论和技术。
电力机车控制系统部分是电力机车控制课程的重要内容。
该部分主要介绍电力机车控制系统的结构、功能和工作原理等。
首先,需要介绍电力机车控制系统的组成部分,包括主控制器、DC-DC变换器、驱动电机、制动系统等。
然后,需要详细介绍每个组成部分的功能和工作原理,以及它们之间的关系和相互作用。
最后,还需要介绍电力机车控制系统的安全性和可靠性要求,以及相关的检修和故障排除方法。
电力机车控制操作部分是电力机车控制课程的实践环节。
该部分主要通过模拟机、模拟训练装置和实际操作等方式,让学生掌握电力机车的操作技能和方法。
首先,需要介绍电力机车的操作要求和规程,包括起动、制动、变速等操作。
然后,通过模拟训练装置和实际操作让学生掌握电力机车的操作技巧和注意事项。
最后,还需要对学生进行操作评估,以确保他们对电力机车的控制操作有一定的掌握程度。
此外,在电力机车控制课程中还需要注重培养学生的创新意识和解决问题的能力。
可以设置一些实际问题和案例,让学生运用所学知识和技术,进行分析和解决。
同时,还可以组织学生参加相关的实践训练和竞赛活动,提高学生的实践能力和综合素质。
总之,电力机车控制课程标准需要包括电力机车控制理论、电力机车控制系统和电力机车控制操作等内容。
通过该课程的学习,学生应该掌握电力机车控制的基本原理、控制系统的结构和功能,以及电力机车的操作技能和方法。
同时,还应该培养学生的创新意识和解决问题的能力,以适应电力机车控制领域的发展和需求。
第三章 电力机车控制第一节 电力机车速度调节电力机车是电气化铁道的主要牵引动力之一,为充分发挥电力机车的功率,提高电力牵引的运输能力,要求电力机车的牵引力和速度均能在广泛的范围内改变。
电力机车的调速是指由某一运行速度转变为另一运行速度的过程,即起动、调速与制动。
直流电力机车、整流器式电力机车采用串励牵引电动机,其速度公式为Φv a D C RI U v ∑-=式中:U D -牵引电动机端电压(V )I a -牵引电动机电枢电流(A )ΣR -牵引电动机电路的总电阻(Ω)Φ-牵引电动机的主极磁通(WB )C V -机车常数。
D 6010C C 3c e v πμ⋅=式中:D -机车动轮滚动园周直径μC -机车齿轮传动装置的传动比4.35C e -由牵引电动机结构决定的常数。
a pNC e 60=式中:p =2 N =720 a =2由上式可知,改变电力机车的运行速度有下述几种方法:1.改变牵引电动机回路电阻R在牵引电动机回路中串入电阻,通过改变电阻值的方法来调节机车的速度。
由于牵引电动机回路电压较高,电流较大,故串入电阻调速是有级的,而且电阻的能量损耗大,所以不经济。
这种方法只能在某些直流电力机车起动时(短时间)使用。
2.改变牵引电动机的端电压U D直流电力机车的牵引电动机电源直接取自接触网,所以可用改变牵引电动机的组合方式(串联、串-并联、并联)来改变牵引电动机的端电压。
这种调速方法无能量损耗,但只能作有级的调节,且调速级有限。
装有直流斩波器调速装置的直流电力机车,可对牵引电动机的端电压进行连续、平滑的调节,并取消了启动电阻,因此使机车起动特性大大改善。
在整流器式机车上,接触网电压经变压器降压和整流后,再供给牵引电动机,因而这种机车可用改变变压器次边输出电压的方式有级调速,或采用可控硅整流,改变可控硅导通角的方法来改变整流输出电压,从而进行平滑的无级调速。
3.改变磁通量这种方法在直流电力机车和整流器式电力机车上都得到应用,即磁场削弱调速,通常只能有限地分级式地调节或采用晶闸管进行无级磁场削弱。