高层建筑梁式转换层结构设计
- 格式:pdf
- 大小:252.18 KB
- 文档页数:2
浅谈高层建筑梁式转换层结构设计高层建筑是现代城市的标志性建筑之一,其设计和结构对于建筑的安全性和稳定性具有非常重要的意义。
在高层建筑结构设计中,梁式转换层结构是一种常用的设计方案,它能够有效地提高建筑的整体性能和安全性。
本文将从梁式转换层结构的定义、设计原理、结构特点以及设计要点等方面进行探讨和分析,以期为高层建筑梁式转换层结构设计提供一定的参考和帮助。
一、梁式转换层结构的定义梁式转换层结构是指在高层建筑中,为了提高整体结构的抗震性能和承载能力,以及满足建筑功能和空间需求,在建筑的一定高度上设置水平梁和竖向墙柱的结构层。
这种结构层能够将上部建筑的荷载通过转换梁和墙柱传递到下部结构,并在一定程度上提高建筑的整体刚度和稳定性。
1.提高结构整体性能:梁式转换层结构的设置能够有效地提高高层建筑的结构整体性能,使得建筑在受到外部荷载作用时能够具有较好的抗震和抗风性能,从而提高建筑的安全性和稳定性。
2.满足功能和空间需求:梁式转换层结构的设置还能够满足建筑的功能和空间需求,例如在转换层结构的下部设置大跨度空间,以满足商业、办公等功能需求,同时在转换层结构的上部设置较小的空间,以用于机械设备、消防设施等。
3.减轻上部结构荷载:通过设置梁式转换层结构,能够有效地减轻上部结构的荷载传递到下部结构的影响,从而减轻下部结构的受力状态,提高结构的稳定性和安全性。
1. 水平梁的设置:梁式转换层结构中,水平梁起着承担上部结构荷载和转移荷载到竖向墙柱的作用,因此要求水平梁具有较好的承载能力和刚度。
3. 节点连接的设计:梁式转换层结构中的节点连接是关键部分,要求节点连接具有较好的刚性和稳定性,能够有效地传递上部结构的荷载并保证结构的整体稳定性。
1. 合理确定转换层位置:梁式转换层结构的位置应根据建筑的功能和空间需求、结构整体性能等方面综合考虑,以确定合理的位置。
3. 梁式转换层结构的材料选择:梁式转换层结构的材料选择应考虑到其承载能力、抗震性能和耐久性等方面的要求,以确保结构的安全和可靠性。
浅论高层建筑梁式转换层结构设计摘要:本文主要是结合笔者工作中的经验,阐述了高层建筑梁式转换层结构设计,以供参考。
关键词:概念;梁式转换层;结构形式;设计构造一、带转换层高层建筑的主要结构设计概念在现代工程建设中,为了扩大底部的空间,带转换层的高层建筑结构成为了必然的结果。
此种类型的结构由于竖向抗侧力构件的中断,而导致转换层以下的结构抗侧刚度与楼层屈服强度的骤然减小,引起变形集中和能量集聚而极易发生严重破坏。
因此,带转换层高层建筑的主要结构设计概念为:1)加强转换层及其下部结构刚度,要求转换层及其上下楼层层刚度基本均匀。
即必须设置一定比例的落地剪力墙,并加大落地剪力墙的厚度或提高混凝土强度等级,必要时可增设部分剪力墙。
转换层上下结构的刚度比计算根据《高层建筑混凝土结构技术规程》附录e规定抗震设计时,当转换层位于1层时可采用剪切刚度比:γ=(其中,g1,g2 为底层和转换层上层的混凝土剪变模量;a1、h1,a2、h2 为底层和转换层上层的抗剪截面面积、层高);当转换层位于2 层及以上时可采用等效侧向刚度比:γe=转换层位于3 层及以上时其楼层与上层侧向刚度之比:2)应尽量强化和提高转换层以及下部结构抗震承载能力,避免罕遇地震作用下下部主体结构(框支柱、转换梁等)破坏,同时应注意保证转换层上部1层~2 层不落地剪力墙的承载能力和延性,避免重力荷载和罕遇地震作用下不落地剪力墙根部的破坏;注意和加强下部框架梁、上部连梁的延性,适应罕遇地震作用下的塑性较发育发展耗能的需要。
二、转换层的结构形式及设计原则1转换层的主要结构形式底部带转换层结构,转换层上部的部分竖向构件不能直接连续贯通落地,因此,必须设置安全可靠的转换构件。
按现有的工程经验和研究结果,转换构件可采用转换大梁、斜撑、箱形结构以及厚板等形式。
由于转换厚板在地震区使用经验较少,可在非地震区和6度抗震设计时采用,对于大空间地下室,因周围有约束作用,地震反应小于地面以上的框支结构,故7、8度抗震设计时的地下室可采用厚板转换层。
浅谈高层建筑梁式转换层结构设计摘要:本文主要从梁式转换层结构彤式、转换层设计原则、梁式转换层结构的设计与构造等方面进行阐述,以供参考.关键词:高层建筑;梁式转换层;结构设计tu3181.带转换层结构体系概述转换结构构件一般可归纳为五种基本形式:梁、桁架、空腹桁架、箱形梁、厚板,近几年又有许多新颖的转换结构形式涌现,如搭接柱转换结构、宽扁梁转换结构、斜撑转换结构等,其中梁式转换层结构具有传力路径清晰快捷、工作可靠、构造简单、施工方便等优点,在地震设防烈度为6,7和8度时均适用,是目前高层建筑中应用最广的转换层结构形式。
2.转换层的主要结构形式和特点各种形式转换层由于结构形式差别较大,其传力性能和抗震性能等存在明显差异。
梁式转换结构传力直接、明确,传力途径清楚,结构计算相对容易。
受力性能好、工作可靠、构造简单、施工方便,但是当转换梁跨度较大时,要求转换梁截面也较大,其质量和抗侧刚度也相应较大,因而地震反应较大。
板式转换结构一方面使得上部结构布置方便,另一方面使得传力不清楚,受力复杂,结构计算相对困难,并且厚板集中了很大的刚度和质量,地震反应强烈。
桁架式转换结构具有传力明确,传力途径清楚的特点.转换桁架不仅使开洞与设置管道方便,面巳他们的位置和大小具有很大的灵活性,使充分利用转换层的空间成为可能。
桁架式转换结构抗侧力刚度和自重比转换梁小,使得带析架式转换层高层建筑的质量和刚度突变相对缓和,地震反应比带转换梁的高层小很多。
箱形转换结构是由单向托梁、双向托梁连同上下层较厚的楼板共同作用形成,其侧向刚度很大,较少用于房屋结构工程。
3.转换层的主要结构形式以及设计原则3.1转换层的主要结构形式目前在工程中应用转换层的主要结构形式有:梁式、厚板、箱形、巨型框架等。
我国高层建筑中,仅带转换层的建筑有几百栋之多。
其中梁式转换层的建筑约占75%,板式转换约占12%。
粱式转换层设计和施工简单,受力明确,转换梁可沿纵向或横向平行布置当需要纵、横向同时转换时,可采用双向梁的布置,一般广泛应用于底部大空问剪力墙结构体系中。
檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪向受力均匀。
剪力墙厚度为200mm,错层处250mm。
②在凹口处设置拉梁、拉板消除大的凹口。
③在错层处适当增加楼板厚度,且双层双向配筋。
④加强角部开洞处墙体配筋及构造,转角处楼板适当加厚,且双层双向配筋。
结构各项计算指标:①结构位移按底层1/2500其余1/ 1000控制。
计算值左侧结构X向位移底层1/5992,其余楼层X向最大值层间位移角1/1167,Y向位移底层1/8995,其余楼层Y向最大值层间位移角1/1320;右侧结构X向位移底层1/ 5393,其余楼层X向最大值层间位移角1/1045,Y向位移底层1/6159,其余楼层Y向最大值层间位移角1/1088。
②刚重比。
左侧结构X向刚重比13.28,Y向刚重比18.42;右侧结构X向刚重比11.25,Y向刚重比12.13。
左侧结构Y向刚重比略微偏大。
③偏心率。
左侧结构偏心率X向0.0309,Y向0.1067,Y方向偏心率偏大;右侧结构错层处偏心率X向0.1905,Y向0.0749,标准层偏心率X向0.0073,Y向0.1075,错层处X向标准层Y向偏心率偏大。
④周期。
左侧11层结构周期0.9270;右侧14层结构周期1.1606。
在合理范围之内。
⑤最大位移与层平均位移的比值全部不超过要求,结构整体无扭转不规则。
⑥左侧结构底层短肢墙倾覆弯矩百分比为X向26.53%,Y向15.80%;右侧结构底层短肢墙倾覆弯矩百分比为X 向30.52%,Y向29.85%。
本工程对于高厚比大于8以及高厚比为5 8之间的剪力墙按照规范要求配筋,高厚比小于3的剪力墙按柱配筋,高厚比3 4之间的参照异形柱规程配筋,高厚比4 5之间暂无相关规范也参照异形柱规程配筋。
剪力墙结构中的连梁跨度小截面高度大,在地震作用下弯矩、剪力很大,经常会出现配筋不能满足计算的情况。
设计中尽量控制连梁的高度,一般取为楼层面至洞口顶部,窗台下部采用砌体材料砌筑。
浅谈建筑梁式转换层的结构设计一、工程简介该工程是属高层商住楼,由商业裙楼及 1 幢高层塔楼组成,地下 3 层,地上26层。
其中地下室层高4.8m,布置设备用房及停车库,地下2层、3层设六级人防。
地上1 ~ 3 层为商业用房,层高4.5m;第4层为转换层,层高5.7m;4 层以上为剪力墙结构住宅。
住宅除第24层层高为4.2m外,均为3.0m层高。
26 层以上为机房,室外地坪以上主体高度为86.70m,建筑总高度(至机房顶)92.7 m。
该工程拟建场地地处为缓坡地形,由西南向东北倾斜,根据地质资料,场地及其附近未有活动断裂带或深大的活动断裂带通过,场地地层构造及地形稳定,属抗震有利地段。
该工程采用中国建筑科学研究院编制的2010版PKPM -SATWE程序进行设计计算,地震基本加速度值为0.05g,设计特征周期值为0.35s,属稳定建筑场地。
该工程按地震烈度6度设防。
基本风压0.35kN/m2,承载力设计时按基本风压的1.1倍采用。
二、结构方案及布置本工程住宅楼每层有10户,每户户型及面积均不相同。
为充分争取有效建筑面积,决定采用大开间剪力墙结构。
底部3层为商业用房,为满足大空间建筑功能要求,采用框支剪力墙结构体系。
框支剪力墙体系是一种受力复杂、不利于抗震的结构,在结构总体设计时一般应遵循以下原则:减少转换次数,缩短传力途径。
该工程重点解决两个方面的问题。
第一,为保证结构沿竖向刚度均匀变化,应设法争取尽可能多的上下贯通构件。
结合电梯井道、消防楼梯间及电梯厅,布置了一个中央核心筒;另外,又根据塔楼四角剪力墙分布情况,在底部裙楼对应部位设置了落地贯通的L型加厚角墙。
第二,合理布置裙楼柱网,使不落地剪力墙直接通过转换层托梁。
三、梁式转换层的结构设计要点1.抗震等级的确定。
工程转换层以下为框架-剪力墙结构,转换层以上为纯剪力墙结构,是多种结构形式共存的复杂高层建筑,因而不能像单纯的框架结构或剪力墙结构那样确定抗震等级,而应该严格按照现行规范的不同章节,有针对性地分别确定结构体系各部位不同结构构件的抗震等级。
梁式转换层结构设计要点论述近年来,在高层建筑设计中,为满足建筑使用功能需要,底部数层常设置为大空间,而上部标准层多为小开间,致使上层的部分竖向承重结构不能直接落地,需要设置结构转换。
常用的转换形式为梁式。
梁式转换层由于具有结构可靠性强、传力途径长、构造简单和施工方便等方面的优点,因此在高层建筑结构设计中得到了广泛的应用。
本文主要论述了高层建筑梁式转换层结构设计要点。
1 梁式转换层结构形式及受力机理分析梁式转换层结构在实际工程中的应用有多种形式,主要原理就是利用下部的转换大梁来支托上部结构。
在《高层建筑混凝土结构技术规程》(JGJ3-2010)中,规范对转换梁的最小高度和宽度作如下规定:框支梁截面的宽度不宜大于框支柱相应方向的截面宽度,不宜小于其上墙体截面厚度的2倍,且不易小于400mm;当梁上托柱时,尚不应小于梁宽方向的柱截面宽度。
进行抗震设计时,转换梁高不小于其跨度的1/6;非抗震设计时,转换梁高不小于跨度的1/8。
从该设计规程中可知,采取这些限制主要是保证转换梁结构的整体刚度,增强结构的可靠性。
梁式转换层结构的传力途径为墙-梁-柱(墙)的形式,传力直接,便于分析计算。
转换大梁的受力主要受上部剪力墙刚度、剪力墙与转换大梁的相对刚度和转换大梁与下部支撑结构的相对刚度影响。
从计算分析不论转换大梁上部墙体的形式如何,只要墙体有一定长度,转换大梁中的弯矩就会比不考虑上部墙体作用要小,同时转换大梁也会有一段范围出现受拉区。
2 高层建筑梁式转换层结构设计原则2.1 减少转换竖向构件在结构转换时,尽可能的减少需转换的竖向构件,需转换的竖向构件存在越多,转换层结构的刚度的突变越大,对建筑结构的抗震就越不利。
2.2 转换柱以及剪力墙对称布置对于转换柱和剪力墙设置的时候尽量让它们对称,梁上面的立柱最好是转换成梁跨中,以免在转换梁变形的时候,在梁上面立柱的柱脚位置出现转角较大的情况,而且带动立柱的柱脚发生非常大的变形,导致柱的剪切和弯曲,致使立柱造成非常大的内力导致超筋。
概述高层建筑梁式转换层结构设计原理及其应用随着城市化进程的加速和人们对生活品质要求的提高,高层建筑的建设愈发普遍。
而在高层建筑的设计和施工中,梁式转换层结构是一种常见且重要的设计方案。
本文将重点对梁式转换层结构的设计原理以及在高层建筑中的应用进行概述。
一、梁式转换层结构的设计原理1. 什么是梁式转换层结构梁式转换层结构是指在高层建筑中,为了满足建筑结构受力和变形的要求,在建筑的顶部或中部设置梁构造,将裙楼以上部分的承载结构转化为裙楼以下部分的承载结构。
通过梁式转换层结构的应用,可以实现结构受力和变形的合理分配,提高建筑的整体稳定性和安全性。
(1)结构受力分析在高层建筑中,由于上部结构与下部结构之间高度差异较大,受到的风荷载和地震作用也有所不同。
在设计梁式转换层结构时,需要对上部结构和下部结构的受力进行详细的分析,确定梁式转换层结构的位置、结构形式和尺寸。
(2)变形控制梁式转换层结构的另一个重要设计原理是变形控制。
高层建筑在受到外部荷载作用时,会产生不同程度的结构变形,而梁式转换层结构的设计应当能够合理控制结构的变形,避免产生较大的位移和变形,从而保证建筑的安全使用。
(3)刚度配比梁式转换层结构在设计时,还需考虑上部结构与下部结构的刚度配比。
通过合理的刚度配比,可以实现上部结构和下部结构之间的受力合理分配,提高整体结构的稳定性和承载能力。
二、梁式转换层结构在高层建筑中的应用1. 应用范围梁式转换层结构适用于各类高层建筑,包括住宅楼、商业大厦、办公楼等。
尤其是那些结构高度较大、结构体系复杂的高层建筑,更需要合理设计梁式转换层结构,以满足建筑结构的稳定和安全要求。
2. 应用效果梁式转换层结构的应用可以带来多方面的效果。
可以实现上部结构与下部结构之间的承载转化,减小上部结构对下部结构的影响,降低结构的受力变形,提高建筑的整体稳定性。
在独立风与地震荷载作用下,梁式转换层结构可有效分担结构受力,减少结构位移,提高抗震性能。
高层建筑梁式转换层结构的设计
高层建筑的梁式转换层结构设计是指在建筑物的高层部分设置转换层,以承接高层建筑的上部空间荷载,并通过梁式结构的设计来保证建筑物的稳定性和安全性。
本文将详细介绍高层建筑的梁式转换层结构设计的原理、要点和步骤。
1. 转换层的位置应选择在建筑物的合适位置,通常位于高层建筑的顶部之下,以便于承接上部荷载,并且尽量减小转换层对建筑物整体高度造成的影响。
2. 转换层的结构形式应选择梁式结构,因为梁式结构具有良好的受力性能和抗震性能,可以有效地承担上部荷载并将荷载传递到下部。
3. 转换层的梁的尺寸和布置应根据上部荷载和下部支座位置确定,以使其能够满足结构的受力要求,并且尽量减小梁的尺寸和数量,以节约材料和减少施工难度。
4. 转换层应设置适当的连接件和节点,以确保梁和柱的连接牢固可靠,并能够在地震等荷载作用下提供足够的抗震性能。
5. 转换层的设计应考虑到结构的整体稳定性,包括考虑建筑物的扭转、侧向位移和变形等问题,并通过适当的措施加强结构的整体稳定性。
1. 确定上部荷载和下部支座位置,并计算荷载的大小和分布,以确定转换层的梁的尺寸和布置。
2. 根据梁的尺寸和布置,进行梁的设计,包括确定梁的截面尺寸、材料强度和受力性能等,并计算梁的受力和变形。
3. 根据梁的设计结果,进行节点和连接件的设计,包括考虑节点的刚度、强度和耐震性能等,并确保节点和连接件能够满足结构的受力和变形要求。
5. 进行施工图设计,包括绘制梁的平面布置图、剖面图和节点图等,并进行详细的材料和尺寸计算,以准备施工和制作梁的图纸和材料清单。
浅析高层建筑梁式转换层结构设计的要点摘要:为了适应高层建筑的要求,转换层的建筑结构应运而生,并得到较为广泛的应用。
但带转换层的结构是一把双刃剑,施工人员必须要正确的选择和合理设计转换层,才能保证建筑的安全性。
本文阐述了高层建筑结构转换层的情况,并结合结构设计的工程实例探讨了高层建筑梁式转换层结构设计的要点。
关键词:高层建筑梁式转换层结构设计要点中图分类号:[tu208.3] 文献标识码:a 文章编号:自从2005年开始我国规定超过10层的住宅建筑以及高度超过24米的其他民用建筑称为高层建筑以来,高层建筑的发展呈现复杂性、多样性和综合性,内部空间使用功能多变,而且建筑在不同的竖直高度位置处也具有各异的功能和特点,例如,上部建筑用于居住时一般要求轴网的间距较小,隔墙较多,中部建筑多用于办公写字间使用,可以使柱位于中等大小的房间内,下部建筑用来布置商场、酒店等公共服务设施,柱网间距较大,对开间的要求较大。
这样一来,为了维持结构的稳定性,就需要在不同结构形式的交界楼层设置水平转换构件,即为转换层。
转换层可以实现剪力墙结构和框架结构转换,增大下层结构的柱间距,或者使上下层的结构可以错位排布,便于房间的自由划分。
目前工程中应用较多的转换层的形式多种多样,有梁式、梁墙式、板式、箱式、桁架式以及框架式等等,其中,梁式转换层结构传力直接、简单明确,结构简便,可靠度高,经济合理,较易施工,应用最多。
一、高层建筑结构转换层的情况1、钢骨混凝土转换层众所周知钢骨混凝土梁拥有很强的承载力和很好的刚度,不仅大大减小了截面的尺寸,而且值得一赞的是塑造性、耐力和抗震性能都比钢筋混凝土梁好得多。
一直以来,国内采用钢骨混凝土转换构件的实际工程并不多,而国外已经广泛波及。
2、预应力应用在混凝土转换层预应力广泛运用在土木建筑的各个领域,它自身所具有的优点可带来许多结构和施工上创新设计运用,阿赫利采用的预应力混凝土的结构十分有利于建造承重荷载的大面积转换层,因为轻巧方便,并且节省钢材和混凝土。
高层建筑梁式转换层结构设计
发表时间:2015-10-13T11:49:45.003Z 来源:《基层建设》2015年17期作者:钟向前刘明颖帅聂[导读] 四川兴力通建筑工程有限公司四川犍为 614400 高层建筑本就向着复杂的法相发展着,这也就使得原本就很复杂的转换层的设计变得更为复杂的工程。
四川兴力通建筑工程有限公司四川犍为 614400摘要:目前我国的各项行业在经济不断提升的情况下得到了进一步的发展,尤其以建筑行业的发展最为迅速,建筑行业在满足社会的需求
的同时,不断的向着复杂化的方向前进着,这也就使得其结构的形式也就越来越多,转换层设计就是其中的一个。
本文将对高层建筑梁式转换层结构设计进行研究和分析。
关键词:高层建筑;梁式转换层结构;设计;前言:随着城市化的不断发展,高层建筑本就向着复杂的法相发展着,这也就使得原本就很复杂的转换层的设计变得更为复杂的工程。
因此,在进行相应的设计过程中,必须结合实际的工程特点和情况,对建筑进行全面的研究计算和分析,进一步选择出科学合理的转换层结构设计方案,,防止问题的出现,从而提高设计和施工效率。
一、高层建筑梁式结构选型
根据本商业楼所处位置的抗震强度,综合考虑,该工程根据现行规范可选用框架-剪力墙结构或剪力墙结构,为避免在住宅户内出现影响使用的梁柱,住宅部分采用剪力墙结构。
由于该工程住宅部分5~30层户型均相同,且较规则。
若按全落地剪力墙结构,计算结果周期、位移、配筋等参数均合理,满足规范要求,楼层层间最大位移与层高之比小于1/1000,最大层间位移与平均层间位移的比值小于1.3,结构扭转为主的第一自振周期与平动为主的第一自振周期之比小于0.85,但全落地剪力墙结构不满足1~4层商场大空间使用功能的要求;若将前面商场入口位置的部分剪力墙改为框架柱,按框架-剪力墙结构进行设计,计算结果单体质量偏心较大,结构扭转周期一直为第一周期,最大水平位移和层间位移与该楼层平均值的比值也不满足规范要求,通过加大柱截面的办法来改善其位移情况收效不大,且加大柱截面对上部住宅的影响很大,因此最终采用部分框支剪力墙结构。
转换层的设置会造成建筑物竖向刚度的突变,因此应尽量遵循以下原则:
1、保证主体结构沿竖向刚度均匀,减少需转换的竖向构件,转换构件越少转换层造成的刚度突变就越小,对结构抗震就越有利。
2、避免高位转换,转换层位于3层以上时,层间位移角、剪力的分配及传力路径发生急剧突变,易形成薄弱层,抗震非常不利。
因此《高规》规定,部分框支剪力墙结构在地面以上设置转换层的位置,8度时不宜超过3层,7度时不宜超过5层,6度时可适当提高。
3、当转换层设置在1、2层时,转换层与相邻上层结构的等效剪切刚度比γe1宜接近1,当转换层设置在2层以上时,转换层下部结构与上部结构的等效侧向刚度比γe2也宜接近1。
转换层位置较高的高层建筑不利于抗震,为保证结构的安全,在地震作用下落地剪力墙和转换柱应不先于转换层上部结构进入屈服状态,使转换层及以下各层的安全系数大于上部。
二、高层建筑梁式结构设计实例
本工程位于某市中心城区,是商住合为一体的高层建筑,建筑物总高为65.4m,其中地下1层,主要用途为汽车库和设备用房;1~3为商业用途;4~20层为住宅楼。
1、根据结构选型进而确定设计
因为该工程为商住混为一体的综合性建筑,住宅楼部分分隔空间较多,所以采用剪力墙结构;而底部商业楼需要用到大空间结构,就要将剪力墙结构中的部分剪力墙改为框架结构。
这种上部为剪力墙结构,底部为部分框架的剪力墙为框支剪力墙结构。
当住宅楼部分剪力墙不能从上到下贯通到基础时,应设置转换层。
不同类型的转换层结构优缺点对比如下:(1)梁式转换层的设计和施工均较为简单,传力较为明确,是目前应用最为广泛的转换型式。
它的缺点在于,当上下轴线错位布置时,需增设较多的转换次梁,空间受力较为复杂,此时应对框支主梁进行应力分析。
(2)箱式转换结构的优点在于,转换梁的约束强,刚度大,整体工作效果好,上下部传力较为均匀,并且建筑功能上还可将其作为“设备层”;缺点是转换梁梁中开设备洞较多,施工复杂,且造价较高。
(3)厚板式转换层的优势在于,下部柱网受上部结构布局影响较小,可灵活布置,厚板刚度很大,形成一个承台,整体性较好,而且施工也较为便捷,但由于厚板自重很大,地震作用也大,容易产生震害,并且材料耗用多,经济性也较差。
(4)桁架式转换层的框支柱柱顶弯矩和剪力比其他几种转换型式相对较小,但此法施工复杂程度较高,且对于轴线错位布置时难度较大。
对上述各种结构进行综合分析,梁式转换结构相对其它几种更为经济、可靠,所以该工程选用了带梁式转换层的框支剪力墙结构。
2、抗震等级的确定
根据《高层建筑混凝土结构技术规程》(JGJ3-2010),本工程为丙类建筑,高度65.4m,所处地区地震设防列度为7度,根据表3.9.3得知框支框架及底部加强部位的剪力墙抗震等级均为二级。
又根据10.2.6条对部分框支剪力墙结构,当转换层的位置在3层及3层以上时,其框支柱、剪力墙底部加强部位的抗震等级需提高一级采用。
因本工程转换层位置处于结构3层,已属于“高位转换”,根据规范要求,该框支框架与底部加强部位的剪力墙抗震等级均为一级。
3、转换层结构布置
由于上部的住宅楼需分隔空间较多,一次转换难以满足建筑功能的需求,因此本商住楼设置了主梁与次梁的二次转换。
4、构造措施
对整体结构进行概念分析的基础上还需采取必要的构造措施以满足结构抗震设防的要求。
本工程采取的构造措施如下:(1)加强底部框支层的刚度与延性。
转换层以下剪力墙与框支柱混凝土等级均取C40;底部剪力墙厚度取350mm,而核心筒部分的厚度则取400mm,并尽量不开洞或开小洞为宜,以免削弱底部结构刚度。
考虑到本工程结构不规则,整体性较差,因此在满足建筑使用功能的前提下尽量布置多些落地剪力墙,减少转换构件,还使质心与刚心尽量重合,使其满足转换层结转换层上下楼层侧向刚度比与转换层等效侧向刚度比的要求。
(2)加强转换层楼板的刚度和延性。
由于转换层楼板是框支剪力墙结构的分界,上下两部分的受力性能差异较大。
上部各片剪力墙结构在外部荷载的作用下基本是按等效刚度比例分配,受力性能效好;而下部框支柱与落地剪力墙由于性能的不同使水平剪力主要集中在落地剪力墙上,即在转换层处荷载分配产生突变,容易造成薄弱层。
所以为了确保水平荷载的可靠传递,转换层楼板采用了C35混凝土,楼板厚度为200mm,钢筋采用高强度HRB400级钢筋双层双向布置,配筋率满足每层每向大于0.25%的要求。
(3)结构计算。
对于复杂高层建筑,合理选择计算软件在设计过程中非常重要。
为了确保计算结果的可靠性,本工程主要应用中国建筑科学研究院编制的2010版PKPM-SATWE进行计算,并用北京迈达斯技术有限公司编制的Midsabuilding2012进行复核。
转换层作为整个结构的一个重要组成必须采取符合实际受力变形状态的计算模型进行三维空间整体结构受力分析,并对转换层结构进行局部补充计算。
为了保证转换梁柱的传力可靠,转换梁柱中线宜重合;本工程转换梁截面主要为400mmx1200mm,450mmx1500mm,500mmx1500mm几种尺寸,满足规范转换梁截面高度不宜小于计算跨度的1/8,框支梁截面宽度不宜大于框支柱相应方向的截面宽度,且不宜小于其上端截面厚度的2倍和400mm的较大值的要求;框支柱主要为700mmx900mm,800mmx800mm,800mmx1000mm几种尺寸,满足柱轴压比与规范要求的抗震设计时宽度不宜小于450mm,高度不宜小于转换梁跨度的1/12要求。
对于带转换层的复杂高层建筑,除了需考虑扭转耦联作用外,还需考虑模拟施工加载。
结束语:
目前,随着国家的不断进步,经济的不断提神,我国建筑行业虽得到了很大的发展,但是在转换层结构的高层建筑理论方法还处于进一步的完善研究中,为了有效的保证其发挥出应有的作用,在进行相应的结构设计中,必须对方案设计进行不断的对比,选择最为合理的转换层结构类型,并严格按照相关规范进行概念设计,这样才能有效的满足我国建筑行业经济发展的需求,进一步的促进社会的发展。
参考文献:
[1]唐兴荣;高层建筑转换层结构设计与施工[M];北京;中国建筑工业出版社;2002
[2]徐培福;复杂高层建筑结构设计[M];北京;中国建筑工业出版社;2005
[3]黄瑛;带转换层高层结构综合楼设计[J];铁道标准设计; 2005(08)。