Native defect properties and p-type doping efficiency in group-IIA doped wurtzite AlN
- 格式:pdf
- 大小:152.83 KB
- 文档页数:5
错误1:-----------------------------------------------------------------------------------------------------------------No getter method for property XXXX of bean异常如下:No getter method for property XXXX of beanorg.apache.struts.taglib.html.BEAN在网上找了不少资料.中文的英文的.出现这个异常的还真不少.大部分都是在用select标签的时候...提示都是找不到属性的getter方法,可是我发现.出现这个问题的属性全都有getter方法!!不排除有一部分大小写字母写错的原因.可是这个问题不是那么简单.因为我敢保证我的拼写没有错误.最后恢复正常的时候我都不知道为什么.只不过我一气之下全改小写了!竟然好用了.经验之谈:1.写代码的时候一定要小心.一般小心都不行.2.不要过分相信系统.也不要过分的不相信自己.系统出错的几率也是很大的.3.英文一定要学好.4.google比baidu 好用.看来真的是java命名规范问题,我改了好多处命名,这回到底是出来了-------------------------------------------------------------------------------------------------------------------错误2:当struts中转向另外一个页面时,css会引入错误怎么办呢?在head中加入这个就可以了:<html:base />在开始还要加入<%@ taglib uri="/tags-html" prefix="html"%>这样就ok-----------------------------------------------------------------------------------------------------------------错误3<bean:write>不能显示Integer,BigDecimal等类型的属性问题的解决在用struts标签bean:write name=".." property=".."/ 显示Integer ,BigDecimal类型的属性时,会报javax.servlet.jsp.JspException: Cannot find message resources under key org.apache.struts.action.MESSAGEatorg.apache.struts.taglib.TagUtils.retrieveMessageResources(TagUtils.ja va:1252)at org.apache.struts.taglib.TagUtils.message(TagUtils.java:1101) at org.apache.struts.taglib.TagUtils.message(TagUtils.java:1076) atorg.apache.struts.taglib.bean.WriteTag.retrieveFormatString(WriteTag. java:254)atorg.apache.struts.taglib.bean.WriteTag.formatValue(WriteTag.java:317) atorg.apache.struts.taglib.bean.WriteTag.doStartTag(WriteTag.java:232) at org.apache.jsp.client$jsp._jspService(client$jsp.java:379)atorg.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:107) at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)atorg.apache.jasper.servlet.JspServlet$JspServletWrapper.service(JspSer vlet.java:201)atorg.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:381) atorg.apache.jasper.servlet.JspServlet.service(JspServlet.java:473)这样的错误解决的办法就是利用 bean:write 的format属性,加上一个format="#" 属性bean:write name="testForm" property="testBig" format="#"/BigDecimal型数据处理bean:write name="testForm" property="testInt" format="#" /Intger型数据处理关于format还有不少很好的妙用比如你要显示的日期格式为年-月-日时:分:秒,则可以定义为format="yyyy-MM-dd HH:mm:ss"比如你要定义显示到小数点后几位,则可以定义为format="000.00"错误4.Exception thrown by getter for property pages of beanorg.apache.struts.taglib.html.BEAN解答:public String getPages(){return this.getPages();}这里不对吧,变成递归了,呵呵return this.pages;常用错误总结:7.int 类型字符过长com.mysql.jdbc.exceptions.MySQLDataException: '2.5026744582E10' in co lumn '1' is outside valid range for the datatype INTEGER.8.没找到错误没影响数据读取java.sql.SQLExceptio n: Operatio n not allowed after ResultSet closed9.类型错误最常见的是数字类型错误Data truncated for column 'gatheringMoney' at row 1struts错误Failed to obtain specified co llection 下拉框没值警告: No FormBeanConfig found under 'yuanLiaoRuKuForm' 配置文件Form出错Cannot find bean: "org.apache.struts.taglib.html.BEAN" in any scope <html:text >标签外面没有嵌套<html:form >标签9. 若在数据库中创建了两个sequence ,运行时出现异常可能是先后执行了多次select语句,导致与原有的序列号产生冲突12. MappingNotFoundExceptiona) Maybe: In the Eclipse Not refersh , or not exist in the dirctory13. HibernateException: /hibernate.cfg.xml not founda) Maybe1: hibernate.cfg.xml not in the root directoryb) Maybe2: Could not parse configuration .c) reso lve: database not connect or use another database14. ConstraintVio latio nExceptiona) Maybe: used a not true database15. 驱动没有找到或者 JDBC Driver not found可能:连接数据库的驱动jar包不存在或者版本不一致,比如将旧的版本换成新的会造成该类错误16. 空指针异常, ng.NullPointerExceptiona) 可能1:数据库连接出错,比如在hibernate.cfg.xml中的数据错误会导致异常。
第53卷第2期2024年2月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.53㊀No.2February,2024Ni,Cu,Zn掺杂四方相PbTiO3力学性能㊁电子结构与光学性质的第一性原理研究王云杰1,2,张志远1,2,文杜林1,2,吴侦成1,2,苏㊀欣1,2(1.伊犁师范大学物理科学与技术学院,伊宁㊀835000;2.伊犁师范大学新疆凝聚态相变与微结构实验室,伊宁㊀835000)摘要:采用第一性原理研究了四方相钙钛矿PbTiO3以及Ni㊁Cu㊁Zn掺杂PbTiO3的力学性能㊁电子结构和光学性质㊂力学性能计算结果表明,Ni掺杂PbTiO3的体积模量㊁剪切模量及弹性模量在三种掺杂体系中最大㊂Ni掺杂体系德拜温度最高㊂G/B为材料的脆㊁韧性判据,Zn掺杂PbTiO3的G/B值最大,说明化学键定向性最高㊂Ni㊁Zn掺杂体系的G/B 范围为0.56<G/B<1.75,均为脆性材料,而本征PbTiO3和Cu掺杂体系G/B值小于0.56,均为韧性材料㊂通过电子结构分析,发现掺杂体系相比于本征体系带隙变窄,跃迁能量减小㊂Ni掺入使得PbTiO3费米能级处出现杂质能级,而Cu㊁Zn掺杂PbTiO3价带顶上移,费米能级进入价带,使得Cu㊁Zn掺杂PbTiO3呈现p型导电特性㊂从复介电函数㊁光学反射谱和吸收谱分析中发现,掺杂体系的静介电常数相较于本征体系有所提升㊂Ni㊁Cu㊁Zn的掺杂使得PbTiO3吸收范围扩展到红外波段,且增强了可见光波段的吸收强度,Cu掺杂PbTiO3材料的光催化特性在本征PbTiO3和三种单掺PbTiO3材料中是最好的㊂关键词:第一性原理;PbTiO3;掺杂;力学性能;电子结构;光学特性中图分类号:O561㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2024)02-0258-09 First Principles Study on Mechanical Properties,Electronic Structure and Optical Properties of Ni,Cu,Zn Doped Tetragonal PbTiO3WANG Yunjie1,2,ZHANG Zhiyuan1,2,WEN Dulin1,2,WU Zhencheng1,2,SU Xin1,2(1.School of Physical Science and Technology,Yili Normal University,Yining835000,China;2.Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics,Yili Normal University,Yining835000,China) Abstract:The mechanical property,electronic structure,and optical properties of tetragonal perovskite PbTiO3and Ni,Cu, Zn-doped PbTiO3were studied by first principles.The mechanical property calculations show that Ni-doped PbTiO3exhibits the highest values for volume modulus,shear modulus,and elastic modulus among the three doping systems.Notably,the Ni-doped system also has the highest Debye temperature.The G/B ratio represents the material s brittleness and toughness, which is highest for Zn-doped PbTiO3,indicating the highest degree of chemical bond orientation.The G/B range for Ni and Zn-doped systems is0.56<G/B<1.75,indicating brittle materials,while the intrinsic PbTiO3and Cu-doped systems have G/B values less than0.56,indicating ductile materials.The electronic structure reveals that the doped systems have narrower band gaps and reduced transition energies compared to the intrinsic system.The introduction of Ni introduces impurity levels at the Fermi energy level in PbTiO3,while Cu and Zn doping shifts the valence band maximum upwards,causing the Fermi level to enter the valence band and resulting in p-type conductivity for Cu and Zn-doped PbTiO3.The doping of Ni,Cu and Zn expands the absorption range of PbTiO3to the infrared region and enhances the absorption intensity in the visible light range.Among the intrinsic PbTiO3and three single-doped PbTiO3materials,Cu-doped PbTiO3exhibits the best photocatalytic properties.Key words:first principle;PbTiO3;doping;mechanical property;electronic structure;optical property㊀㊀收稿日期:2023-08-02㊀㊀基金项目:伊犁师范大学科研专项提升重点项目(22XKZZ21);伊犁师范大学科研项目(2022YSZD004);伊犁师范大学大学生创新训练项目(S202110764006,YS2022G018);新疆伊犁科技计划(YZ2022Y002);新疆维吾尔自治区天山英才计划第三期(2021-2023)㊀㊀作者简介:王云杰(1999 ),男,新疆维吾尔自治区人,硕士研究生㊂E-mail:1575469121@㊀㊀通信作者:苏㊀欣,博士,副教授㊂E-mail:suxin_phy@㊀第2期王云杰等:Ni,Cu,Zn掺杂四方相PbTiO3力学性能㊁电子结构与光学性质的第一性原理研究259㊀0㊀引㊀㊀言PbTiO3(PTO)作为一种典型的钙钛矿型铁电氧化物,在居里温度(763K)以下为四方相,当处于居里温度(763K)以上时,PTO的相由四方相转变为立方相[1-2]㊂四方相PTO铁电性能较为优异,广泛应用于存储器㊁电换能器㊁微电子㊁无线通信用电介质等设备㊂此外,四方相PTO还具有较大的电光系数和较高的光折变灵敏度[3-5],因此可以用于光学传感器㊁光转换器和光调制器等[6-9]㊂除TiO2催化剂外,Ti基钙钛矿(例如CaTiO3㊁SrTiO3)还参与了自然污染物的光催化脱色和光催化水分解制氢㊂与TiO2一样,这些钙钛矿型催化剂也受到宽禁带的限制,这使得其可见光反应非常困难,光催化能力被减弱[10]㊂钙钛矿晶体结构提供了一个极好的框架,可根据特定光催化反应的要求修改带隙值,以允许可见光吸收和带边能量㊂此外,钙钛矿晶体化合物中的晶格畸变强烈影响光生载流子的分配㊂PTO由于高光催化活性,受到了广泛关注[11]㊂PTO是典型的钙钛矿型铁电氧化物,通常用于电子器件,很少用作光催化剂[12-13]㊂近年来,研究人员发现通过合理的合成方法和材料改性对PTO光催化性能进行改善㊂Hussin等和Niu 等[14-15]基于第一性原理,分别研究了La和N掺杂体系PTO的电子结构,发现La掺杂体系的带隙比本征带隙窄,N掺杂体系的PTO的费米能级进入价带顶部,使得N掺杂体系材料呈现出p型导电特性,能带结构的禁带宽度减小,对于光催化能力有一定的改善,但是关于光学性质方面并没有进行报道㊂李宏光等[16]基于第一性原理,研究了N掺杂体系的光学性质,发现光学吸收能力在可见光区域并没有较大的改善,并且Ti的氧化物进行非金属掺杂时,需要高温处理[17-18],从能量消耗的角度来说是不利的㊂综上所述,确定掺杂位置以及掺杂量成为改善PTO光催化性能的关键㊂而二价金属Ni㊁Cu㊁Zn离子更容易取代Ti4+,使O的电负性变弱,更容易改善PTO性能[19]㊂在文献调研中发现关于PTO力学性能的系统报道大多是基于本征体系[20-22],对掺杂体系的力学性能报道是罕见的,因此有必要对掺杂体系PTO光催化性能研究的同时,也对掺杂体系力学性能的改善进行系统地讨论㊂本文的主要内容是采用密度泛函理论对本征以及单掺Ni㊁Cu㊁Zn四方相PTO(PTOʒNi㊁PTOʒCu㊁PTOʒZn)的力学性能和光电性能展开系统地讨论,以期PTO能够在力学性能以及光催化方面得到更大的改善㊂1㊀理论模型与计算方法四方相PTO晶体是典型的钙钛矿结构,属于P4mm空间群[23],建立共包含40个原子的2ˑ2ˑ2超胞结构,掺杂浓度为12.5%的掺杂体系结构如图1所示,考虑到边界条件的影响,用一个Ni㊁Cu㊁Zn分别去取代超胞中的Ti原子,在超胞中有8个Ti原子的位点,根据晶体的对称性所示这8个位点为等效位点,所以不同的掺杂位置对体系没有影响㊂基于密度泛函理论的第一性原理平面波赝势方法[24-25]应用MaterialsStudio8.0[26]计算了原子各轨域的电子态密度,选择基组为广义梯度近似(general gradient approximate,GGA)下的PBE(Perdew-Burke-Ernzerhof)[27-28]交换-关联泛函,使用超软赝势(ultra-soft pseudopotential,USP)计算本征以及掺杂体系PTO 的力学性能㊁电子结构和光学性质㊂将能量㊁自洽场以及能带的收敛精度均定为5ˑ10-6eV/atom;作用于原子上的最大力为0.01eV/Å,内应力收敛精度为0.02GPa,最大位移收敛精度为5ˑ10-5Å㊂截止能为400eV,在布里渊区积分采用4ˑ4ˑ4的Monkhost-Pack型K点网格进行迭代设置[29]㊂图1㊀超晶胞掺杂模型Fig.1㊀Supercell doping model260㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷2㊀结果与讨论2.1㊀几何结构分析表1为几何结构优化后的本征以及掺杂体系PTO超胞的晶格常数和体积的变化㊂由表1可知,本征PTO的晶格常数计算值为a=b=7.688Å,c=9.567Å,理论值为a=b=7.759Å,c=8.572Å[30],两项数据对比,晶格常数c相差约1Å,但是理论值和计算值的c/a近似,说明选用参数的可靠性㊂与本征PTO相比, Ni㊁Cu掺杂PTO的晶格常数a㊁b㊁c减小,晶胞体积减小㊂Zn掺杂PTO的晶格常数a㊁b减小,c增大,晶胞体积增大㊂表1㊀Ni㊁Cu㊁Zn掺杂的PTO超胞晶格常数㊁密度和体积Table1㊀Lattice constants,density and volume of PTO supercell doped with Ni,Cu and Zn Sample a=b/Åc/ÅVolume/Å3Density/(g㊃cm-3)c/a PTO(Experimental)7.7598.572516.0537.802 1.1 PTO(Calculated)7.6889.567565.3527.122 1.2Ni doping7.6759.396553.4507.307 1.2Cu doping7.6559.515557.6037.268 1.2Zn doping7.6639.688568.9617.127 1.22.2㊀缺陷形成能分析缺陷形成能是表征掺杂体系稳定性和原子掺入体系难易程度的物理变量㊂基于几何结构优化后的体系总能量和不同原子的化学势计算相应结构的形成能㊂各掺杂体系的形成能E f满足以下公式[31-32]:E f=E doped-E perfect-lμX+nμTi(1)式中:E doped表示各掺杂体系的总能量,E perfect表示纯PbTiO3超晶胞体系总能量,系数l㊁n分别表示掺入的原子和替代的原子数,μX表示掺入原子(X=Ni㊁Cu㊁Zn)的化学势,μTi表示被替换的Ti原子化学势㊂由于材料的缺陷形成能与其生长制备的条件有密切关系,本文计算了富氧且富铅状态下各掺杂体系的形成能㊂从表2可以看出,Ni㊁Cu㊁Zn单掺PbTiO3体系在富O(O-rich)和富Pb(Pb-rich)条件下的形成能均为负㊂这意味着在O-rich和Pb-rich条件下,Ni㊁Cu㊁Zn原子可以融入PTO中,可在实验中制造Ni㊁Cu㊁Zn单掺PbTiO3材料㊂表2㊀Ni㊁Cu㊁Zn掺杂的PTO的缺陷形成能Table2㊀Defect formation energy of PTO doped with Ni,Cu and ZnSubstitute form O-rich and Pb-rich defect formation energy/eVNi doping-14.905Cu doping-13.336Zn doping-18.6542.3㊀力学性能基于密度泛函理论,结合当前应用最普遍的有限应变方法[33],通过计算应力应变的线性得到弹性系数6个独立分量,得到6ˑ6的弹性张量矩阵㊂根据晶格点阵的空间对称性,部分分量相等,部分分量为零㊂计算所得本征以及掺杂体系PTO晶格常数变化结构的特征弹性系数矩阵元,在优化晶体结构的基础上计算出本征以及掺杂体系PTO的弹性常数C ij,如表3所示㊂同时,基于Voigt-Reuss-Hill近似[34-36]得到体积模量㊁剪切模量㊁弹性模量㊁泊松比㊁Pugh比㊁维氏硬度㊁德拜温度θD,如表4所示㊂本文B和G取Hill值,通过弹性常数分别计算下限值B V㊁G V和上限值B R㊁G R,然后求平均值得出㊂这里弹性模量可由下面公式给出[37]B=(B V+B R)/2(2)G=(G V+G R)/2(3)其中,G V=(1/15)[C11+C22+C33+3(C44+C55+C66)-2(C12+C13+C23)],B R=Δ[C11(C22+C33+C23)+C22(C33-2C13)-C33C12+C12(2C23-C12)+C13(2C12-C13)+C23(2C13-C23)]-1,㊀第2期王云杰等:Ni,Cu,Zn掺杂四方相PbTiO3力学性能㊁电子结构与光学性质的第一性原理研究261㊀G R=15{4[C11(C22+C33+C23)+C22(C33+C13)+C33C12-C12(C12+C23)-C13(C12+C13)-C23(C13+ C23)]/Δ+3[(1/C44)+(1/C55)+(1/C66)]-1,Δ=C13(C12C23-C13C22)+C23(C12C13-C11C23)+C33(C11C22-C12C12)㊂弹性模量E和泊松比分别依照下列公式(4)和(5)计算得出E=9BG/(3B+G)(4)μ=(3B-E)/(6B)(5)采用Chen-Niu模型[38],得到维氏硬度H V公式为H V=2(k2G)0.585-3(6)其中Pugh比[39]k=G/B㊂对于本征以及掺杂体系PTO的弹性常数满足Born弹性稳定性判据[30]:C11(C22+C33)ȡ2C212,C22ȡC23, C44ȡ0,C55ȡ0,说明这四种结构是力学稳定的㊂体积模量是衡量材料是否容易被压缩的标志,Ni掺杂PTO 体积模量(80.034GPa)最大,所以相较于其他三种结构更不容易被压缩㊂剪切模量可以衡量材料硬度,Ni 掺杂PTO具有最大的剪切模量,对应最大的维氏硬度10.411GPa㊂弹性模量是标志材料刚度的重要物理量,Ni掺杂PTO的弹性模量最大,所以相较于其他三种结构刚性最高㊂G/B=1.75是区分脆性材料和延展性材料分界点,G/B=0.56是区分材料韧性/脆性分界点㊂由表4可以看出,G/B的值都小于1.75,Ni㊁Zn掺杂PTO大于0.56,都是脆性材料,本征以及Cu掺杂PTO小于0.56,属于是韧性材料㊂而泊松比反映了材料在形变下体积所发生的变化,说明四种结构形变时体积变化不大,泊松比的变化规律与Pugh比的正好相反㊂众所周知,德拜温度与材料的很多物理性质,如熔点㊁弹性㊁硬度㊁比热等基本物理量密切相关㊂采用以下公式[33]求得德拜温度θD=h kB34πV a[]1/3v m(7)式中:h为普朗克常量,k B为玻尔兹曼常量,V a为原子体积,v m为平均声速,由下式求出v m=132v3t +1v31()[]-1/3(8)式中:v1与v t分别为纵波㊁横波速度,可由下面的公式求得v1=3B+4G3ρ()1/2(9)v t=Gρ()1/2(10)式(9)和(10)中,ρ为密度,已由表1给出㊂本征以及掺杂体系PTO德拜温度的计算结果见表4㊂从表4给出的结果可以看出,Ni掺杂体系的德拜温度(201.506K)最高,与它有最大的C11(196.541GPa)㊁C23(63.626GPa)㊁C66(82.707GPa),最大的体积模量(80.034GPa),最大的剪切模量(45.499GPa)和最大的弹性模量(114.752GPa)密切相关㊂由表4可知,掺杂体系的剪切模量㊁弹性模量㊁Pugh比㊁维氏硬度和德拜温度均大于本征体系㊂其中Ni 掺杂体系的体积模量要大于本征体系,Cu㊁Zn掺杂体系的小于掺杂体系,说明除Cu㊁Zn掺杂体系在抗压性低于本征体系外,在硬度和刚性等力学性能均强于本征体系㊂可见二价金属Ni㊁Cu㊁Zn的掺杂,有助于改善四方相PTO的力学性能㊂表3㊀本征以及掺杂体系PTO的弹性常数C ijTable3㊀Elastic constants C ij of PTO in intrinsic and doped systemsCompound C11/GPa C12/GPa C13/GPa C22/GPa C23/GPa C33/GPa C44/GPa C55/GPa C66/GPa PTO172.44690.23880.526217.93161.95560.58151.59247.50381.781 Ni doping196.54190.00955.858210.65263.62661.79045.25745.19982.707 Cu doping183.37769.41847.886189.35455.26166.79630.10341.91071.456 Zn doping163.76165.71541.457163.76141.45766.02635.17035.17064.722262㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷表4㊀本征以及掺杂体系PTO的体积模量(B)㊁剪切模量(G)㊁弹性模量(E)㊁泊松比(μ)㊁Pugh比(G/B)㊁维氏硬度(H V)和德拜温度θDTable4㊀Bulk modulus(B),shear modulus(G),elastic modulus(E),Poisson ratio(μ),Pugh ratio(G/B), Vickers hardness(H V),Debye temperature(θD)of PTO in intrinsic and doped systems Compound B/GPa G/GPa E/GPaμG/B H V/GPaθD/K PTO78.43539.170100.7400.2860.4998.389188.293 Ni doping80.03445.499114.7520.2610.56810.411201.506 Cu doping75.25140.052101.7410.2750.5328.977189.392 Zn doping68.30740.606101.6710.2520.5949.880190.852 2.4㊀能带结构分析图2是本征PbTiO3以及掺杂体系的能带结构图㊂为便于分析,范围选取-5~5eV,包含费米能级,在四种体系中除Ni掺杂PbTiO3为间接带隙外,其他均为直接带隙㊂图2(a)是本征PbTiO3的能带结构图,禁带宽度为2.007eV,与实验值3.6eV相较偏低[40],所以采用剪刀算符[41]修正其带隙值(剪刀算符为1.6eV),修正后的带隙为3.607eV㊂图2(b)~(d)分别是Ni㊁Cu㊁Zn掺杂PTO的能带结构图,掺杂体系的跃迁形式所需的能量,相较于本征结构降低,并且区间处于0~1eV能带条数增多,Cu㊁Zn掺杂PbTiO3带隙值分别为1.930㊁1.936eV,价带顶有所上移,费米能级进入价带顶,使得Cu㊁Zn掺杂PbTiO3呈现出p型导电特性㊂Ni 掺杂PbTiO3价带顶到导带底的间距是1.678eV,在2eV附近出现受主能级,价带顶处出现多余的空穴载流子,这有利于电子吸收极少的能量由价带顶跃迁至受主能级,再由受主能级跃迁至导带底,或者实现受主能级之间的跃迁,从而能够大幅改善PbTiO3材料的光催化特性和导电性㊂李宏光等[16]关于N掺杂PbTiO3的研究中,能带结构出现受主能级,且价带顶下移,出现p型半导体特性,但是电子跃迁性能并不比Ni㊁Cu㊁Zn 掺杂PbTiO3更强㊂图2㊀本征PTO及三种掺杂体系的能带结构分布Fig.2㊀Band structures of intrinsic PTO and three doping systems2.5㊀态密度分析图3是本征PTO以及三种掺杂体系的总态密度图和分波态密度图㊂图3(a)是本征PTO的态密度图,㊀第2期王云杰等:Ni,Cu,Zn掺杂四方相PbTiO3力学性能㊁电子结构与光学性质的第一性原理研究263㊀Ti-3d轨道是构成导带部分的总态密度主要部分㊂价带能量处于-19~-14eV的总态密度主要由Pb-5d和O-2s轨道提供,在-8eV至费米能级的总态密度主要由O-2p以及Pb-6s轨道贡献,这与相关研究结果一致[16]㊂图3(b)~(d)分别是Ni㊁Cu㊁Zn掺杂PTO的态密度图㊂掺杂体系Pb㊁Ti和O对总态密度的贡献基本与本征态一致㊂区别在于在费米面附近,主要由O-2p及Ni㊁Cu㊁Zn的3d态之间进行杂化贡献,表现出强大的局域性㊂当Ni㊁Cu㊁Zn掺杂到PTO之后,由于掺入的Ni㊁Cu㊁Zn对总态密度贡献相对较小而不易被观察,但可以从O-2p轨道的变化进行说明,使得O-2p轨道在费米能级附近出现自由电子㊂2价金属Ni㊁Cu㊁Zn 的掺杂使得Pb㊁Ti和O之间的杂化发生变化,进而影响态密度的整体分布情况㊂掺杂体系的电子从价带顶跃迁到导带底的过程变得容易,与能带结构情况吻合㊂图3㊀本征PTO及三种掺杂体系的态密度曲线Fig.3㊀Density of states curves of intrinsic PTO and three doping systems2.6㊀光学性质分析本征以及三种掺杂体系的PTO复介电函数实部曲线和虚部曲线如图4所示,图4(a)中PTO㊁PTOʒNi㊁PTOʒCu和PTOʒZn的静态介电常数分别为2.307㊁3.305㊁3.411和4.513㊂PTOʒCu在低能区介电函数实部随着光子能量的增大而增大,并到达峰值5.714(光子能量为1.38eV),从态密度图看出这是由Cu-3d轨道向O-2p轨道的电子跃迁引起的㊂图4(b)显示PTOʒNi㊁PTOʒCu和PTOʒZn的介电函数虚部主要集中在0~10eV 的低能区,而本征PTO在虚部低能区(ɤ3eV)虚部值很小,接近零,而Ni㊁Cu㊁Zn掺杂PTO体系在虚部1.5eV左右形成新的次级主峰,PTOʒCu在低于2eV的低能区具有压倒性数值㊂可见,Ni㊁Cu㊁Zn掺杂PTO 体系光谱吸收范围扩展到红外区域,且PTOʒCu更具有优势,在可见光波段的能量吸收效果较强,说明PTOʒCu在低能区的吸收效果在三种掺杂体系中是最强的㊂图4(c)是本征以及三种掺杂体系的PTO体系的反射光谱㊂可知,本征PTO在5.77㊁7.41㊁9.74eV出现三个峰值㊂Ni㊁Cu掺杂PTO体系在可见光区域能量值大于本征PTO㊂在红外光区,Ni㊁Cu㊁Zn掺杂PTO的反射值大于本征PTO体系,PTOʒCu对可见光区域和红外光区的利用率较高,这与复介电函数图所得的结果一致㊂图4(d)是含Ni㊁Cu㊁Zn掺杂的PTO的吸收光谱㊂本征PTO只吸收紫外波段,对红外部分不吸收,本征264㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷PTO的禁带宽度决定了Ni㊁Cu㊁Zn掺杂的PTO体系吸收主要集中在紫外波段㊂同时,掺杂使得电子跃迁变得容易,Ni㊁Cu㊁Zn掺杂的PTO体系吸收范围扩展到红外波段㊂在可见光波段,PTOʒCu吸收效果最好,并且吸收边640nm所对应的频率为1.94eV,这表明电子是从价带内跃迁到导带的,说明PTOʒCu具有潜在的光催化能力㊂在红外以及远红外波段,PTOʒZn吸收效果和PTOʒCu相近,并且比李宏光等[16]报道的N掺杂的PTO在红外远红外区域吸收效果更好㊂吸收光谱与介电㊁反射光谱的变化趋势是一致的㊂图4㊀本征PTO及三种掺杂体系的光学图谱㊂(a)复介电函数实部;(b)复介电函数虚部;(c)反射光谱;(d)吸收光谱Fig.4㊀Optical spectra of intrinsic PTO and three doping systems.(a)Real part of complex dielectric function;(b)imaginary part of complex dielectric function;(c)reflection spectra;(d)absorption spectra3㊀结㊀㊀论1)Ni掺杂PTO的体积㊁剪切和弹性模量最大,这是Ni掺杂PTO德拜温度最高的重要原因㊂体积模量的大小是衡量材料是否容易被压缩的标志,体积模量越高,材料越不容易被压缩;高剪切模量是高硬度的基本条件,最大的剪切模量使得Ni掺杂PTO有最大的维氏硬度;弹性模量是标志材料刚度的重要物理量,表明四种材料中Ni掺杂PTO的刚性最高㊂2)Zn掺杂PTO的G/B值是四种材料中最大的,说明此结构中原子间的化学键的定向性最高㊂3)Ni㊁Zn掺杂PTO的G/B大于0.56,都是脆性材料,本征以及Cu掺杂PTO的G/B小于0.56,是韧性材料㊂泊松比反映了材料在形变下体积的变化,本征以及掺杂体系的泊松比都在0.25~0.5,表明本征及掺杂体系PTO形变时体积将不会发生较大的变化㊂4)掺杂体系较于本征体系跃迁能量减小,Ni掺入PTO材料的费米能级处出现杂质能级㊂Cu㊁Zn掺杂的PTO费米能级进入价带顶,使得Cu㊁Zn掺杂PTO材料呈现出p型导电特性㊂5)Ni㊁Cu㊁Zn的掺杂使得PTO吸收范围扩展到红外波段,且增强了可见光波段的吸收强度,四种结构中PTOʒCu材料的光催化性能最好㊂参考文献[1]㊀ZHANG S J,LI F,JIANG X N,et al.Advantages and challenges of relaxor-PbTiO3ferroelectric crystals for electroacoustic transducers:a review[J].㊀第2期王云杰等:Ni,Cu,Zn掺杂四方相PbTiO3力学性能㊁电子结构与光学性质的第一性原理研究265㊀Progress in Materials Science,2015,68:1-66.[2]㊀LIU Y,NI L H,REN Z H,et al.First-principles study of structural stability and elastic property of pre-perovskite PbTiO3[J].Chinese PhysicsB,2012,21(1):016201.[3]㊀SUNTIVICH J,GASTEIGER H A,YABUUCHI N,et al.Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuelcells and metal-air batteries[J].Nature Chemistry,2011,3(7):546-550.[4]㊀黄㊀建,张学伍,赵㊀程,等.钛酸铅系功能陶瓷改性的研究现状及改性陶瓷的应用现状[J].机械工程材料,2021,45(6):94-98.HUANG J,ZHANG X W,ZHAO C,et al.Research status of modification of lead titanate series functional ceramics and application of modified ceramics[J].Materials for Mechanical Engineering,2021,45(6):94-98(in Chinese).[5]㊀邓鹏星,文志勤,马㊀博,等.体积应变对立方钛酸铅电子结构和光学性质的影响[J].人工晶体学报,2022,51(1):85-91.DENG P X,WEN Z Q,MA B,et al.Effect of volume strain on electronic structure and optical properties of cubic lead titanate[J].Journal of Synthetic Crystals,2022,51(1):85-91(in Chinese).[6]㊀SCOTT J F,PAZ DE ARAUJO C A.Ferroelectric memories[J].Science,1989,246(4936):1400-1405.[7]㊀HOSSEINI S M,MOVLAROOY T,KOMPANY A.First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J].Physica B:Condensed Matter,2007,391(2):316-321.[8]㊀ZHU Z Y,WANG B,WANG H,et al.First-principle study of ferroelectricity in PbTiO3/SrTiO3superlattices[J].Solid-State Electronics,2006,50(11/12):1756-1760.[9]㊀GE F F,WU W D,WANG X M,et al.The first-principle calculation of structures and defect energies in tetragonal PbTiO3[J].Physica B:Condensed Matter,2009,404(20):3814-3818.[10]㊀CHEN X,TAN P F,ZHOU B H,et al.A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4hybridnanocomposites with enhanced visible light photocatalytic activity[J].Journal of Alloys and Compounds,2015,647:456-462. [11]㊀GRABOWSKA E.Selected perovskite oxides:characterization,preparation and photocatalytic properties:a review[J].Applied Catalysis B:Environmental,2016,186:97-126.[12]㊀OHNO T,TSUBOTA T,NAKAMURA Y,et al.Preparation of S,C cation-codoped SrTiO3and its photocatalytic activity under visible light[J].Applied Catalysis A:General,2005,288(1/2):74-79.[13]㊀MORET M P,DEVILLERS M A C,WÖRHOFF K,et al.Optical properties of PbTiO3,PbZr x Ti1-x O3,and PbZrO3films deposited bymetalorganic chemical vapor on SrTiO3[J].Journal of Applied Physics,2002,92(1):468-474.[14]㊀HUSSIN N H,TAIB M F M,HASSAN O H,et al.Study of geometrical and electronic structure of lanthanum doped PbTiO3and PbZrTiO3:firstprinciples calculation[C]//AIP Conference Proceedings.Ho Chi Minh,Vietnam.Author(s),2018.[15]㊀NIU P J,YAN J L,MENG D L.The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3[J].Journalof Semiconductors,2015,36(4):043004.[16]㊀李宏光,闫金良.N掺杂位置对四方相PbTiO3电子结构和光学性能的影响[J].材料科学与工程学报,2017,35(1):14-18.LI H G,YAN J L.Electronic structures and optical properties of N-doped tetragonal PbTiO3with different doping sites[J].Journal of Materials Science and Engineering,2017,35(1):14-18(in Chinese).[17]㊀ASAHI R,MORIKAWA T,OHWAKI T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-271.[18]㊀OKUNAKA S,TOKUDOME H,ABE R.Facile water-based preparation of Rh-doped SrTiO3nanoparticles for efficient photocatalytic H2evolutionunder visible light irradiation[J].Journal of Materials Chemistry A,2015,3(28):14794-14800.[19]㊀XIN H,PANG Q,GAO D L,et al.Mn ions'site and valence in PbTiO3based on the native vacancy defects[J].Condensed Matter Physics,2021,24(2):23705.[20]㊀KUMA S,WOLDEMARIAM M M.Structural,electronic,lattice dynamic,and elastic properties of SnTiO3and PbTiO3using density functionaltheory[J].Advances in Condensed Matter Physics,2019,2019:1-12.[21]㊀HACHEMI A,HACHEMI H,FERHAT-HAMIDA A,et al.Elasticity of SrTiO3perovskite under high pressure in cubic,tetragonal andorthorhombic phases[J].Physica Scripta,2010,82(2):025602.[22]㊀LI Z,GRIMSDITCH M,FOSTER C M,et al.Dielectric and elastic properties of ferroelectric materials at elevated temperature[J].Journal ofPhysics and Chemistry of Solids,1996,57(10):1433-1438.[23]㊀SÁGHI-SZABÓG,COHEN R E,KRAKAUER H.First-principles study of piezoelectricity in tetragonal PbTiO3and PbZr1/2Ti1/2O3[J].Physical Review B,1999,59(20):12771-12776.[24]㊀PERDEW J P,WANG Y E.Accurate and simple analytic representation of the electron-gas correlation energy[J].Physical Review B,1992,45(23):13244-13249.[25]㊀SEGALL M D,LINDAN P J D,PROBERT M J,et al.First-principles simulation:ideas,illustrations and the CASTEP code[J].Journal ofPhysics:Condensed Matter,2002,14(11):2717-2744.[26]㊀CLARK S J,SEGALL M D,PICKARD C J,et al.First principles methods using CASTEP[J].Zeitschrift Für Kristallographie-Crystalline266㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷Materials,2005,220(5/6):567-570.[27]㊀ERNZERHOF M,BURKE K,PERDEW J P.Density functional theory,the exchange hole,and the molecular bond[M]//Theoretical andComputational Chemistry.Amsterdam:Elsevier,1996:207-238.[28]㊀PERDEW J P,ERNZERHOF M,ZUPAN A,et al.Nonlocality of the density functional for exchange and correlation:physical origins andchemical consequences[J].The Journal of Chemical Physics,1998,108(4):1522-1531.[29]㊀MONKHORST H J,PACK J D.Special points for brillouin-zone integrations[J].Physical Review B,1976,13(12):5188-5192.[30]㊀TAIB M F M,YAAKOB M K,BADRUDIN F W,et al.First-principles comparative study of the electronic and optical properties of tetragonal(P4mm)ATiO3(A=Pb,Sn,Ge)[J].Integrated Ferroelectrics,2014,155(1):23-32.[31]㊀WANG Q J,WANG J B,ZHONG X L,et al.Magnetism mechanism in ZnO and ZnO doped with nonmagnetic elements X(X=Li,Mg,andAl):a first-principles study[J].Applied Physics Letters,2012,100(13):673-677.[32]㊀CHEN H,LI X C,WAN R D,et al.A DFT study on modification mechanism of(N,S)interstitial co-doped rutile TiO2[J].Chemical PhysicsLetters,2018,695:8-18.[33]㊀BOUHEMADOU A.First-principles study of structural,electronic and elastic properties of Nb4AlC3[J].Brazilian Journal of Physics,2010,40(1):52-57.[34]㊀CHEN X Q,NIU H Y,LI D Z,et al.Modeling hardness of polycrystalline materials and bulk metallic glasses[J].Intermetallics,2011,19(9):1275-1281.[35]㊀VOIGT W.Lehrbuch der kristallphysik(mit ausschluss der kristalloptik),edited by bg teubner and jw edwards,leipzig berlin[J].Ann Arbor,Mich,1928.[36]㊀REUSS A.Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J].ZAMM-Journal of AppliedMathematics and Mechanics,1929,9(1):49-58.[37]㊀HILL R.The elastic behaviour of a crystalline aggregate[J].Proceedings of the Physical Society Section A,1952,65(5):349-354.[38]㊀WATT J P.Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry[J].Journal of Applied Physics,1980,51(3):1520-1524.[39]㊀PUGH S F.XCII.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1954,45(367):823-843.[40]㊀YADAV H O.Optical and electrical properties of sol-gel derived thin films of PbTiO3[J].Ceramics International,2004,30(7):1493-1498.[41]㊀高㊀妍,董海涛,张小可,等.(Al x Ga1-x)2O3结构㊁电子和光学性质的第一性原理研究[J].人工晶体学报,2023,52(9):1674-1680+1719.GAO Y,DONG H T,ZHANG X K,et al.First-principle study on structure,electronic and optical properties of(Al x Ga1-x)2O3[J].Journal of Synthetic Crystals,2023,52(9):1674-1680+1719(in Chinese).。
The application of constructional material建筑材料的应用The availability of suitable structural materials is one of the principal limitations on the accomplishment of an experienced structural engineer. Early builders depended almost exclusively on wood, stone, brick, and concrete. Although iron had been used by humans at least since the building of the Egyptian pyramids, use of it as a structural material was limited because of the difficulties of smelting it in large quantities. With the industrial revolution, however, came both the need for iron as a structural material and the capability of smelting it in quantity.John Smeaton, an English civil engineer, was the first to use cast iron extensively as a structural material in the mid-eighteenth century. After 1841, malleable iron was developed as a more reliable material and was widely used. Whereas malleable iron was superior to cast iron, there were still too many structural failures and there was a need for a more reliable material. Steel was the answer to this demand. The invention of the Bessemer converter in 1856 and the subsequent development of the Siemens-Martin open-hearth process for making steel made it possible toproduce structural steel at competitive prices and triggered the tremendous developments and accomplishments in the use of structural steel over the next hundred years.The most serious disadvantage of steel is that it oxidizes easily and must be protected by paint or some other suitable coating. When steel is used in an enclosure where a fire could occur, the steel members must be encased in a suitable fire-resistant enclosure such as masonry, concrete. Normally, steel members will not fail in a brittle manner unless an unfortunate combination of metallurgical composition, low temperature, and bi-or triaxial stress exists.Structural aluminum is still not widely used in civil engineering structures, though its use is steadily increasing. By a proper selection of the aluminum alloy and its heat treatment, a wide variety of strength characteristics may be obtained. Some of the alloys exhibit stress-strain characteristics similar those of structural steel, except that the modulus of elasticity for the initial linearly elastic portion is about 10,000,000 psi (700,000 kgf/cm*cm) or about one-third that of steel. Lightness and resistance to oxidation are, of course, two of the major advantages of aluminum. Because its properties are very sensitive to its heat treatment, care mustbe used when riveting or welding aluminum. Several techniques have been developed for prefabricating aluminum subassemblies that can be readily erected and bolted together in the field to form a number of beautiful and well-designed shell structures. This general procedure of prefabrication and held assembly by bolting seems to be the most promising way of utilizing structural aluminum.Reinforced and prestesses concrete share with structural material. Natural cement concretes have been used for centuries. Modern concrete construction dates from the middle of the nineteenth century, though artificial Portland cement was patented by Aspidin, an Englishman, about 1825. Although several builders and engineers experimented with the use of steel-reinforced concrete in the last half of the nineteenth century, its dominant use as a building material dates from the early decades of the twentieth century. The last fifty years have seen the rapid and vigorous development of prestressed concrete design and construction, founded largely on early work by Freyssinet in France and Magnel in Belgium.Plain (unreinforced) concrete not only is a heterogeneous material but also has one very serious defect as a structural material, namely, its very limited tensile strength, which isonly of the order of one-tenth its compressive strength. Not only is tensile failure in concrete of a brittle type, but likewise compression failure occurs in a relatively brittle fashion without being preceded by the forewarning of large deformations. (Of course, in reinforced-concrete construction, ductile behavior can be obtained by proper selection and arrangement of the reinforcement.) Unless proper care is used in the selection of aggregates and in the mixing and placing of concrete, frost action can cause serious damage to concrete masonry. Concrete creeps under long-term loading to a degree that must be considered carefully in selecting the design stress conditions. During the curing process and its early life, concrete shrinks a significant amount, which to a degree can be controlled by properly proportioning the mix and utilizing suitable construction techniques.With all these potentially serious disadvantages, engineers have learned to design and build beautiful, durable, and economical reinforced-concrete structures for practically all kinds of structural requirements. This has been accomplished by careful selection of the design dimensions and the arrangement of the steel reinforcement, development of proper cements, selection of proper aggregates and mixproportions, careful control of mixing, placing, and curing techniques and imaginative development of construction methods, equipment and procedures.The versatility of concrete, the wide availability of its component materials, the unique ease of shaping its form to meet strength and functional requirements, together with the exciting potential of further improvements and development of not only the newer prestressed and precast concrete construction but also the conventional reinforced concrete construction, combine to make concrete a strong competitor of other materials in a very large fraction of structures.In modern times, with the increased use of steel and reinforced-concrete construction, wood has been relegated largely to accessory use during construction, to use in temporary and secondary structures, and to use for secondary members of permanent construction. Modern technology in the last sixty years has revitalized wood as a structural material, however, by developing vastly improved timber connectors, various treatments to increase the durability of wood, and laminated wood made of thin layers bonded together with synthetic glues using revolutionary gluing techniques. Plywood with essentially nondirectional strengthproperties is the most widely used laminated wood, but techniques have also been developed for building large laminated wood members that for certain structures are competitive with concrete and steel.Materials with future possibilities are the engineering plastics and the exotic metals and their alloys, such as beryllium, tungsten, tantalum, titanium, molybdenum, chromium, vanadium, and niobium. There are many different plastics available, and the mechanical properties exhibited by this group of materials vary over a wide range that encompasses the range of properties available among the more commonly used structural materials. Thus in many specific design applications it is possible to select a suitable plastic material for an alternative design. Experience with the use of plastics outdoors is limited. Generally speaking, however, plastics must be protected from the weather. This aspect of design is therefore a major consideration in the use of plastics for primary structural elements. One of the most promising potential used of plastics is for panel and shell-type structures. Laminated or sandwich panels have been used in such structures with encouraging results that indicate an increased use in this type of construction in the future.Another materials development with interesting possibilities is that of composites consisting of a matrix reinforced by fibers or fiber like particles. Although glass-fiber-reinforced composites with a glass or plastic matrix have been used for years, they appear to have much broader possibilities for a large variety of secondary structural components. Fiber-reinforced concrete is another composite being actively studied and developed. Several experimental applications are being observed under service conditions. Experiments have been conducted with both steel and glass fibers, but most of the service experience has been with steel fibers.建筑材料的应用适当有效的建筑材料是限制富有经验的结构工程师成就的主要原因之一。
半导体分离芯材料英语Semiconductor Materials for Isolation Cores.Semiconductor materials play a crucial role in modern electronics, particularly in the fabrication of isolation cores. Isolation cores are essential components in integrated circuits, ensuring that different sections of the circuit operate independently without interference. This article delves into the world of semiconductor materials suitable for isolation cores, discussing their properties, applications, and challenges.1. Introduction to Semiconductor Materials.Semiconductors are materials that have an electrical conductivity falling between that of conductors and insulators. They exhibit unique electronic properties, making them ideal for use in electronic devices. Silicon (Si) and germanium (Ge) are the most commonly used semiconductors, but others such as gallium arsenide (GaAs)and silicon carbide (SiC) are also finding applications in specific areas.2. Properties of Semiconductor Materials.Bandgap Energy: The bandgap energy is a measure of the energy required to excite an electron from the valence band to the conduction band. Materials with larger bandgap energies are better suited for high-temperature applications.Doping: Semiconductors can be doped with impurities to alter their conductivity. Dopants such as boron (B) or phosphorus (P) are introduced to create p-type or n-type semiconductors, respectively.Lattice Structure: The atomic lattice structure of semiconductors determines their physical and electrical properties. Silicon and germanium have diamond-like lattice structures, which contribute to their widespread use.3. Isolation Cores and Their Importance.Isolation cores are critical in integrated circuits, where they prevent electrical signals from leaking between different circuit sections. This isolation ensures that signals are contained within their designated paths, preventing crosstalk and noise. Isolation cores are typically made from insulating materials, but semiconductor materials can also be used to achieve isolation.4. Semiconductor Materials for Isolation Cores.Silicon-on-Insulator (SOI): SOI technology involves a thin layer of silicon sandwiched between two layers of insulating material, such as silicon dioxide or sapphire. This structure provides excellent isolation between different circuit sections. SOI wafers are widely used in high-performance microelectronics, as they offer reduced parasitic capacitance and improved thermal performance.Silicon Carbide (SiC): SiC is a wide-bandgap semiconductor material with excellent thermal conductivity and chemical stability. It is suitable for high-temperatureand high-power applications. SiC-based isolation cores can withstand extreme operating conditions, making them idealfor use in power electronics and aerospace applications.Gallium Arsenide (GaAs): GaAs has a smaller bandgap than silicon but offers higher electron mobility and saturation velocity. GaAs-based isolation cores are commonly used in high-frequency applications such as microwave and millimeter-wave circuits. GaAs also finds applications in optoelectronics due to its ability to emit and detect light.5. Challenges and Future Outlook.Despite the many advantages of semiconductor materials for isolation cores, there are still challenges to overcome. One major challenge is the scalability of these materialsfor smaller and more complex integrated circuits. Another challenge lies in the fabrication process, which requires precise control over doping levels, lattice structures, and defect densities.Future research in this area will focus on developing new semiconductor materials with improved properties and on optimizing fabrication processes for better scalability and performance. Materials such as two-dimensional semiconductors and topological insulators are beingactively explored for their potential in next-generation electronics.Conclusion.Semiconductor materials play a pivotal role in the fabrication of isolation cores, enabling the reliable operation of integrated circuits. Silicon, silicon carbide, and gallium arsenide are among the most commonly used semiconductors for this purpose, each offering its unique advantages and applications. Future research in this field will focus on addressing challenges related to scalability and fabrication processes while exploring novel materials with improved properties.。
心力衰竭:Heart failure 心力衰竭Congestive beart failure 充血性心力衰竭Acute left-sided heart failure 急性左心衰竭Chroinc heart failure 慢性心力衰竭Intractable heart failure 难治性心力衰竭Systolic insufficiency heart failure 收缩功能不全性心力衰竭Diastolic insufficiency heart failure 舒张功能不全性心力衰竭Congestive heart failure 充血性心力衰竭Cardiac dysfunction 心功能障碍心律失常:Arrhythmia (cardiac arrhythmia)心律失常Triggered activity 触发活动Afterdepolarization 后除极a.窦房结Sinus node recovery time SNRT 窦房结恢复时间Sinoatrial conduction time SACT 窦房传导时间Bradycardia 心动过缓Tachycardia 心动过速Sinus tachycardia 窦性心动过速Sinus bradycardia 窦性心动过缓Sinus pause (sinus arrest) 窦性停搏(窦性静止)sinoatrial block 窦房阻滞(Mobitz 莫氏, Wenckebach 文氏)Sick sinus syndrome(SSS) 病(态)窦(房结)综合征Bradycardia-tachycardia syndrome 心动过缓-心动过速综合征b.心房Atrial premature beats 房性期前收缩Atrial tachycardia 房性心动过速Intrinsic heart rate 固有心率Automatic atrial tachycardia 自律性房性心动过速Reentrant atrial tachycardia 折返性房性心动过速Chaotic atrial tachycardia 紊乱性房性心动过速Paroxysmal atrial tachycardia with AV block (PAT with block) 伴有房室阻滞的阵发性房性心动过速Multifocal atrial tachycardia 多源性房性心动过速Atrial flutter 心房扑动Atrial fibrillation 心房颤动c.房室交界区性Premature atrioventricular junctional beats 房室交界区性期前收缩AV junctional escape beats 房室交界区性逸搏AV junctional rhythm 房室交界区性心律Nonparoxysmal atrioventricular junctional tachycardia 非阵发性房室交界区性心动过速Paroxysmal supraventricular tachycardia(PSVT)阵发性室上性心动过速Atrioventricular Nodal Reentrant Tachycardia(AVNRT)房室结内折返性心动过速Atrioventricular Reentrant Tachycardia(AVNRT)房室返性心动过速Preexcitation syndrome(Wolff-Parkinson-White syndrome) 预激综合征(WPW 综合征)d.心室Premature ventricular beats 室性期前收缩Ventricular parasystole 室性并行心律Ventricular tachycardia 室性心动过速Accelerated idioventricular rhythm 加速性心室自主节律Torsades de pointes 尖端扭转Ventricular flutter 心室扑动Ventricular fibrillation 心室颤动Atrioventricular block 房室传导阻滞Wenckebach block 文氏阻滞Adame-Strokes syndrom 阿-斯综合征Intraventricular block 室内传导阻滞Right bundle branch block 右束支传导阻滞Left bundle branch block 左束支传导阻滞Left anterior fascicular block 左前分支传导阻滞Left posterior fascicular block 左后分支传导阻滞Bifascicular block 双分支阻滞Trifascicular block 三分支阻滞心脏骤停与猝死sudden cardiac death 心脏性猝死Cardiac arrest 心脏骤停Pulseless electrical activity (PEA) 无脉性电活动高血压:Hypertension 高血压Hypertensive urgencyes 高血压急症Hypertensive crisis 高血压危象Hypertensive emergencies 高血压危症Secondary hypertension 继发性高血压Primary hypertension 原发性高血压“White coat” hypertension 白大衣性高血压4Isolated systolic hypertension 单纯收缩期高血压Arteriolosclerosis 小动脉硬化先心病:Congenital heart disease 先天性心脏病Congenital cardiovascular disease 先天性心血管病Pulmonic stenosis 肺动脉狭窄Isolated pulmonic stenosis 单纯肺动脉口狭窄Coarctation of the aorta 主动脉缩窄Idiopathic dilatation of the pulmonary artery 单纯肺动脉扩张Primary pulmonary hypertension 原发性肺动脉高压Persistent left superior vena cava 双侧上腔静脉(左上腔静脉残存)Isolated dextrocardia 孤立性右位心Atrial septal defect 房间隔缺损Partial anomalous pulmonary venous drainage 部分性肺静脉畸形引流Ventricular septal defect (VSD) 室间隔缺损Eisenmenger’s syndrome 艾森门格综合征Patent ductus arteriosus(PDA)动脉导管未闭Tetralogy of Fallot 法洛四联症Trilogy of Fallot 法洛三联症Complete transposition of the great vessels 完全性大血管错位Atrial septal defect (ASD) 房间隔缺损心脏瓣膜病:Multivalve heart disease 多瓣膜疾病5Mitral valve disease 二尖瓣疾病Pulmonic valve disease 肺动脉瓣疾病Tricuspid valve disease 三尖瓣疾病Ebstein’s anomaly 三尖瓣下移畸形Dysfunction or rupture of papillary muscle 乳头肌功能失调或断裂Aortic valve disease 主动脉瓣疾病Aortic arch syndrome 主动脉弓综合征Valvular heart disease 心脏瓣膜病rheumatic heart disease 风湿性心脏病Rheumatic fever 风湿热Rheumatic carditis 风湿性心脏炎Mitral stenosis 二尖瓣狭窄Mitral incompetence 二尖瓣关闭不全Acute mitral insufficiency 急性二尖瓣关闭不全Chronic mitral insufficiency 慢性二尖瓣关闭不全Marfan’s syndrom 马凡氏综合征Aortic stenosis 主动脉瓣狭窄Aortic incompetence 主动脉瓣关闭不全Chronic aortic insufficiency 慢性主动脉瓣关闭不全Tricuspid stenosis 三尖瓣狭窄Tricuspid incompetence 三尖瓣关闭不全Pulmonary stenosis 肺动脉瓣狭窄Pulmonary incompetence 肺动脉瓣关闭不全冠心病:Atherosclerosis 动脉粥样硬化Coronary atherosclerotic heart disease 冠状动脉粥样硬化性心脏病Coronary heart disease 冠状动脉性心脏病Angina pectoris 心绞痛Stable angina pectoris 稳定型心绞痛Unstable angina pectoris 不稳定心绞痛Initial onset angina pectoris 初发型心绞痛Accelerated angina pectoris 恶化型心绞痛Variant angina pectoris (Prinzmetal’s variant angina pectoris)变异型心绞痛Angina decubitus 卧位心绞痛Acute coronary insufficiency 急性冠状动脉功能不全Postinfarction angina pectoris 梗塞后心绞痛Acute coronary syndrome(ACS) 急性冠脉综合征Myocardial infarction(MI) 心肌梗死Acute myocardial infarction(AMI) 急性心肌梗死Dysfunction of papillary muscle 乳头肌功能失调Rupture of papillary muscle 乳头肌断裂Rupture of the heart 心脏破裂Embolism 栓塞Cardiac aneurysm 心脏室壁瘤Postinfarction syndrome 心肌梗死后综合征Latent coronary heart disease 无症状型冠心病(隐性冠心病)Ischemic cardiomyopathy 缺血性心肌病Sudden death 猝死感染性心内膜炎:Infective endocarditis (IE) 感染性心内膜炎Native valve endocarditis 自体瓣膜心内膜炎Prothetic valve endocarditis 人工瓣膜心内膜炎Endocarditis in intravenous drug abusers 静脉药瘾者心内膜炎Acute infective endocarditics(AIE) 急性感染性心内膜炎Subacute Infective endocarditis 亚急性感染性心内膜炎心肌疾病:Specific cardiomyopathy 特异性心肌病Viral myocarditis 病毒性心肌炎Hypertrophic cardiomyopathy(HCM)肥厚性心肌病Asymmetric septal hypertrophy (ASH) 非对称性室间隔肥厚Restrictive cardiomyopathy(RCM)限制性心肌病Dilated cardiomyopathy(DCM)扩张型心肌病Alcoholic cardiomyopathy 酒精性心肌病Peripartum cardiomyopathy 围生期心肌病Drug-induced cardiomyopathy 药物性心肌病Keshan disease (KD) 克山病Endemic cardiomyopathy (ECD) 地方性心肌病Cardiomyopathies 心肌疾病Myocardial bridging 心肌桥Myocarditis 心肌炎Right ventricular cardiomyopathy 右室心肌病Arrhythmogenic right ventricular cardiomyopathy(ARVC)致心律失常型右室心肌病Unclassified cardiomyopathies,UCM)心包疾病:Purulent pericarditis 化脓性心包炎Acute pericarditis 急性心包炎Tuberculous pericarditis 结核性心包炎Constrictive pericarditis 缩窄性心包炎血管疾病:Peripheral arteriosclerosis obliteration 闭塞性周围动脉粥样硬化Primary arteritis of the aorta and its main branches 多发性大动脉炎Raynaud syndrome 雷诺综合征Pulness disease 无脉病Thromboangitis obliterans 血栓闭塞性脉管炎Thrombophlebitis 血栓性静脉炎Aortic dissection 主动脉夹层其它疾病:Syndrome XCardiogenic shock 心原性休克Postpericardiostomy syndrome 心肌损伤后综合征Pulmonary embolism 肺动脉栓塞Syncope 晕厥Syphlitic cardiovascular disease 梅毒性心血管病Cardiovascular neurosis 心脏血管神经官能症药物Vasodilator 血管扩张剂(phlebectasis 静脉扩张, arteriectasis 动脉扩张)Diuretic 利尿剂(thiazide diuretic 噻嗪类利尿剂;loop diuretic 袢利尿剂;potassium-sparing diuretics 保钾利尿剂)inotropic agent 正性肌力药(digitalis preparation 洋地黄制剂;adrenergic receptor stimulant 肾上腺素能受体兴奋剂;phosphodiesterase inhibitor 磷酸二酯酶抑制剂)Angiotensin converting enzyme inhibitor(ACE inhibitors)(ACEI)血管紧张素转换酶抑制剂Aldosterone antagonist 醛固酮拮抗剂Beta adrenergic receptor blocker (beta blockers) ß肾上腺素能受体阻滞剂Calcium channel blocker(CCB)钙通道阻滞剂Angiotension Ⅱ antagonist(Angiotension Ⅱ receptor blocker) 血管紧张素Ⅱ受体阻滞剂Alpha blockers α1 受体阻滞剂Nitroglycerin 硝酸甘油Digoxin 地高辛Lanatoside C 西地兰10antiarrhythic drugs 抗心律失常药lidocaine 利多卡因Propafenone 普罗帕酮Amiodarone 胺碘酮调脂药降脂药HMG-CoA reductase inhibitors HMG-CoA 还原酶抑制剂Nicotinic acid 烟酸Clofibrate 氯贝丁酯抗血小板药物溶栓药recombinant tissue type plasminogen activator ,rt-PA 重组组织型纤维蛋白酶原激活剂抗凝药操作interventional therapy for cardiovascular diseases 心血管病介入性治疗Holter ECG monitoring 动态心电图Ultrasound angioplasty 超声消融术Directional coronary atherectomy 定向旋切术High frequency rotational atherectomy 高频旋磨术Laser angioplasty 激光血管成形术Catheter ablation 心导管消融Radiofrequency catheter ablation 经导管射频消融Percutaneous balloon mitral valvuloplasty(PBMV)经皮穿刺球囊二尖瓣成形术Percutaneous balloon pulmonic valvuloplasty(PBPV)经皮穿刺球囊肺动脉瓣成形术Percutaneous transluminal septial myocardial ablation,(PTSMA)经皮经腔间隔心肌消融术11Percutaneous transluminal coronary angioplasty (PTCA) 经皮穿刺腔内冠状动脉成形术Percutaneous intracoronary stent implantation 经皮穿刺冠状动脉内支架安置术Transluminal Extraction catheter (TEC)经皮血管内切吸导管Artificial cardiac pacing 人工心脏起搏Multisite cardiac pacing 多部位心脏起搏Biatrial pacing 双心房起搏biventricular pacing 双心室起搏bifocal pacing 双灶起搏Heart transplantation 心脏移植Angiojet rheolytic thrombectomy 新鲜血栓吸引术Upright tilt-table testing 直立倾斜试验Implantable cardioverter defibrillator (ICD)置入型心律转复除颤器Thumpversion 捶击复律Cough-version 咳嗽复律Cardioversion 心脏电复律Defibrillation 心脏电除颤Revascularization 血管重建其它Hemolytic streptococcus 甲族乙型溶血性链球菌Antithymocyte globulin (ATG)抗胸腺细胞球蛋白Vagus nerve 迷走神经,Brainstem death 脑干死亡12Brain death 脑死亡Myocardial remodeling 心肌重塑Hemodynamics 血液动力学Atrial natriuretic factor (ANF)心钠素Vasopressin 血管加压素,抗利尿激素Bradykinin 缓激肽Triggered activity 触发活动Afterdepolarization 后除极Late ventricular potential 心室晚电位Sinus node recovery time(SNRT) 窦房结恢复时间Sinoatrial conduction time(SACT) 窦房传导时间Intrinsic heart rate 固有心率Accessory atrioventricular pathways 房室旁路Atriohisian tracts 房希氏束Nodoventricular fibers 结-室纤维Fasciculoventricular fibers 分支室纤维Insulin resistance 胰岛素抵抗Vasodepressor response 血管减压反应Pulsus tardus 细迟脉Minimum Inhibitory concentration (MIC) 最小抑菌浓度Systolic anterior motion(SAM) (二尖瓣前叶)收缩期前向运动Intermittent claudication 间歇性跛行。
Mitral RegurgitationPresentationSir, this gentleman has mitral regurgitation that is moderately severe in nature.There is a pansystolic murmur heard best at the apex which radiates to the axilla. (If it radiates to the carotids – posterior mitral leaflet rupture) This is a grade 3/6 murmur and is not associated with a systolic thrill. The first heart sound is soft and there is presence of a third heart sound(S3). I did not detect any mid-dastolic murmur. The apex is thrusting and displaced, located at the 6th IC at the anterior axillary line.This is complicated by pulmonary hypertension as evidenced by a palpable and loud pulmonary component of the second heart sound associated with a left parasternal heave. There are no clinical signs of heart failure.On the peripheral examination, patient is in atrial fibrillation with an irregularly irregular pulse which is rate controlled at 80 beats per min. There is no bruising to suggest overanticoagulation. There are also no stigmata of infective endocarditis.To complete the examination, I would like to take the patient’s blood pressure, as well as temperature chart for any fever. (Mention abdominal examination, urine dipstick and fundoscopy if clinically suggestive of IE)In summary, this gentleman has mitral regurgitation that is moderately severe in nature, with complication atrial fibrillation and pulmonary hypertension. There are no complications of heart failure or infective endocarditis. My differential diagnoses include IHD, MVP and Rh heart disease. (If thoracotomy scar, think of mitral valvotomy for MS)QuestionsHow do you grade the severity of mitral regurgitation clinically?∙Mild – No Pulm hypt∙Moderate – Pulmonary hypertension∙Severe – LVF, S3What are the causes of mitral regurgitation?▪Common causes are MVP, IHD, Rh heart disease and endocarditis▪Left ventricular dilatation, cardiomyopathy, Marfan’s, Rheumatoid, AS▪Acute causes: MI, IE, Trauma, Surgery, spontaneous rupture▪Anterior leaflet: radiates to axilla and back▪Posterior leaflet: radiates to carotids▪Mitral valvotomy if a thoracotomy scar seen▪If elderly and mild to moderate, typically due to annular calcificationWhat are the differential diagnoses for a pansystolic murmur?▪MR▪TR▪VSDWhat congenital conditions can be associated with MR?▪Corrected TGA▪Partial AV canal▪Ostium primum atrial defect (cleft mitral valve)What causes a third heart sound?▪Rapid filling of the left ventricle from the large volume of blood from the left atrium occurring in early diastoleWhy is the pulse jerky?▪Pulse is sharp and abbreviated due to lack of sustained forward stroke volume with a reduced systolic ejection time because of regurgitant leak into the leftatriumHow do you differentiate an MDM from severe MR vs MS?▪MS has an opening snap▪Severe MR associated with S3▪MS murmur is longer▪MS has loud S1What are the types of dynamic manoeuvres that you are aware of and what are their uses?▪Respiration▪Murmurs on the right side louder on inspiration due to increased venous return and blood flow to the right side of heart▪Converse is true▪Valsalva manoeuvre (decrease preload)▪ 3 phases▪Phase 1 – beginning of maneuver▪Rise in intrathoracic pressure and a transient increase in LV output ▪Phase 2 – Straining phase▪Systemic return falls▪Reduced filling of the right and left heart chambers▪SV and BP drops while HR increases▪Most murmurs become softer and shorter except▪MVP – Systolic click and murmur begins earlier (LV size issmaller), ie longer and louder▪HOCM – murmur is louder as LV volume is reduced ▪Phase 3▪Release of maneuvre▪Right heart murmurs becomes louder followed by left heartmurmurs▪Squatting (increases venous return and systemic arterial resistance) ▪Most murmurs are louder▪MVP – click occurs later and murmur is shorter because LV size increased ▪HOCM – LV size increased which reduced the obstruction to outflow and systolic murmur is softer▪Standing▪Most murmurs are softer except▪MVP – louder and longer and HOCM - louder▪Isometric exercises (increases afterload)▪AS – Softer murmur as there is reduction of pressure gradient across the valve ▪MVP – click occurs later and murmur is shorter because LV size increased ▪HOCM – LV size increased which reduced the obstruction to outflow and systolic murmur is softer▪MR/AR/VSD louder▪Amyl Nitrite inhalation▪Initial relative hypotension▪MR/AR/VSD decrease▪AS increases because of increased stroke volume▪Later tachycardia phase▪MS and right murmurs increase▪Can use to differentiate Austin Flint from MSWhat are the signs of severity for MR?▪Presence of S3▪Short MDM▪Apex thrusting and displaced▪Pulmonary hypertension▪CCFWhat is the pathophysiology of MR?▪MR leads to LV overload▪Compensatory LV dilatation▪Eventually, decompensate resulting in heart failure and increased risk of sudden death▪Also, regurgitation into the LA leads to enlargement of LA with AF and elevated pulmonary pressuresShould all murmurs be investigated?All should be Ix except 1. mid-systolic, grade 2 or < murmurs with no associated findings or symptoms 2. continuous murmurs of venous hum or mammary souffléof pregnancyHow would you investigate this patient?▪ECG▪LA enlargement – P mitrale (II – P >0.12s, Limb; Bifid P waves in limb leads with inter-peak > 0.04s, terminal P negativity in V1)▪LVH – Sokolow & Lyon Criteria (S in V1 and R in V5 or 6 >35mm)▪AF▪Pulmonary hypertension▪CXR▪CCF – pulmonary congestion, enlarged heart▪Left atrial enlargement▪Pulmonary artery enlargement▪Echocardiogram▪Dx of MR▪Severity – EF <60% and LV end-systolic diameter >45mm▪Cause▪Complications eg IE▪Cardiac catheterisation▪Not indicated in most patients but useful if there is discrepancy between echocardiographic and clinical findings▪Useful to stenosis, regurgitation and intracardiac shuntingHow would you manage this patient?▪Education▪Medical therapy▪Antibiotic prophylaxis▪Treatment of underlying cause eg IHD, dilated CMP (Rx of CCF and afterload reduction)▪Treatment of complications eg AF, IE, CCF▪Surgical▪Indications▪Symptomatic or▪EF<60% or▪LV end-systolic dimension >45mm▪Types of surgery▪Mitral valve repair if technical feasible is best▪Mitral valve replacement if technically not feasible provided EF >30% ▪Controversial▪Varied causes for MR▪If due to IHD or dilated CMP, then Sx is controversial▪If due to MVP, timing of surgery▪Indicated if symptomatic, AF, pulmonary hypt, EF<60% or ESD>45▪If asymptomatic, risk stratify according to regurgitant orifice(doppler) ▪<20mm2▪20-39mm2▪>40mm2 (this affects Px and closer follow up necessary)How do you diagnose infective endocarditis?▪Duke’s criteria▪ 2 Major, 1 Major 3 Minor or 5 minor▪Major▪Persistently positive blood c/s with typical organism▪Persistently positive blood c/s▪ 2 or more positive c/s > 12h apart▪ 3 or more positive c/s each 1 hr apart▪if 4 or more taken, >70% positive▪Typical organism▪Strep viridans, Strep bovis, enterococci, Staph aureus▪HACEK: Haemophilus, Actinobacillus, Cardiobacterium,Eikenella, Kingella▪Endocardial involvement▪Positive echocardiogram: vegetations, abscesses, valve perforation, dehiscence▪New valvular regurgitation▪Minor▪Predisposing heart condition▪Fever▪Vascular phenomena: arterial emboli, septic pulmonary emboli, mycotic aneurysm, ICH, Janeway lesion▪Immunologic phenomena: GN, Osler’s nodes, Roth spots, Rh fa ctor▪Positive blood c/s not satisfying major criteria▪Positive echocardiogram not satisfying major criteriaWhat are the types of endocarditis?▪Native valve endocarditis▪Strep, enterococci, Staph▪Rh, Cong HD, MVP with murmur and degenerative valvular disease▪Prosthetic▪Early(<60 days): Staph aureus or S. epidermis▪Late(>60 days): Similar to native endocarditis▪Fungal :IVDA and ICU▪IVDA: TV involvement, AV also; Staph aureus, MRSA, fungi, Strep, GNB How would you investigate?∙Bloods∙Blood C/S (as above)∙FBC (NCNC anaemia, raised TW with left shift), ESR, CRP∙2D echo∙CXR, ECGHow do you treat infective endocarditis?▪General measures▪Eg oxygen, treat fever▪Antibiotics▪IV CP 12-18MU/d 4H for 4 weeks▪Can also add IV gentamicin 1mg/kg 8H for first 2 weeks▪If allergic, use vancomycin 30mg/kg/d in 2 divided doses for 4 weeks▪HACEK organism: IV ceftriaxone▪MSSA: IV cefazolin or nafcillin or cloxacillin▪Surgery▪Heart failure▪Failure of medical therapy▪Presence of fever and inflammatory syndrome after 1 week of appropriate and adequate antibiotics▪Presence of mobile vegetation >10mm with 1 major embolism 1 week A/B ▪Presence of mobile vegetation >15mm with 1 week of A/B ▪Valvular complication eg valvular abscess, valvular obstruction, rupture into the pericardium, septal formation, fistula▪Fungal endocarditis▪Prosthetic valves esp if unstable or early(<60 days) or caused by S aureus When and how should you prophylax against IE? (3 steps: Risk stratify, Type of Procedure and Type of antibiotics)▪Risk stratify∙Highest risk: prosthetic valves, both bioprosthetic and mechanical; previous IE;congenital cyanotic heart disease; or surgically produced systemic/pulmonaryshunts.∙Moderate risk: (1) all other congenital cardiac conditions, except isolated secundum atrial septal defects and surgical repairs of an atrial septal defect orpatent ductus arteriosus or ventricular septal defect more than 6 months ago;(2) acquired valvular dysfunction (eg, rheumatic heart disease, calcific aorticstenosis); or (3) hypertrophic cardiomyopathy and mitral valve prolapse withvalvular regurgitation and/or thickened leaflets. Thickening of the anteriorleaflets of the mitral valve correlates with significant mitral insufficiency,especially in men older than 45 years.∙Low risk: mitral valve prolapse without significant regurgitation or thickened leaflets on echocardiography, implanted cardiac PMs, implanted defibrillators, implanted coronary stents, or "innocent" murmurs. An important caveat is thatin elderly individuals, an innocent murmur may not be hemodynamicallysignificant but may signify the presence of a calcified leaflet that is susceptible to infection during a transient bacteremia.∙Procedures that require antibiotic prophylaxis in high-to-moderate risk patients are as follows:∙Invasive manipulation of the respiratory tract (eg, tonsillectomies, rigid bronchoscopy)∙Gastrointestinal surgery, biliary tract surgery, sclerotherapy ofesophageal varices, dilatation of esophageal strictures, and endoscopicretrograde cholangiopancreatography in the presence of biliaryobstruction∙Prostate surgery, cystoscopy, and urethral dilatation∙Generally, hysterectomies, vaginal delivery, cesarean delivery, urethral catheterizations, dilation and curettage, therapeutic abortions, sterilizationprocedures, insertion or removal of intrauterine devices, cardiaccatheterizations, angioplasties, or endoscopies with or without biopsies do notrequire prophylaxis.∙Adult antimicrobial IE preventive regimens for dental, oral, respiratory tract, or esophageal procedures recommended by the American Heart Association toprevent streptococcal IE from oral-dental sources are as follows:∙Administer amoxicillin at 2 g orally 1 hour before the procedure or ampicillin at 2 g IM or IV 30 minutes before the procedure.∙If the individual is allergic to penicillin, clindamycin at 600 mg,cephalexin at 2 g, or azithromycin at 500 mg orally 1 hour before theprocedure are alternatives.∙If the individual is allergic to penicillin and is unable to take oral medication, clindamycin at 600 mg IV or cefazolin at 1 g IM or IV shouldbe given 30 minutes before the procedure.∙Adult IE prophylactic regimens for individuals undergoing lower gastrointestinal tract surgery or instrumentation of genitourinary tract procedures are forpreventing enterococcal endocarditis. They are as follows:∙High Risk regimens recommended by the American Heart Association are ampicillin at 2 g IM or IV plus gentamicin at 1.5 mg/kg (not to exceed 120mg) within 30 minutes of the procedure, followed by ampicillin at 1 g IM,IV, or orally 6 hours later.∙High-risk individuals who are allergic to penicillins should receive vancomycin at 1 g IV over 1-2 hours plus gentamicin at 1.5 mg/kg IV orIM (not to exceed 120 mg) within 30 minutes of starting the procedure.∙For moderate-risk patients, amoxicillin at 2 g orally 1 hour before the procedure or ampicillin at 2 g IM or IV within 30 minutes of starting theprocedure is recommended.∙The alternative for patients who are allergic to penicillin who are at moderate risk is vancomycin at 1 g IV over 1-2 hours, completed 30minutes before the procedure.What is the prognosis?▪Depends on underlying cause▪If IHD or dilated CMP, Px dependent on the underlying disease▪If due to MVP▪Asypmtomatic regurgitation is a serious disease with a 5-yr death rate of 22-33% form cardiac adverse events。
conductivities 电导率elemental semiconductor 元素半导体periodic table 元素周期表compound semiconductor 化合物半导体combinations 化合Amorphous 非晶polycrystalline多晶single crystal 单晶ordered region 有序化区域grains 晶粒grain boundaries 晶界periodic table 周期表inert elements 惰性元素valence electrons 价带电子positively charged 带正电ionic bond 离子键Atomic bonding 原子价键)colsed-valence energy shells 满价带能量壳层covalent bond 共价键lowest energy shell 最低能量壳层valence shell 价电子层thermal vibration 热振动thermal energy 热能lattice vibrations 晶格振动point defect 点缺陷lattice point 晶格点vacancy 空位interstitial 间隙line defect 线缺陷line dislocation 线位错interstitial impurities 间隙杂质substitutional impurities 替位杂质doping 掺杂Doping diffusion 杂质扩散ion implantation 离子注入Growth from melt 熔体法生长Czochralski method 丘克拉斯基法,提拉法seed 籽晶solidification 结晶solid-liquid interface 固液界面.Epitaxial Growth 外延生长single-crystal substrate 单晶衬底homoepitaxy 同质外延heteroepitaxy 异质外延ternary alloy 三元合金Principle of Quantum Mechanics 量子力学Energy Quanta 能量子monochromatic light 单色光photoelectric effect 光电效应incident intensity 入射光强度kinetic energy 动能limiting frequency 截止频率photon 光子work function 功函数Wave-Particle Duality Principle 波粒二象性matter waves 物质波particle-like behavior 粒子性wave-like properties 波动性electromagnetic waves 电磁波classical laws of physics 经典力学wave mechanics 波动力学wave theory 波动理论Schrödinger’s wave equation 薛定谔波动方程The one-electron atom 单电子原子,氢potential 势能principal quantum number 主量子数mass of the electron 电子质量bound 束缚nucleus 原子核quantized 量子化quantum numbers 量子数quantum state 量子态Pauli exclusion principle 泡利不相容原理discrete energy levels 分立能级energy level 能级outermost electrons 最外层电子band of allowed energies 允带band of forbidden energies 禁带allowed and forbidden bands 允带和禁带valence electrons 价带电子absolute zero 绝对零度)bandgap energy 带隙能量valence band 价带conduction band 导带forbidden energy band 禁带Carrier generation 载流子产生Carrier recombination 载流子复合Carrier transport 载流子输运intrinsic carrier concentration 本征载流子浓度free carriers 自由载流子intrinsic semiconductor 本征半导体Doping 掺杂majority carrier 多数载流子minority carrier 少数载流子electron hole pair 电子空穴对meta-stable state 亚稳态Radiative recombination 辐射复合Auger recombination 俄歇复合Light-emitting diodes发光二极管defects缺陷forbidden region 禁带区域heavily doped 重掺杂heavily excited重激发net movement 净流动net carrier flow 净载流子流动thermal velocity 热运动速度electric field 电场constant velocity 恒定速度acceleration 加速度Transport 输运drift transport漂移运动solar cells太阳能电池photodiodes 光电二极管bipolar junction transistors (BJTs) 双极晶体管depletion region耗尽区majority carrier 多子minority carrier 少子diffusion current 扩散电流drift current 漂移电流net current 净电流Forward Bias正向偏压Reverse Bias 反向偏压net electric field 净电场built-in field 内建电场minority carrier injection 少数载流子注入external circuit 外电路n-channel n沟four-terminal 四端MOS capacitor MOS电容gate 栅source 源drain 漏channel region 沟道区positive gate voltage 正栅压vertical electric field 垂直电场inversion layer 反型层channel region 沟道区drain-to-source voltage 漏源电压channel 沟道field-effect场效应transistor action晶体管效应n-channel MOSFET n沟MOSFET threshold voltage 阈值电压inversion layer 反型层drain current 漏电流gate voltages 栅压capacitor 电容器polycrystalline silicon 多晶硅parallel-plate capacitor 平行板电容器semiconductor substrate 半导体衬底) metal gate 金属栅accumulation layer of hole 空穴堆积层inversion layer of electrons 电子反型层NMOS devices NMOS器件n-channel enhancement mode MOSFET n沟道增强型MOSFETpositive gate voltage 正栅压electron inversion layer 电子反型层n-channel depletion mode MOSFET n沟道耗尽型MOSFET threshold voltage 阈值电压p-channel enhancement-mode MOSFET p沟增强型MOSFETp-channel depletion mode MOSFET p沟耗尽型MOSFET negative gate voltage 负栅压inversion layer of holes 空穴反型层channel stop 沟道截断active device region 有源器件区photoresist 光刻胶silicon dioxide 二氧化硅silicon nitride 氮化硅gate oxide 栅氧化物threshold voltage 阈值电压ion implantation 离子注入polysilicon layer 多晶硅层photolithography 光刻metallization 镀金属.complementary metal-oxide-semiconductor (CMOS) inverter 互补型金属氧化物半导体反相器p-well process p阱工艺p-channel MOSFET p沟MOSFETp well p阱potential 电势reverse biased 反向偏压的The integrated circuit IC, 集成电路interconnect lines 互连线chip 芯片gate insulator 栅绝缘层native oxide 天然氧化物diffusion coefficient 扩散系数quartz tube 石英管Impurity doping 杂质掺杂Diffusion 扩散ion implantation 离子注入epitaxial growth 外延生长infinite source 无限源limited source 有限源predeposition 预淀积drive-in diffusion 主扩散implant ions 注入离子photoresist 光刻胶oxides 氧化物Photomasks 光掩膜版Photolithography 光刻plasma 等离子体Plasma etching 等离子刻蚀cathode 阴极anode 阳极Metallization 镀电极Bonding 键合Packaging 封装vapor deposition technique 气相沉积技术。
Native defect properties and p-type doping efficiency in group-IIA doped wurtzite AlNYong Zhang,1,2Wen Liu,2and Hanben Niu2,*1Institute of Optoelectronics Science and Engineering,Huazhong University of Science and Technology,Wuhan430074,China2Institute of Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education,Shenzhen University,Shenzhen518060,China͑Received18April2007;published2January2008͒Using thefirst-principles full-potential linearized augmented plane-wave͑FPLAPW͒method based on den-sity functional theory͑DFT͒,we have investigated the native defect properties and p-type doping efficiency inAlN doped with group-IIA elements such as Be,Mg,and Ca.It is shown that nitrogen vacancies͑V N͒have lowformation energies and introduce deep donor levels in wurtzite AlN,while in zinc blende AlN and GaN,theselevels are reported to be shallow.The calculated acceptor levels⑀͑0/−͒for substitutional Be͑Be Al͒,Mg͑Mg Al͒,and Ca͑Ca Al͒are0.48,0.58,and0.95eV,respectively.In p-type AlN,Be interstitials͑Be i͒,which actas donors,have low formation energies,making them a likely compensating center in the case of acceptordoping.Whereas,when N-rich growth conditions are applied,Be i are energetically not favorable.It is foundthat p-type doping efficiency of substitutional Be,Mg,and Ca impurities in w-AlN is affected by atomic sizeand electronegativity of dopants.Among the three dopants,Be may be the best candidate for p-type w-AlN.N-rich growth conditions help us to increase the concentration of Be Al,Mg Al,and Ca Al.DOI:10.1103/PhysRevB.77.035201PACS number͑s͒:61.72.Bb,61.72.JϪ,61.72.uj,71.15.NcI.INTRODUCTIONGroup-III nitrides͑III-N,III=Ga,Al,and In͒are wide-gap semiconductors and have attracted researcher’s attention for more than two decades due to their promising applica-tions for the blue-ultraviolet͑UV͒optoelectronics.1–5Among all III-V nitrides,wurtzite AlN has the widest direct gap͑var-ies from6.28eV at5K to6.2eV at room temperature͒.6 Thus,to push the optical emission and/or detection wave-length to the deep UV region͑ϳ200nm͒,AlN is of great interest.In spite of the recognition of the importance of AlN,the report of light emitting directly from AlN is rare due to the lack of high-qualityfilms.Recently,Taniyasu et al.have re-ported a light emitter with210nm made of AlN doped with Si and Mg,which is the shortest wavelength emitted by light-emitting diode at present,7whereas the internal quan-tum efficiency is still low due to low p-type doping effi-ciency.So the fabrication of p-type doped layers is essential for all of these devices.However,similar to GaN,the growth of highly conductive p-type AlN layers has so far proven to be difficult.The main reasons have been proposed to be the formation of donor defects,such as nitrogen vacancies,lim-ited dopant solubility,and deep acceptor energy levels.Fol-lowing the“doping limit rule,”8it will be much more diffi-cult to achieve p-type AlN than to achieve p-type GaN.To exploit fully the potential of AlN,systematic studies of native defects and impurities in AlN are required.While there have been several theoretical and experimental studies of crystal defects in GaN,9–11little work has been done on AlN.Magnesium is commonly used as p-type dopant for nitride semiconductors,but the Mg low doping efficiency is due to the deep acceptor level introduced by Mg.It would be desirable tofind an alternative dopant that would exhibit higher solubility and lower ionization energy.In Ref.7, group-II and-IV elements have been proposed to be poten-tial candidates for Mg.However,group-IV elements are likely to become donors when incorporated in the cation sites,which will result in severe self-compensation.12Thus, group-II elements may be better candidates than group-IV elements for p-type AlN doping.In GaN,it has been reported that the acceptor level of Be Ga is shallower than that of Mg Ga.However,the behavior of doping Be in w-AlN is still unclear.To improve p-type doping efficiency,systemic stud-ies of doping properties of group-IIA elements in AlN are important.In this work,theoretical studies are performed to under-stand the configurations of native defects and substitutional Be,Mg,and Ca impurities in wurtzite AlN.By comparing the formation energies and transition levels of Be-,Mg-,and Ca-related defects,the p-type doping efficiency of these dop-ants is examined.The organization of this paper is as fol-lows.In Sec.II,the computational methods are introduced. Section III gives some discussion and results.Section IV summarizes the paper and contains some suggestions for fu-ture experimental work.II.METHODSThe calculations are performed using the FPLAPW method implemented in WIEN2K package.13The generalized gradient approximation of Perdew-Burke-Ernzerhof96͑Ref. 14͒is employed for the exchange-correlation potential.Cal-culations were done with R MT K max=9͑where R MT is the av-erage radius of the muffin-tin spheres and K max is the maxi-mum modulus for the reciprocal lattice vector͒.The iteration process was repeated until the calculated total energy differ-ence between succeeding iterations is less than0.1mRy and the force on each atom is less than1.0mRy/a.u.To simulate isolated defects,a72-atom AlN supercell consisting of 3ϫ3ϫ2primitive wurtzite cells is used as it was found to be adequate in earlier work on similar systems.15The 4ϫ4ϫ3k-point mesh produces converged results.The lat-tice parameters of supercell arefixed and are described byPHYSICAL REVIEW B77,035201͑2008͒the theoretical value of pure AlN.The theoretical band gapderived from the band structure isϳ4.1eV and about2.0eVbelow the experimental gap.Tofind a realistic description ofboth defect levels and band edges,we obtain them both fromelectron addition and removal calculations.The theoreticalband gap evaluated from E−͓R͑−͔͒+E+͓R͑+͔͒−2E0͓R͑0͔͒͑Ref.16͒is5.98eV,in acceptable agreement with the ex-perimental value of6.12eV.17At equilibrium and in the dilute limit,the concentration ofa defect in a crystal depends upon its formation energy E f.Following Van de Walle and Neugebauer,18the formationenergy of a defect or impurity X͑X=Be,Mg,and Ca inpresent work͒in charge state q is calculated fromE f͑X q͒=E tot͓X q͔−E tot͓AlN,bulk͔−͚n ii+q͓E F+E V+⌬V͔,͑1͒where E tot͓X q͔is the total energy of the defect-containing AlN supercell and E tot͓AlN,bulk͔is the total energy of the equivalent supercell of AlN containing no defects.Here,n i indicates the number of atoms that have been added to ͑n iϾ0͒or removed from͑n iϽ0͒the supercell andi are the corresponding chemical potentials of these species.E F is the Fermi level,referenced to the valence-band maximum E V in the bulk.A correction term⌬V is used to align the reference potential in our defect supercell with that in the bulk.The chemical potentialsdepend on growth process.19 To determine the bound ofAl andX,we compute the enthalpy of formation of AlN and X3N2assuming the formation from metallic Al,X,and gaseous N2͑⌬H f͓AlN͔=−2.06eV,⌬H f͓X3N2͔=−5.0,−3.36,and −2.63eV for X=Be,Mg,and Ca,respectively͒.Chemical potentials are calculated using the following relationships:Al+N=AlN=Al͓bulk͔+N͓N2͔+⌬H f͓AlN͔,͑2͒3X+2N=X3N2=3X͓bulk͔+2N͓N2͔+⌬H f͓X3N2͔.͑3͒By combining Eqs.͑2͒and͑3͒,the chemical potential of Al and impurity X are thereforeAl=Al͓bulk͔,͑4͒X=X͓bulk͔+13⌬H f͓X3N2͔−23⌬H f͓AlN͔,͑5͒for Al-rich limit,andAl=Al͓bulk͔+⌬H f͓AlN͔,͑6͒X=X͓bulk͔+13⌬H f͓X3N2͔,͑7͒for N-rich limit.III.RESULTS AND DISCUSSIONA.Native defectsIn order tofind the possibility of compensation,we per-form a comprehensive study on the native point defects in AlN.Figure1shows the formation energies of native defectsin w-AlN as a function of the Fermi level under the twoextreme conditions:the Al-rich limit and the N-rich limit.Here,E F spans the theoretical band gap͑5.98eV͒.Moreover,V N behave as donors that can donate one,two, or three electrons,but only the V N+and V N3+charge states are stable.The V N2+state is unstable,thus presenting anegative-U effect.The similar behavior of V N has been found in GaN.20The V N3+has very low formation energy underp-type conditions͑E F close to the top of the valence band͒.Taking no account of ionization level,nitrogen vacancies,therefore,are likely to play an important role in compensat-ing acceptors in p-type AlN.Under n-type conditions ͑E F close to the bottom of the conduction band͒,however, the formation energy of V N is actually quite high.Inthermodynamic equilibrium,the concentration of nitrogenvacancies should therefore be quite low.On the other hand,V N act as deep donors and the transition level locates at ⑀͑1+/0͒=1.75eV blow the conduction-band minimum.This conclusion is different from what was reported about V N in zinc blend e AlN in Van de Walles’work,21where V N act as a shallow donor.Because of deep transition energy and high formation energy under n-type conditions,V N should not be responsible for the observed n-type conductivity in as-grown AlN.It is more possible that unintentional impurities lead to n-type conductivity other than native defects do.It has been reported that unintentional impurities such as oxygen and silicon are the cause of the observed unintentional n-type doping in GaN.22As shown in Fig.1,the formation energies of V N can be changed significantly depending on growth conditions͑Al rich or N rich͒.Our calculations reveal that V Al are the lowest-energy de-fects in n-type AlN,where they behave as triple acceptors.These defects are likely to act as compensating centers forshallow donors.The calculated transition energy⑀͑0/−͒for V Al is0.95eV above the valence-band maximum͑VBM͒. Additionally,for p-type AlN,our results show that Al N3+has a low formation energy in Al rich,but in N rich,it isvery FIG.1.Defect formation energies for native point defects in wurtzite AlN as a function of the Fermi level͑E F͒under aluminum-rich͑left panel͒and nitrogen-rich͑right panel͒conditions.E F is defined to be zero at the valence-band edge.ZHANG,LIU,AND NIU PHYSICAL REVIEW B77,035201͑2008͒high,which indicate that Al N3+concentration is affected by growth conditions of AlN strongly.The other native defects, such as Al i and N Al,possess high formation energies both in Al rich and N rich,so they cannot be the dominant defects in w-AlN.B.p-type dopingIn this section,we study the doping behavior of Be,Mg, and Ca impurities in AlN.The main information about the geometry and stability of substitutional impurities is given in Table I.1.Mg dopant in AlNIn wurtzite AlN,a substitutional impurity has four nearest neighbors.One of them located along the c axis relative to the impurity͑forming X-N͑I͒bond͒is nonequivalent by symmetry to the three remaining neighbors͑forming X-N͑II͒bonds͒.For substitutional Mg,wefind that Mg atom is lo-cated very close to the lattice site of the Al atom that it ttice relaxation increases the length of Mg-N bonds and releases elastic energies for both neutrally and negatively charged states͑listed in Table I͒.This outward relaxation can be attribute to that of the atomic radius of a substitutional impurity͑Mg͒which is larger than that of re-placed host atom͑Al͒.15Large relaxation of the surrounding host atoms will raise the formation energy.Very similar re-sults are obtained for substitutional Mg in zinc blend e AlN.21Magnesium on the Al site induces the acceptor level ⑀͑0/1−͒=0.58eV above the VBM,which is close to the experimental value of0.51eV.23The large acceptor level of Mg Al may has relation to the electronegativity of Mg atom͑for detailed analysis,see below Be dopant in AlN͒.As can be seen in Fig.2,Mg Al has a high formation energy.This high formation energy stems from the strict solubility limit imposed by the formation of Mg3N2.The formation energy of Mg Al is affected by the growth conditions:by moving from Al-rich to N-rich conditions,the formation energy ofMg Al decreases by13͉⌬H f͓AlN͔͉.In contrast to the Mg Al,Mg N induces a deep donor level.For Al rich,our calculations indicate that incorporation ofMg on nitrogen site is energetically favorable in p-type con-ditions,which can result in self-compensation effect,but thisis not true under N-rich conditions.Therefore,N-rich growthconditions can restrict Mg N concentration in AlN.Mg oninterstitial site behaves as donor,but both in Al-and N-richconditions,Mg i is unfavorable due to the large atom size ofMg.2.Be dopant in AlNFor a substitutional Be Al acceptor,the Be-N bonds showinward relaxation for both neutrally and negatively chargedstates for Al atom that has larger atomic radius than that ofBe.A similar inward relaxation for this complex is also re-ported in GaN,19but percentage change of Be-N bond lengthis larger than that of Be impurity in AlN due to even largeratomic radius͑1.30Å͒͑Ref.24͒of Ga atom.The relaxationenergy E rel of Be Al is lower than that of Mg Al both in neu-trally and negatively charged states,showing that Be re-places Al in AlN with less perturbation of the lattice.Ourformation energy calculations reveal that Be occupying Alsite creates a single acceptor state above the VBM of AlN.The calculated transition energy of Be Al is0.48eV which isshallower than that of Mg Al byϳ0.1eV.By using effective-mass theory,Mireles and Ulloa estimated this value to be0.22–0.45eV,25but their computation is semiempirical andresults are affected by computational parameters strongly.InGaN,Latham et al.had reported that the acceptor level ofMg Ga was about0.09eV higher than that of Be Ga,19which isin good agreement with our result.Different transition ener-gies between Be Al and Mg Al can be understood as follows:The acceptor level of Mg Al and Be Al consists mostly of pparing with Mg,Be atom has lower p orbitalenergy for it is more electronegative;26thus,electron can beexcited from the VBM to acceptor level with less energy.Ascan be seen from Fig.2,the formation energy of Be Al isabout0.2eV lower than that of Mg Al.So the concentrationTABLE I.Atomic radius R a of X and Al,Pauling electronega-tivityof X,percentage change of bond lengths with respect to bulk AlN,lattice relaxation energy E rel,optimal formation energy ͑N-rich conditions͒for different charge states q,and ionization lev-els⑀͑0/−1͒for substitutional Be,Mg,and Ca at Al site in AlN.AlN:X R a͑Å͒qX-N͑I͒͑%͒X-N͑II͒͑%͒E rel͑eV͒E f͑eV͒⑀͑eV͒X=Be 1.05a 1.5b0−4.1−0.00.18 2.390.48−1−2.6−3.90.28−3.08X=Mg 1.50a 1.2b0 6.88.40.68 2.560.58−1 6.57.80.78−2.82X=Ca 1.81a 1.0b013.512.0 3.44 3.730.95−114.917.4 3.73−1.27X=Al 1.25a¯¯¯¯¯¯¯See Ref.23.b See Ref.25.FIG.2.Formation energy as a function of Fermi level for Mg, Be and Ca in AlN under aluminum-rich͑left panel͒and nitrogen-rich͑right panel͒conditions.NATIVE DEFECT PROPERTIES AND p-TYPE DOPING…PHYSICAL REVIEW B77,035201͑2008͒of substitutional Be in AlN is expected to be higher than thatof Mg.Similarly to substitutional Mg,the formation energyof Be Al is affected by growth conditions.It is reported that Be Ga acceptor is strongly compensatedby interstitial defects,19so we pay more attention to Be i forBe in AlN.According to total energy computation,wefindthat the lowest-energy structure is that Be atom lies in thecenter of the hexagonal channel as viewed along the c axis.Be i behaves as donor and can occur in1+and2+chargestates,while only2+charge state is stable for Be i in GaN.19This difference is due to the fact that AlN has larger band gap than GaN does.For N-rich conditions,Be i2+has a lowformation energy in p-type AlN,E fϽ0eV for E F at the VBM.So holes may be compensated by interstitial defectsBe i,which is consistent with Be i in GaN.However,underN-rich conditions,Be i is energetically unfavorable due to apositive formation energy͑E f=1.30eV for E F=0͒;it is pos-sible to select N-rich growth conditions to restrict the com-pensation by Be i in p-type AlN.Since Be N defect has a high formation energy both in Al-and N-rich conditions,and is thus unlikely to occur in sig-nificant concentration,we do not discuss it in detail here.3.Ca dopant in AlNFinally,the behaviors of Ca in AlN are discussed.Cal-cium has the largest atomic radius and is the least electrone-gative among the three dopants,so it is expected that calciumon a substitutional Al site will produce the most significantoutward relaxation with large relaxation energy,highest for-mation energy,and deepest acceptor level.Our calculationsconfirm these predictions perfectly.The surrounding N atomsundergo a significant outward relaxation,increasing theCa-N distance to2.16Å.This distance is very close to theCa-N distance in the compound Ca3N2.27Similar to Be andMg,Ca Al behaves as a single acceptor,but the transition level between0and−1charge states occurs around0.95eV above the VBM,becoming a deep acceptor.The formation energy of Ca Al is higher than that of both Be Al and Mg Al.So the doping efficiency of Ca is lowest comparing with Be and Mg.IV.CONCLUSIONSDFT generalized gradient approximation is used to study the native and group-IIA elements related defects in wurtzite AlN.Both V N and Be i act as donor with a low formation energy,making them a likely compensating center in the case of acceptor doping.However,V N do not account for the observed n-type conductivity of as-grown AlN for its high ionization levels and high formation energy in n-type AlN. Under Al-rich growth conditions,Mg N and Be i will compen-sate hole severely,whereas this problem can be improved by N-rich growth conditions.Our calculations revealed that atomic size and electronegativity of group-IIA impurity are important factors for p-type doping efficiency:an impurity with similar atomic radius as Al atom can achieve a higher concentration;an impurity with more electronegative prop-erties can produce a lower ionization level.Among the three elements,Be may be the best candidate for producing p-type AlN.In order to achieve high doping efficiency,restricting the concentration of V N and Be i is essential and N-rich growth conditions are expected.ACKNOWLEDGMENTSThis work was supported by the National Natural Science Foundation of China under Project No.60532090.The au-thors would like to thank the Supercomputer Center of Shen-zhen University for the computation support.The authors also thank R.S.Zheng for useful discussions.*hbniu@1R.J.Molnar,R.Singh,and T.D.Moustakas,Appl.Phys.Lett.66,268͑1995͒.2S.Nakamura,M.Senoh,and S.Nagahama,Jpn.J.Appl.Phys., Part235,L74͑1995͒.3B.W.Lim,Q.C.Chen,J.Y.Yang,and M.Asif Khan,Appl.Phys.Lett.68,3761͑1996͒.4K.B.Nam,M.L.Nakarmi,J.Li,J.Y.Lin,and H.X.Jiang,Appl.Phys.Lett.83,2787͑2003͒.5E.Kuokstis,J.Zhang,Q.Fareed,J.W.Yang,G.Simin,and M.Asif Khan,Appl.Phys.Lett.81,2755͑2002͒.6I.Vurgaftman and J.R.Meyer,J.Appl.Phys.89,5815͑2001͒. 7Y.Taniyasu,M.Kasu,and T.Makimoto,Nature͑London͒441, 325͑2006͒.8S.B.Zhang,S.H.Wei,and A.Zunger,J.Appl.Phys.83,3192͑1998͒.9C.Liu and J.Y.Kang,Opt.Mater.23,169͑2003͒.10Z.H.Xiong,F.Y.Jiang,Q.X.Wang,and J.P.Rao,Trans.Nonferrous Met.Soc.China16,s854͑2006͒.11S.Nakamura,T.Mukai,and M.Senoh,Jpn.J.Appl.Phys.,Part231,L139͑1992͒.12L.E.Ramos,J.Furthmuller,J.R.Leite,L.M.R.Scolfaro,and F.Bechstedt,Phys.Rev.B68,085209͑2003͒.13P.Blaha,K.Schwarz,G.K.H.Madsen,D.Kvasnicka,and J.Luitz,computer code WIEN2K,Vienna University of Technology, 2002,improved and updated UNIX version of the original;P.Blaha,K.Schwarz,P.Sorantin,and S.B.Trickey,Comput.mun.59,399͑1990͒.14J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev.Lett.77, 3865͑1996͒.15W.J.Lee,J.Kang,and K.J.Chang,Phys.Rev.B73,024117͑2006͒.16S.Petit,R.Jones,M.J.Shaw,P.R.Briddon,B.Hourahine,and T.Frauenheim,Phys.Rev.B72,073205͑2005͒.17J.Li,K.B.Nam,M.L.Nakarmi,J.Y.Lin,and H.X.Jiang,Appl.Phys.Lett.83,5163͑2003͒.18C.G.Van de Walle and J.Neugebauer,J.Appl.Phys.95,3851͑2004͒.tham,R.M.Nieminen,C.J.Fall,R.Jones,S.Öberg,and P.R.Briddon,Phys.Rev.B67,205206͑2003͒.ZHANG,LIU,AND NIU PHYSICAL REVIEW B77,035201͑2008͒20C.H.Park and D.J.Chadi,Phys.Rev.B55,12995͑1997͒.21C.Stampfland C.G.Van de Walle,Phys.Rev.B65,155212͑2002͒.22C.G.Van de Walle,C.Stampfl,and J.Neugebauer,J.Cryst.Growth189/190,505͑1998͒.23K.B.Nam,M.L.Nakarmi,J.Li,J.Y.Lin,and H.X.Jiang,Appl.Phys.Lett.83,878͑2003͒.24/webelements/elements/text/ periodic-table/radii.html25F.Mireles and Sergio E.Ulloa,Phys.Rev.B58,3879͑1998͒. 26A.García and M.L.Cohen,Phys.Rev.B47,4221͑1993͒.27J.Neugebauer and C.G.Van de Walle,J.Appl.Phys.85,3003͑1999͒.NATIVE DEFECT PROPERTIES AND p-TYPE DOPING…PHYSICAL REVIEW B77,035201͑2008͒。