数学分析函数极限概念
- 格式:ppt
- 大小:1.95 MB
- 文档页数:53
第三章 函数极限教学目的:1.使学生牢固地成立起函数极限的一样概念,把握函数极限的大体性质;2.明白得并运用海涅定理与柯西准那么判定某些函数极限的存在性;和,并能熟练运用;4.明白得无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。
教学重(难)点:本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准那么的应用。
教学时数:14学时§ 1 函数极限概念 (2学时)教学目的:使学生成立起函数极限的准确概念;会用函数极限的概念证明函数极限等有关命题。
教学要求:使学生慢慢成立起函数极限的δε-概念的清楚概念。
会应用函数极限的δε-概念证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。
教学重点:函数极限的概念。
教学难点:函数极限的δε-概念及其应用。
一、 温习:数列极限的概念、性质等 二、 教学新课: (一)时函数的极限:以时和为例引入.介绍符号: 的意义,的直观意义.概念 ( 和 . )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1 验证例2 验证例3 验证证……(二)时函数的极限:由考虑时的极限引入.概念函数极限的“”概念.几何意义.用概念验证函数极限的大体思路.例4 验证例5验证例6 验证证由=为使需有为使需有于是, 倘限制 , 就有例7 验证例8 验证 ( 类似有(三)单侧极限:1.概念:单侧极限的概念及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9 验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有:例10 证明: 极限不存在.例11 设函数在点的某邻域内单调. 假设存在, 那么有=§2 函数极限的性质(2学时)教学目的:使学生把握函数极限的大体性质。
教学要求:把握函数极限的大体性质:唯一性、局部保号性、不等式性质和有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
高中数学中的数列极限与函数极限数列极限和函数极限是高中数学中的重要概念,在数学分析中有着广泛的应用。
本文将介绍数列极限和函数极限的定义和性质,并通过示例和推导来加深理解。
一、数列极限的定义与性质数列是按照一定规律排列的数的序列,而数列极限则是指数列随着索引(通常是正整数)趋于无穷大时的极限值。
我们用符号来表示数列极限,记为lim(aa)=a,其中aa表示数列的第a项。
在数列极限的定义中,有两个重要的要素:趋于无穷大和极限值。
当数列的值越来越接近于某个常数a时,我们说数列的极限为a。
具体而言,对于任意给定的正实数a(ε),存在正整数a(N)使得当a>N 时,aa与a之间的差值小于a,即|aa−a|<a。
这种形式的定义表明数列极限的存在性和唯一性。
对于数列极限的性质,我们有以下结论:1. 常数数列的极限等于该常数本身:lim(a)=a,其中a为任意常数。
2. 收敛数列(即存在极限的数列)的极限唯一。
3. 若数列收敛,则数列必有界,即存在一个正数a(M),使得对于任意的a,都有|aa|≤a。
这个结论可以通过使用极限的定义及三角不等式来证明。
二、函数极限的定义与性质与数列极限类似,函数极限描述的是函数随着自变量趋于某个值时,函数值的变化趋势。
我们用lim(a→a)a(a)=a来表示函数极限,其中a(a)表示函数的表达式,a为自变量趋向的值,a为极限值。
函数极限的定义可以类比于数列极限的定义。
对于任意给定的正实数a(ε),存在正实数a(δ)使得当0<|a−a|<a时,有|a(a)−a|<a。
这个定义表明函数极限的存在性。
与数列极限类似,函数极限也具有唯一性、局部有界性等性质。
此外,我们还有以下性质:1. 若lim(a→a)a(a)=a_1,lim(a→a)a(a)=a_2,则lim(a→a)(a(a)±a(a))=a_1±a_2。
2. 若lim(a→a)a(a)=a,则lim(a→a)aa(a)=aa,其中a为任意常数。
引言在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法.一、函数极限概念定义1[]1设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在正数M (a ≥),使得当M x >时有()f x A ε-<,则称函数f 当x 趋于+∞时以A 为极限,记作lim ()x f x A →+∞= 或()().f x A x →→+∞定义2[]1(函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0U (0x ;'δ)内有定义,A 为定数。
若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有()f x A ε-<,则称函数f 当x 趋于0x 时以A 为极限,记作lim ()x f x A →∞=或0()()f x A x x →→.定理1[]1设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。
若对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有()f x A ε-<,则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作lim ()(lim ())x x x x f x A f x A +-→→==或00()()(()())f x A x x f x A x x +-→→→→.定理2[]1(唯一性)若极限0lim ()x x f x →存在,则此极限是唯一的.定理3[]1(局部有界性)若0lim ()x x f x →存在,则f 在0x 的某空心邻域00()U x 内有界.定理4[]1(局部保号性)0lim ()0x x f x A →=>若(或<0),则对任何正数r <A (或r <-A ),存在00()U x ,使得对一切00()x U x ∈有()0f x r >>(或()0f x r <-<).定理5[]1(保不等式性)0lim ()x x f x →设与0lim ()x x g x →都存在,且在某邻域0'0(;)U x δ内有()()f x g x ≤,则lim ()lim ().x x x x f x g x →→≤二、函数极限的求解与应用极限一直是数学分析中的一个重点内容,而对函数极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法.求解函数极限的最基本的方法还是利用函数极限的定义,同时也要注意运用两个重要极限,其中可以利用等量代换,展开、约分等方法化成比较好求的数列,也可以利用函数极限的四则运算法则计算.夹逼性定理和拉格朗日中值定理是很重要的定理,在求的时候要重点注意运用. 洛必达法则是针对某些特殊的函数而言的,还有一些比较常用的方法,在本文中都一一列举了.1、利用函数极限的定义根据函数极限的定义,是求极限的最基本的方法之一.例1 证明 1lim0x x→∞=. 证明 ε∀>0,∃M =1ε,则当x >M 时有,10x -=1x <1M =ε.所以有1lim0x x→∞=. 例2 用极限的定义证明20211lim 0x x x x -=-→ 0(||1)x <.证明 由于||1x ≤, 0||1x <, 因此22=≤≤于是, 对任给的)10(0<<>εε不妨设, 取,212εδx -=则当00||x x δ<-<时, 有 .11202ε<---x x注 用极限的定义时, 只需要证明存在)(δ或N , 故求解的关键在于不等式的建立. 在求解的过程中往往采用放大、缩小等技巧, 但不能把含有n 的因子移到不等式的另一边再放大, 而是应该直接对要证其极限的式子一步一步放大, 有时还需加入一些限制条件, 限制条件必须和所求的N (或δ)一致, 最后结合在一起考虑.2.利用极限的运算法则定理6[]1(四则运算法则) 若极限0lim ()lim ()x x x x f x g x →→与都存在,则函数f g ±,.f g 当0x x →时极限也存在,且[]0lim ()()lim ()lim ();x x x x x x f x g x f x g x →→→±=±[]0lim ()()lim ().lim ()x x x x x x f x g x f x g x →→→=;lim ()x x g x →又若00,f g x x ≠→则当时极限存在,且有0()limlim ()/lim ().()x x x x x x f x f x g x g x →→→=例3 求221lim1nnn a a a b b b →∞++++++++, 其中1,1<<b a . 解 分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限bb b b b a a a a a n nn n--=++++--=++++++111,1111212,原式= 1111lim111111lim11n n n n a b a a b abb +→∞+→∞----==----例4 求⎪⎪⎭⎫⎝⎛--++→20211lim x x x x . 解 原式⎪⎪⎭⎫⎝⎛+-++--+-++=→)211(41121lim 220x x x x x x x ⎪⎪⎭⎫ ⎝⎛+-+-++--=→)11)(211()11(2lim2220x x x x x x ⎪⎪⎭⎫⎝⎛+-+-++-=→)11)(211(2lim20x x x x 41-=.注1 对于和、差、积、商形式的函数求极限, 可以采用极限运算法则, 使用时需要先对函数做某些恒等变换或化简, 变换的方法通常有分式的通分、约分、分解因式、分子分母有理化、三角函数的恒等变化、拆项消去法、比较最高次幂法等.注2 运用极限法则时, 必须注意只有各项极限都存在(对商, 还要分母极限不为零)时才能适用.3.利用迫敛性(夹逼准则)定理7[]1 (迫敛性)0lim ()lim ()x x x x f x g x A →→==设,且在某0'0(;)U x δ内有()()()f x h x g x ≤≤,则 0lim ().x x h x A →=例5 求下列函数的极限.(1)cos lim x x xx→-∞-;(2)2sin lim 4x x xx →+∞-.解 (1)因为-1≤cos 1x ≤,所以当0x <时,1cos 1x x x x-≤≤-, 于是 1cos 111x x x x x-+≤≤-,又因为 11lim (1)lim (1)1x x x x→-∞→-∞+=-=,由迫敛性得 cos lim1.x x xx →-∞-= (2)因为1sin 1,x -≤≤2-24x x x >≤-所以当时,22sin 44x x xx x ≤--, 又因为 2221lim lim 0,lim 04441x x x x x x x x x →+∞→+∞→+∞--===---, 又迫敛性得 2sin lim 4x x xx →+∞-=0.例6 求⎪⎭⎫⎝⎛→x x x x 1sin sin 1lim 20.解 当0≠x 时, 有 222111|sin sin ||sin |x x x x x x ⎛⎫≤≤ ⎪⎝⎭,从而 2110|sin sin |||x x x x ⎛⎫≤≤ ⎪⎝⎭,由夹逼准则得 2011lim |sin sin |0x x x x →⎛⎫= ⎪⎝⎭, 所以 01sin sin 1lim 20=⎪⎭⎫⎝⎛→x x x x .注1 迫敛性(夹逼准则)多适用于所考虑的函数比较容易适度放大或缩小, 而且放大和缩小的函数是容易求得相同的极限. 基本思想是把要求解的极限转化为求放大或缩小的函数或数列的极限.注2 利用夹逼准则求函数极限的关键:(1)构造函数)(x f , )(x h , 使)(x f ≤)(x g ≤)(x h ; (2)A x h x f x x x x ==→→)(lim )(lim 0, 由此可得A x g x x =→)(lim 0.4.利用两个重要极限两个重要极限:(1)1sin lim0=→xxx ;(2)e x xx =⎪⎭⎫⎝⎛+∞→11lim .根据复合函数的极限运算法则, 可将以上两个公式进行推广: (1)1)()(sin lim0=→x f x f x x ()(,sin ,0)(lim 0x f u u u y x f x x ===→); (2)e x g x g x x =⎪⎪⎭⎫ ⎝⎛+→)()(11lim 0 ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=∞=→)(,11,)(lim 0x g u u y x g ux x . 例7 求下列函数的极限(1)1lim sin ;x x x→+∞(2)30tan sin lim x x xx→- . 解(1)令1t x=, 0t 0.1sin lim sin lim 1.x t x tx x t++→+∞→→+∞→==则当 时, 于是 (2)23330002sin sin tan sin sin (1cos )2limlim lim cos cos x x x xx x x x x x x xx x→→→--==220sinsin 12lim ..2cos 211.1.21.2x x x x x x →⎡⎤⎢⎥⎢⎥=⎢⎥⎛⎫⎢⎥ ⎪⎝⎭⎣⎦==例8 求下列函数的极限(1)02lim(1);x x x-→-(2)101lim()1x x x x→+- . 解(1)22221lim(1)=lim 1+-2xx x x e x x --→∞→∞⎡⎤⎛⎫⎢⎥ ⎪⎢⎥-= ⎪⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦. (2)11122100122lim()lim(1)lim(1)111x x x x x x n x x x x x x x--→→∞→+=+=+--- =2112202lim 11x xxx x e x --→⎡⎤⎛⎫⎢⎥+= ⎪⎢⎥-⎝⎭⎣⎦.5.利用无穷小的性质和等价无穷小代换定理8[]1 设函数(),(),()f x g x h x 在0(,)U x δ'内有定义, 且有 )(~)(x g x f )(0x x →. (1) 若A x h x f x x =→)()(lim 0, 则A x h x g x x =→)()(lim 0;(2) 若B x f x h x x =→)()(lim, 则B x g x h x x =→)()(lim 0.性质1 有限个无穷小量的代数和为无穷小量; 性质2 有限个无穷小量的乘积为无穷小量;性质3 常数与无穷小量的乘积是无穷小量.定理9[]1 设α,β均为无穷小, 且~,~ααββ'', 且αβ''lim 存在,则 αβαβ''=lim lim .例9 求极限22201cos lim sin x x x x →- .解 因为 222()1cos ~;2x x -所以 2220sin cos 1lim x x x x -→=212)(2222=x x x .例10 计算30sin sin tan limxx x x -→. 解 由于 )cos 1(cos sin sin tan x xxx x -=-, 而 )0(~sin →x x x , )0(2~cos 12→-x x x , )0(~sin 33→x x x ,故有 212cos 1lim sin sin tan lim 32030=⋅⋅=-→→x x x x x x x x x .例[]611 计算0x →.解 因为 211cos (0),2xx x -→ 且 22000222sin sin 1cos 22lim lim lim 111222x x x x x x x x x→→→⎛⎫ ⎪-=== ⎪⎪⎝⎭. 由定理得,0x→()200022lim 11122x x x x x x →→→====.注1 对于分子或分母中的两个无穷小之差不能直接用无穷小代换.注2[]7常用等价代换公式: 当0→x 时, x x ~sin , x x ~arcsin , x x ~tan ,x x ~arctan , x e x ~1-, a x a x ln ~1-等.在求解极限的时候要特别注意无穷小等价替换,无穷小等价替换可以很好的简化解题.6.利用恒等变形法在求函数极限时,利用简单的恒等变形可使极限易于计算,恒等变形的手段有约分法有和有理化法. (1)约分法适用于计算00型函数极限,如果所求函数的分子分母都是整式且有公因子(特别是零因子)时,可通过约简式计算极限值.例12[]3 计算21lim 1n x x x x nx →+++--的值(n 为正整数).解 原式=21(1)(1)(1)lim1n x x x x x →-+-++--= 121lim 1(1)(1)n n x x x x x --→⎡⎤++++++++⎣⎦12n =+++=(1)2n n+. 注 要首先将分子分母因式分解,找到公因子(特别是零因子),接着即可约去公因子,求函数极限. (2)有理化法在求解存在根号的函数极限时,通过选择分子或分母,或分子分母同时有理化约去零因子,即可转化为一般的极限问题.例13[]4 计算:0x ax→ (其中0a >).解 原式=0x → =22x →=x →=12a注 此题是通过分子有理化来简化运算,在具体解题时根据简便原则进行选择何种方式的有理化.7.利用洛必达法则(1)0型不定式极限定理10[]1 若函数)(x f 和)(x g 满足: (i ) 0)(lim )(lim 0==→→x g x f x x x x ;(ii ) 在点0x 的某空心邻域00(,)U x δ'内两者都可导, 且0)(≠'x g ;(iii ) A x g x f x x =''→)()(lim(A 可为实数, 也可为∞), 则=→)()(limx g x f x x A x g x f x x =''→)()(lim 0. (2)∞∞型不定式极限 定理 11[]1 若函数f 和g 满足: (i ) ∞==→→)(lim )(lim 0x g x f x x x x ;(ii ) 在点0x 的某空心邻域00(,)U x δ内两者都可导, 且0)(≠'x g ; (iii ) A x g x f x x =''→)()(lim(A 可为实数,也可为∞), 则=→)()(limx g x f x x A x g x f x x =''→)()(lim 0. 注[]8洛必达法则是求两个无穷小量或两个无穷大量之比的极限的, 在同一运算过程中可连续使用, 直到求出所求极限. 但是, 对于其他不定式的极限(如,0∞⋅ 001,0,,∞∞∞-∞等类型)如果无法判断其极限状态, 则洛必达法则失败, 但只需经过简单变换, 它们一般可以化为00型和∞∞型的极限. 例 12[]3 计算:(1) 3arcsin lim;(arcsin )x x x x →- (2) 0lim ln x x x +→; (3) ()1ln lim xx x →+∞+.解 (1)这是一个型的不定式极限, 直接应用洛必达法则得:3000arcsin lim x x x x xx →→→-== )11(13lim2222+---=→x x x x x 61-=.(2)这是一个∞⋅0型的不定式极限, 用恒等变形xxx x 1ln ln =将它转化 为∞∞型不定式极限, 并应用洛必达法则得到 x x x ln lim 0+→0)(lim 11lim1ln lim 0200=-=-==+++→→→x xx x x x x x . (3)这是个0∞型不定式极限.类似地先求其对数的极限(∞∞型):(+ln limlim1ln x x x xx→∞→+∞== 于是有(1ln lim xx x →+∞=e .注1 要注意条件,也即是说,在没有化为0,0∞∞时不可求导.注2 应用洛必达法则,要分别的求分子、分母的导数,而不是求整个分式的导数.注3 要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会引起错误.8.利用泰勒展开式泰勒展开式[]9:若()f x 在0x =点有直到1n +阶连续导数,那么,,()2(0)(0)()(0)(0)...()2!n nn f f f x f f x x x o x n =+++++,对于求某些不定式的极限来说,应用泰勒公式比使用洛必达法则更为方便,下列为常用的展开式:(1)21()2!!nxn x x e x o x n =+++++ (2) 352112sin (1)()3!5!(21)!n n n x x x x x o x n --=-+++-+-(3)24221cos 1(1)()2!4!(2)!nnn x x x x o x n +=-+++-+(4)21ln(1)(1)()2nn n x x x x o x n -+=-++-+ (5)2(1)(1)(1)(1)1()2!!nn n x x x x o x n ααααααα---++=+++++(6)211x x ()1n n x o x x=+++++-上述展开式中的符号)(n x o 都有:0)(lim 0=→n n x xx o 例13[]1 计算 2240cos limx x x e x -→- .解 利用泰勒公式求解 245cos 1()224x x x o x =-++22521()28x x xeo x -=-++2452cos ()12x x x e o x --=-+ 因而求得2452440010()cos 112limlim 12x x x x x x e x x -→→-+-==-.9.利用拉格朗日中值定理定理12[]1 若函数f 满足如下条件: (1)f 在闭区间上连续;(2)f 在(,)a b 内可导;则在(,)a b 内至少存在一点ξ,使得'()()().f b f a f b aξ-=-此式变形可为:)10( ))(()()('<<-+=--θθa b a f ab a f b f例14[]10 求x x e e xx x sin lim sin 0--→.解 令x e x f =)( 对它应用中值定理得sin '()(sin )(sin )(sin (sin )) (01).x x e e f x f x x x f x x x θθ-=-=-+-<< 即sin '(sin (sin )) (01).sin x xe ef x x x x xθθ-=+-<<-xe xf =)(' 连续, ''0lim (sin (sin ))(0) 1.x f x x x f θ→∴+-==从而有 sin 0lim1.sin x xx e e x x →-=-结论求解函数极限时,不同的函数类型所采用的技巧是各不相同的.对同一题也可能有多种求法,有难有易,有时甚至需要结合上述各种方法,所以我们必须要细心分析仔细甄选,选择出适当的方法.这样不仅准确率更高,而且会省去许多不必要的麻烦,起到事半功倍的效果.这就要求我们要吃透其精髓,明了其中的道理,体会出做题的窍门.达到这样的境界非一日之功,必须要多做题善于总结,日积月累,定会熟能生巧,在做题时才可能得心应手.从上述的介绍中可以看出求极限的方法不拘一格,我们应具体问题具体分析,不能机械地用某种方法,对具体题目要具体分析,有时解题时可多种方法相结合,要学会灵活运用.参考文献:[1] 华东师范大学数学系. 数学分析[M].第三版. 北京: 高等教育出版社, 2001.[2] 彭辉. 高等数学辅导[M].北京: 高等教育出版社, 2003.[3] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 高等教育出版社, 1995.[4] 丁家泰. 微积分解题方法[M]. 北京: 北京师范大学出版社, 1981.[5] 刘三阳. 高等数学典型题解[M]. 西安: 西北工业大学出版社, 2003.[6] 吉米多维奇. 数学分析习题集解题[M]. 济南: 山东科学技术出版社, 1999.[7] 钱志良. 谈极限的求法[J]. 常州信息职业技术学院学报,2003, 4(17):24-26.[8] 张敏捷. 函数极限的几种特殊求法[J]. 黄石理工学院学报, 2008, 4(24):56-58.[9] 程鹏, 张洪瑞, 李占现. 求函数极限的方法[J]. 河南科技学院学报, 2008,9(36):133-134.[10] Rudin W. Principle of Mathematical Analysis[M]. New York: John Pearson Edution, 1990.致谢在本次论文的撰写中,我得到了崇金凤老师的精心指导,不管是从开始定方向还是在查资料准备的过程中,一直都耐心地给予我指导和意见,使我在总结学业及撰写论文方面都有了较大提高;同时也显示了老师高度的敬业精神和责任感.在此,我对崇金凤教授表示诚挚的感谢以及真心的祝福.四年大学生活即将结束,回顾几年的历程,老师们给了我们很多指导和帮助。
极限的数学定义
极限是数学中一个重要的概念,用于描述函数或数列在某点无限接近于某个特定值的情况。
对于函数来说,极限可以用以下符号表示:lim f(x) = L,其中x趋近于a时,函数f(x)趋近于L。
这意味着当x值无限接近于a时,函数f(x)的值无限接近于L。
对于数列来说,极限可以用以下符号表示:lim an = L,其中n 趋近于无穷大时,数列an趋近于L。
这意味着当数列中的项无限增加时,数列的值无限接近于L。
极限的数学定义可以通过ε-δ语言进行精确描述。
对于函数来说,如果对于任意给定的ε>0,存在一个δ>0,使得当|x-a|<δ时,有|f(x)-L|<ε成立,则称函数f(x)在点a处的极限为L。
对于数列来说,如果对于任意给定的ε>0,存在正整数N,使得当n>N时,有|an-L|<ε成立,则称数列an的极限为L。
极限的概念在微积分、数学分析等数学领域中扮演着重要的角色,是许多数学理论和方法的基础。
函数极限的综合分析与理解数学不仅仅是工具,更是一种能力。
一些数学的方法被其它学科广泛地运用。
例如,经济学屮的边际分析、弹性分析等方法。
两数极限是高等数学屮的一•个重要问题。
极限可以与很多的数学问题相联系。
例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。
有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。
其ri的在于归纳和总结解决两数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。
局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。
一、函数极限的定义和基本性质函数极限可以分成X-九o, X-8两类,而运用6-8定义更多的见诸于已知极限值的证明题屮。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
以的极限为例,/(x)在点勺以4极限的定义是:0£>0,日/>0,使当O<|x-x o|<J吋,有\f(x)-A\<^A为常数).问题的关键在于找到符合定义要求的在这一过程屮会用到一些不等式技巧,例如放缩法等。
1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。
详见附例1。
函数极限性质的合理运用。
常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明Tf0/(•¥)在兀0处的极限不存在。
即如果/(X J T A, B(刃-»oo,£和无),则/(x)在如处的极限不存在。
运用函数极限的性质可以方便地求出一些简单函数的极限值。
例如对于有理分式/&)=巴¥ (P(x),Q(x)均为多项式,0(兀)工0)。
设P(x)的次数为〃,0(兀)的次数为加,当X—>oc时,若几< m,则/(%)—> 0 ;若mn ,则f(x)—> P(x)与0(兀)的最高次项系数之比;若n > m ,贝I」/(x)->oo 。
极限的概念和计算方法极限是微积分中的核心概念之一,它可以描述一个函数在某一点附近的行为特征。
本文将介绍极限的基本概念,并探讨一些常见的计算方法。
一、极限的概念在数学中,极限可以理解为一个函数在某一点趋于某个值(通常为无穷大或无穷小)。
为了准确定义极限,我们引入以下定义:设函数f(x)在x=a的某个去心邻域内有定义,如果对于任意给定的正数ε,总存在另一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋于a时的极限为L,记作:lim(x→a) f(x) = L这个定义可以形象地理解为:当自变量x足够靠近a时,函数f(x)的取值趋近于L。
二、极限的计算方法1. 代入法最简单的计算极限的方法就是利用代入法。
当函数在某一点a的确有定义时,我们可以直接将a带入表达式中计算函数的值。
例如,要计算函数f(x)=2x^2+3x-1在x=2处的极限,我们可以代入x=2,得到:f(2) = 2(2)^2 +3(2)-1 = 15因此,lim(x→2) f(x) = 15。
2. 分解因式法有时候我们可以通过分解因式的方法来简化极限的计算。
例如,要计算函数f(x)=(x^2-4)/(x-2),我们可以将分子因式分解得到:f(x) = (x+2)(x-2)/(x-2)若x≠2,则可以化简为:f(x) = (x+2)因此,lim(x→2) f(x) = 4。
3. 极限的性质极限满足一些基本的性质,利用这些性质可以简化计算过程。
以下是一些常见的性质:a) 常数性质:lim(x→a) c = c,其中c为常数。
b) 乘法性质:lim(x→a) cf(x) = c·lim(x→a) f(x),其中c为常数。
c) 和差性质:lim(x→a) [f(x)±g(x)] = lim(x→a) f(x) ± lim(x→a)g(x)。
d) 乘积性质:lim(x→a) [f(x)·g(x)] = lim(x→a) f(x) · lim(x→a)g(x)。
数列极限和函数极限极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌握极限理论,应用极限方法是继续学习数学分析的关键.本文将主要阐述极限的概念、性质、判别方法等问题.1.极限定义1.1 数列极限定义设有数列{}n a 与常数A ,如果对于任意给定的正数ε(不论它有多么小),总存在正整数N ,使得当n N >时,不等式n a A ε-< 都成立,那么就称常数A 是数列{}n a 的极限,或者称数列{}n a 收敛于A ,记作lim n n a A →∞=.读作“当趋n 于无穷大时,n a 的极限等于A 或n a 趋于A ”.数列极限存在,称数列{}n a 为收敛数列,否则称为发散数列.关于数列极限的N ε-定义,着重注意以下几点:(1)ε的任意性: 定义中正数的ε作用在于衡量数列通项n a 与定数的a 接近程度越ε小,表示接近的越好.而正数可ε以任意的小,说明n a 与可a 以接近到任何程度,然而,尽管ε有其任意性,但一经给出,就暂时的被确定下来,以便依靠它来求出N .(2)N 的相应性: 一般说,N 随的ε变小而变大,由此常把N 写作()N ε,来强调N 是依赖与的ε,但这并不意味着N 是由ε所唯一决定的,重要的是N 的存在性,而不在于它值得大小.另外,定义中n N >的也可以改写成n N ≥.(3)几何意义:对于任何一个以A 为中心,ε为半径的开区间(),A A εε-+,总可以在数列{}n a 中找到某一项N a ,使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有{}n a 的有限项(N 项).数列是定义在自然数集上的函数,当自变量从小到大依次取自然数时,便得到相应的一系列函数值,其解析表达式为()n a f n =;我们把数列中的n 用x 来替换后就得到了一个函数()f x ,数列和函数的区别在于数列中的点是离散的,而函数是连续的,那么类似的我们也有函数极限的定义. 1.2 函数极限定义1.2.1 x →+∞时函数的极限:设函数()f x 为[),a +∞上的函数,A 为定数,若对任给的0ε>,总存在着正数()M a ≥,使得当x M >时有()f x A ε-<,则称函数()f x 当x 趋于+∞时以A 为极限,记作()lim x f x A →+∞=.即有()lim 0,0,,x f x A M x M ε→+∞=⇔∀>∃>∀>有()f x A ε-<.对应的,我们也有()()lim ,lim x x f x A f x A →∞→-∞==的相应的M ε语言成立.对于函数极限的M ε定义着重注意以下几点:(1)在定义中正数M 的作用与数列极限定义中的N 类似,表明x 充分大的程度;但这里所考虑的是比M 大的所有实数x ,而不仅仅是正整数n .(2)当x →+∞时,函数()f x 以A 为极限意味着: A 的任意小邻域内必含有()f x 在+∞的某邻域内的全部函数值.(3)几何意义是:对任给0ε>的,在坐标平面上,平行于x 轴的两条直线y A ε=+与y A ε=-,围成以直线y A =为中心线,宽2ε为的带形区域;定义中的“当x M >时,有()f x A ε-<”表示:在直线x M =的右方,曲线()y f x =全部落在这个带形区域之内.1.2.2 0x x →时函数的极限:设函数()f x 在点0x 的某一去心邻域()'0;Ux δ︒内有定义,A 为定数,如果对于任意给定的正数ε(无论它多么小),总存在正数()'δδ<,使得当00x x δ<-<时,有()f x A ε-<,则常数A 为函数()f x 在0x x →时的极限,记作()0lim x x f x A →=.即()000lim 0,0,:,x x f x A x x x x εδδδ→=⇔∀>∃>∀-<<+有()f x A ε-<.对应的,我们也有()()0lim ,lim x x x x f x A f x A +-→→==的相应的εδ语言成立.对于函数极限的εδ定义着重注意以下几点:(1)定义中的正数δ,相当于数列极限N ε定义中的N ,它依赖于ε,但也不是由ε所唯一确定的,一般来说, ε愈小, δ也相应地要小一些,而且把δ取得更小些也无妨. (2)定义中只要求函数在的某一空心邻域内有定义,而一般不考虑在点处的函数值是否有意义,这是因为,对于函数极限我们所研究的是当x 趋于0x 过程中函数值的变化趋势.(3)定义中的不等式00x x δ<-<等价于()0;x U x δ∈,而不等式()f x A ε-<等价于()();f x U A ε∈.于是,εδ定义又可写成:任给0ε>,存在0δ>,使得一切()0;x U x δ∈有()();f x U A ε∈.或更简单的表为:任给0ε>,存在0δ>,使得()()()0;;f Ux U A δε⊂.(4)几何意义是:将极限定义中的四段话用几何语言表述为对任给0ε>的,在坐标平面上画一条以直线y A =为中心线,宽2ε为的横带,则必存在以直线0x x =为中心线、宽为2δ的数带,使函数()y f x =的图像在该数带中的部分全部落在横带内,但点()()0,x f x 可能例外(或无意义).2.极限性质2.1 数列极限的性质收敛数列有如下性质:(1)极限唯一性:若数列{}n a 收敛,则它只有一个极限. (2)若数列{}n a 收敛,则{}n a 为有界数列.(3)若数列{}n a 有极限,则其任一子列{}n a 也有极限.(4)保号性,即若()lim 00n n a a →∞=><,则对任何()()()''0,,0a a a a ∈∈,存在正整数1N ,n 1N 时,()''n n a a a a ><.(5)保不等式性:即若{}n a 与{}n b 均为收敛数列, 若存在正整数1N ,使得当n1N 时有n n a b ,则lim lim n n n n a b →∞→∞≤.(6)数列极限的基本公式(四则运算) 设lim ,lim n n n n x y →∞→∞存在,则()()()()lim lim lim lim lim lim lim lim lim 0lim lim lim n n n nn n n n n n nn n n nn n n n n nn n n n n n n n x y x y x y x y x x y y y x y x y →∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞±=±⋅=⋅=≠≤≤2.2函数极限性质(1)极限唯一性;若极限()0lim x x f x →存在,则此极限是唯一的.(2)局部有界性若()0lim x x f x →存在,则()f x 在0x 的某空心邻域()U x ︒内是有界的,当0x 趋于无穷大时,亦成立. (3)局部保号性若()()0lim 00x x f x A →=><,则对任何正数()r A A <<-,存在()0U x ︒使得对一切()0x U x ︒∈有()()()00f x r f x r >><<,当趋于无穷大时,亦成立.(4)保不等式性若()0lim x x f x A →=,()0lim x x g x B →=,且在某邻域()'0;Ux δ内有()()f x g x ≤,则()()0lim lim x x x x f x g x →→≤.(5)函数极限的基本公式(四则运算)设()()lim ,lim x ax af xg x →→存在,则()()()()()()()()()()()()()()()()lim lim lim lim lim lim lim lim lim 0lim x a x ax ax ax ax ax a x a x ax af xg x f x g x f x g x f x g x f x f x g x g x g x →→→→→→→→→→±=±⋅=⋅=≠通过以上对数列极限与函数极限的介绍,可以知道数列极限与函数极限的本质相同,性质一致.3.极限的判别法3.1 数列极限的判别法(1)单调有界定理:单调有界数列必有极限.证明:不妨设{}n a 为有上界的递增数列.由确界原理,数列{}n a 有上确界,记{}sup n a a =.下面证明a 就是{}n a 的极限.事实上,任给0ε>,按上确界的定义,存在数列{}n a 中某一项N a ,使得N a a ε-<.又由{}n a 的递增性,当n N >时有N n a a a ε-<≤。
第三章 函数极限§1 函数极限的概念引言在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”.二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例.通过数列极限的学习.应有一种基本的观念:“极限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”.例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势.我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即:()n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =.研究数列{}n a 的极限,即是研究当自变量n →+∞时,函数()f n 变化趋势.此处函数()f n 的自变量n 只能取正整数!因此自变量的可能变化趋势只有一种,即n →+∞.但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢?为此,考虑下列函数:1,0;()0,0.x f x x ≠⎧=⎨=⎩类似于数列,可考虑自变量x →+∞时,()f x 的变化趋势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势,由此可见,函数的极限较之数列的极限要复杂得多,其根源在于自变量性质的变化.但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同.而在各类极限的性质、运算、证明方法上都类似于数列的极限.下面,我们就依次讨论这些极限.一、x →+∞时函数的极限1.引言设函数定义在[,)a +∞上,类似于数列情形,我们研究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A.这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质.例如 1(),f x x x=无限增大时,()f x 无限地接近于0;(),g x arctgx x =无限增大时,()f x 无限地接近于2π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近.正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势.我们把象()f x ,()g x 这样当x →+∞时,对应函数值无限地接近于某个定数A的函数称为“当x →+∞时有极限A”.[问题]如何给出它的精确定义呢? 类似于数列,当x →+∞时函数极限的精确定义如下. 2. x →+∞时函数极限的定义定义1 设f 为定义在[,)a +∞上的函数,A为实数.若对任给的0ε>,存在正数M()a ≥,使得当x M >时有 |()|f x A ε-<, 则称函数f 当x →+∞时以A为极限.记作lim ()x f x A →+∞=或()()f x A x →→+∞.3.几点注记 (1)定义1中作用ε与数列极限中ε作用相同,衡量()f x 与A的接近程度,正数M的作用与数列极限定义中N相类似,表明x 充分大的程度;但这里所考虑的是比M大的所有实数x ,而不仅仅是正整数n . (2) lim ()x f x A →+∞=的邻域描述:,(),U ε∀∃+∞当()x U ∈+∞时,()(;).f x U A ε∈(3)lim ()x f x A →+∞=的几何意义:对ε∀,就有y A ε=+和y A ε=-两条直线,形成以A为中心线,以2ε为宽的带形区域.“当x M >时有|()|f x A ε-<”表示:在直线x M =的右方,曲线()y f x =全部落在这个带形区域内.如果ε给得小一点,即带形区域更窄一点,那么直线x M =一般往右移;但无论带形区域如何窄,总存在正数M,使得曲线()y f x =在x M =的右边的全部落在这个更窄的带形区域内. (4)现记f 为定义在()U -∞或()U ∞上的函数,当x →-∞或x →∞时,若函数值()f x 能无限地接近于常数A,则称f 当x →-∞或x →∞时时以A为极限,分别记作, lim ()x f x A →-∞=或()()f x A x →→-∞,lim ()x f x A →∞=或()()f x A x →→∞.这两种函数极限的精确定义与定义1相仿,简写如下:lim ()x f x A →-∞=0,0,M ε⇔∀>∃>当x M <-时,|()|f x A ε-<,lim ()x f x A →∞=0,0,M ε⇔∀>∃>当||x M >时,|()|f x A ε-<.(5)推论:设()f x 为定义在()U ∞上的函数,则lim ()x f x A →∞=⇔lim ()lim ()x x f x f x A →+∞→-∞==.4.利用lim ()x f x →+∞=A的定义验证极限等式举例例1 证明 1lim0x x→∞=. 例2 证明 1)lim 2x arctgx π→-∞=-;2)lim 2x arctgx π→+∞=.二、0x x →时函数的极限1.引言上节讨论的函数f 当x →+∞时的极限,是假定f 为定义在[,)a +∞上的函数,这事实上是()U +∞,即f 为定义在()U +∞上,考虑x →+∞时()f x 是否趋于某个定数A.本节假定f 为定义在点0x 的某个空心邻域()00U x 内的函数,.现在讨论当00()x x x x →≠时,对应的函数值能否趋于某个定数A数列. 先看下面几个例子:例1 ()1(0)f x x =≠.(()f x 是定义在0(0)U 上的函数,当0x →时,()1f x →)例2 24()2x f x x -=-.(()f x 是定义在0(2)U 上的函数,当2x →时,()4f x →)例3 1()f x x=.(()f x 是定义在0(0)U 上的函数,当0x →时,()?f x →) 由上述例子可见,对有些函数,当00()x x x x →≠时,对应的函数值()f x 能趋于某个定数A;但对有些函数却无此性质.所以有必要来研究当00()x x x x →≠时,()f x 的变化趋势.我们称上述的第一类函数()f x 为当0x x →时以A为极限,记作0lim ()x x f x A →=.和数列极限的描述性说法一样,这是一种描述性的说法.不是严格的数学定义.那么如何给出这类函数极限的精确定义呢?作如下分析:“当自变量x 越来越接近于0x 时,函数值()f x 越来越接近于一个定数A”→只要x 充分接近0x ,函数值()f x 和A的相差就会相当小→欲使|()|f x A -相当小,只要x 充分接近0x 就可以了.即对0,0εδ∀>∃>,当00||x x δ<-<时,都有|()|f x A ε-<.此即0lim ()x x f x A →=.2.00()x x x x →≠时函数极限的εδ-定义 定义2 设函数()f x 在点0x 的某个空心邻域()00;Ux δ'内有定义,A为定数,若对任给的0,()0εδδ'∀>∃<>,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数f 当 x 趋于0x 时以A为极限(或称A为0x x →时()f x 的极限),记作0lim ()x x f x A →=或(0()()f x A x x →→.3.说明如何用εδ-定义来验证这种类型的函数极限 4. 函数极限的εδ-定义的几点说明:(1)|()|f x A ε-<是结论,00||x x δ<-<是条件,即由00||x x δ<-<推出.(2)ε是表示函数()f x 与A的接近程度的.为了说明函数()f x 在0x x →的过程中,能够任意地接近于A,ε必须是任意的.这即ε的第一个特性——任意性,即ε是变量;但ε一经给定之后,暂时就把ε看作是不变的了.以便通过ε寻找δ,使得当00||x x δ<-<时|()|f x A ε-<成立.这即ε的第二特性——暂时固定性.即在寻找δ的过程中ε是常量;另外,若ε是任意正数,则2,2εε 均为任意正数,均可扮演ε的角色.也即ε的第三个特性——多值性;(|()|f x A ε-<|()|f x A ε⇔-≤) (3) δ是表示x 与0x 的接近程度,它相当于数列极限的N ε-定义中的N.它的第一个特性是相应性.即对给定的0ε>,都有一个δ与之对应,所以δ是依赖于ε而适当选取的,为此记之为0(;)x δε;一般说来,ε越小,δ越小.但是,定义中是要求由00||x x δ<-<推出|()|f x A ε-<即可,故若δ满足此要求,则,23δδ等等比δ还小的正数均可满足要求,因此δ不是唯一的.这即δ的第二个特性——多值性.(4)在定义中,只要求函数f 在0x 的某空心邻域内有定义,而一般不要求f 在0x 处的函数值是否存在,或者取什么样的值.这是因为,对于函数极限我们所研究的是当x 趋于0x 的过程中函数的变化趋势,与函数在该处的函数值无关.所以可以不考虑f 在点a 的函数值是否存在,或取何值,因而限定“00||x x <-”.(5)定义中的不等式00||x x δ<-<00(,)x U x δ⇔∈;|()|()(;)f x A f x U A εε-<⇔∈.从而定义2⇔0,0εδ∀>∃>,当00(,)x U x δ∈时,都有()(;)f x U Aε∈⇔0,0εδ∀>∃>,使得()00(,)(;)f U x U A δε⊂. (6)εδ-定义的几何意义.例1.设24()2x f x x -=-,证明2lim ()4x f x →=.例2.证明 1)00lim sin sin x x x x →=;2)00lim cos cos x x x x →=.例3.证明 22112lim 213x x x x →-=--.例4.证明 0x x →=0(||1)x <.练习:1)证明 311lim31x x x →-=-; 2)证明 65lim 6x x x→+∞+=. 三、单侧极限1.引言有些函数在其定义域上某些点左侧与右侧的解析式不同,如21,0(),0x x f x x x ⎧≥=⎨<⎩或函数在某些点仅在其一侧有定义,如2()0f x x ≥.这时,如何讨论这类函数在上述各点处的极限呢?此时,不能再用前面的定义(讨论方法),而要从这些点的某一侧来讨论.如讨论1()f x 在0x →时的极限.要在0x =的左右两侧分别讨论.即当0x >而趋于0时,应按21()f x x =来考察函数值的变化趋势;当0x <而趋于0时,应按1()f x x =来考察函数值的变化趋势;而对2()f x ,只能在点0x =的右侧,即0x >而趋于0时来考察.为此,引进“单侧极限”的概念. 2.单侧极限的定义定义3 设函数f 在00(;)U x δ+'内有定义,A为定数.若对任给的0,()0εδδ'∀>∃<>,使得当00x x x δ<<+时有|()|f x A ε-<, 则称数A为函数f 当x 趋于0x 时的右极限,记作lim ()x x f x A +→=或0()()f x A x x +→→或0(0)f x A +=.类似可给出左极限定义(00(;)U x δ-,00x x x δ-<<,0lim ()x x f x A -→=或0()()f x A x x -→→或0(0)f x A -=).注:右极限与左极限统称为单侧极限. 3.例子例5 讨论sgn x 在0x =的左、右极限.例6 1±处的单侧极限.4.函数极限0lim ()x x f x →与00lim (),lim ()x x x x f x f x +-→→的关系.定理3.1 0lim ()lim ()lim ()x x x x x x f x A f x f x A +-→→→=⇔==.注:1)利用此可验证函数极限的存在,如由定理3.1知:10lim ()0x f x →=.还可说明某些函数极限不存在,如由例2知0lim sgn x x →不存在.2)0(0)f x +,0(0)f x -,0()f x 可能毫无关系,如例2.作业:P47. 1(3), (5), 3, 7。
第三章 函数极限 1 函数极限概念一、x 趋于∞时的函数极限定义1:设f 为定义在[a,+∞)上的函数,A 为定数。
若对任给的ε>0,存在正数M(≥a),使得当x>M 时,有|f(x)-A|<ε,则称函数f 当x 趋于+∞时以A 为极限, 记作:lim x→+∞f (x )=A 或f(x)→A(x →+∞).定义1的几何意义如右上图:正数ε越小时,一般x=M 越大;f(x)的图象右边落在x=M 与y=A+ε和y=A-ε围成的带形区域里。
设f 为定义在U(-∞)或U(∞)上的函数,A 为定数。
若对任给的ε>0,存在正数M(≥a),使得当x<-M 或|x|>M 时,有|f(x)-A|<ε,则称函数f 当x 趋于-∞或∞时以A 为极限,记作:lim x→−∞f (x )=A 或f(x)→A(x →-∞);lim x→∞f (x )=A 或f(x)→A(x →∞).lim x→∞f (x )=A lim x→+∞f (x )=lim x→−∞f (x )=A.例1:证明limx→∞1x=0.证:任给ε>0,取M =1ε,则当|x|>M 时,有|1x −0|=1|x|<1M =ε,∴lim x→∞1x=0.例2:证明(1)lim x→−∞arctan x =−π2;(2)lim x→+∞arctan x =π2.证:(1)任给ε>0,要使|arctan x −(−π2)|<ε,即-ε−π2<arctan x<ε−π2, ∵arctan x ≥−π2>-ε−π2,∴只须使arctan x<ε−π2,即x<tan (ε−π2)= -tan (π2−ε), ∴对任给正数ε<π2,只要取M= tan (π2−ε),则当x<-M 时, 便有|arctan x −(−π2)|<ε,∴lim x→−∞arctan x =−π2.(2)任给ε>0,要使|arctan x −π2|<ε,即π2−ε<arctan x<ε+π2, ∵arctan x ≤π2<ε+π2,∴只须使arctan x>π2−ε,即x>tan (π2−ε), ∴对任给正数ε<π2,只要取M= tan (π2−ε),则当x>M 时, 便有|arctan x −π2|<ε,∴lim x→+∞arctan x =π2.注:∵lim x→−∞arctan x =−π2≠π2=lim x→+∞arctan x ,∴lim x→∞arctan x 不存在。
高中数学教案函数的极限高中数学教案:函数的极限一、引言在高中数学中,函数的极限是一个重要的概念。
本教案将介绍函数的极限的概念和性质,以及如何计算函数的极限。
二、函数的极限的定义函数的极限是指当自变量趋于某个特定值时,函数的取值会趋于某个确定的值或者无穷大。
我们用符号来表示函数的极限,如下所示:lim(x→a) f(x) = L其中,lim表示极限的运算符,x→a表示自变量x趋于a,f(x)表示函数f关于自变量x的取值,L表示极限的结果。
三、函数的极限的性质1. 唯一性:函数的极限在给定条件下是唯一的。
即同一个函数在同一个点的极限结果是唯一确定的。
2. 局部性:函数的极限是局部的,即只关注自变量在某个特定点附近的取值。
3. 有界性:如果函数在某个点的极限存在,则函数在该点附近是有界的。
4. 保号性:如果函数在某个点的极限存在且大于(或小于)0,则函数在该点附近保持正(或负)号不变。
四、计算函数的极限的方法1. 代入法:当函数在某个点的极限存在且可以直接代入计算时,可以通过代入法求出极限的结果。
例如,对于函数f(x) = 2x + 1,要求lim(x→2) f(x)的值,我们只需要将x的值代入函数中即可得到结果。
2. 分解因式法:当函数在某个点的极限存在但无法直接代入计算时,可以通过分解因式的方法进行计算。
例如,对于函数f(x) = (x^2 - 1) / (x - 1),要求lim(x→1) f(x)的值,我们可以将函数分解为f(x) = (x + 1)(x - 1) / (x - 1) = x + 1,然后将x的值代入函数中即可得到结果。
3. 常用极限公式法:当函数满足一定条件时,可以通过常用的极限公式来进行计算。
例如,对于函数f(x) = sin(x) / x,要求lim(x→0) f(x)的值,我们可以使用常用极限公式lim(x→0) sin(x) / x = 1,直接得出结果。
五、实例分析1. 求lim(x→2) (2x + 1)的值,根据代入法,将x的值代入函数中,可得lim(x→2) (2x + 1) = 2(2) + 1 = 5。
取极限高中数学极限是数学分析中一个重要的概念,用于描述函数在无限接近某一点时的表现。
极限有许多不同的定义方式,包括极限的$\epsilon$-$\delta$定义、极限的序列定义、极限的级数定义等。
在本文中,我们将介绍极限的一般定义以及常见的取极限方法。
一、极限的定义在数学中,函数$f(x)$在$x_0$处的极限是一种特殊的局部性质,它描述了当$x$无限接近$x_0$时,$f(x)$的取值所趋近的值,这个值可能存在,也可能不存在。
数学符号$lim_{x \to x_0}f(x)=L$表示当$x$无限接近$x_0$时,$f(x)$的取值趋近$L$,其中$L$是实数集中的一个数。
我们可以将$x$无限接近$x_0$的过程看作是一种趋近过程,这个过程可以是从左侧或右侧进行的,或者是整个区间的情况。
这三种情况分别叫做$x$趋于$x_0$的左极限、右极限和极限。
二、常见的取极限方法1.直接代入法直接代入法是一种常见的取极限方法,它适用于函数在某一点处存在的情况。
直接代入法的核心思想是将$x_0$代入函数$f(x)$,计算出函数在$x_0$处的值。
如果$f(x)$在$x_0$处存在,那么函数在$x_0$处的极限就是$f(x_0)$。
例如,考虑函数$f(x)=x^2-3x+2$在$x=1$处的极限。
直接代入$x=1$可以得到$f(1)=1-3+2=0$。
因此,$lim_{x \to 1}f(x)=0$。
2.分子分母同时除以$x$的最高次幂当函数$f(x)$的分母取到$x$的最高次幂,而分子中不含有$x$的最高次幂时,可以采用分子分母同时除以$x$的最高次幂的方式将其简化。
这种方法常用于求函数在无穷远点处的极限。
例如,考虑函数$f(x)=\dfrac{x^2-1}{x^3+2x^2-x-2}$在$x \to +\infty$时的极限。
将分子和分母同时除以$x^3$,可以得到$f(x)=\dfrac{1-\dfrac{1}{x^2}}{1+\dfrac{2}{x}-\dfrac{1}{x^2}-\dfrac{2}{x^3}}$。
第三章函数极限§1函数极限的概念同学们好,这一讲我们来学习函数极限的概念在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”。
二者的关系是“特殊”与“一般”的关系;数列极限是函数极限的特例。
通过数列极限的学习。
我们应该有一种基本的观念:“极限是研究变量的变化趋势的”或者可以总结成两句话:第一句话:随着自变量变化,第二句话:相应的因变量的变化趋势。
例如,数列an的极限是研究随着n越来越无限增大,an的变化趋势。
函数的极限较之数列的极限要复杂得多,其根源在于自变量变化相对比较复杂,可以有x 趋于正无穷,x趋于负无穷,x趋于无穷,x趋于x0,x从右侧趋于x0,x从左侧趋于x0。
下面,我们就依次讨论这些极限。
一、x趋于无穷时函数的极限设函数f 定义在a到正无穷上,类似于数列极限,我们研究当自变量x趋于正无穷时,即随着x越来越无限增大时,相应的函数值能否与某个固定的常数A越来越无限接近。
例如:f(x)等于x分之一,当x无限增大时,f(x)无限地接近于0;例如:g(x)等于arctanx,当x无限增大时,f(x)无限地接近于二分之pi;例如:h(x)等于x,当x无限增大时,f(x)与任何实数都不能无限地接近。
正因为如此,所以才有必要考虑x趋于正无穷时,f(x)的变化趋势。
我们把像f(x),g(x)这样,当x趋于正无穷时,对应函数值无限地接近于某个固定的常数A,称为“函数f(x) 当x趋于正无穷时有极限A”。
[问题] 如何给出它的精确定义呢?类似于数列,当x趋于正无穷时,函数极限的精确定义如下:1. x趋于正无穷时函数极限的定义定义1设f(x)为定义在a到正无穷上的函数,A为实数。
若对任给的正数epsilon,存在正数M(大于等于a),使得当x大于M时,有绝对值f(x)减A小于epsilon, 则称函数f(x)当x 趋于正无穷时以A为极限。
记作lim x趋于正无穷f(x)=A或f(x)趋于A(当x趋于正无穷).极限不存在的定义如同数列极限一样,写出否命题即可。
函数极限的概念
在数学中,函数极限是指当自变量趋近于某个值时,函数对应的因变量的值趋近于某个值。
这个值可以是一个常数、正无穷大、负无穷大或不存在。
如果函数在自变量趋近于某个值时,对应的因变量的值无限接近于一个常数,那么这个常数就是该函数在该点的极限。
数学中用符号“lim”表示函数极限,例如lim(x->a) f(x) 表示当x趋近于a时,f(x)的极限。
函数极限的概念是微积分和数学分析中的基本概念,它在求导、积分、级数等数学问题中都有重要应用。
数学极限的定义
数学极限的定义是指当自变量无限接近某一特定值时,函数值趋向于某一确定的值。
具体来说,对于函数f(x),当x无限接近某一实数a时,若存在实数L,使得对于任意一个正实数ε,都存在一个正实数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,那么我们说函数f(x)在x趋近于a时的极限为L,记为lim(x→a)f(x)=L。
这里的ε和δ都是任意给定的正实数,可根据具体情况进行调整。
数学极限的定义是数学分析中的基础概念,它不仅在微积分中有广泛应用,而且在数学物理、数值计算、优化等领域也有着重要作用。
- 1 -。
定义证明函数极限函数极限是数学分析中一个重要的概念,用于描述函数在某一点附近的行为。
在数学中,我们常常需要研究函数在无穷接近某一点时的性质,而函数极限就提供了一种准确描述这种性质的方法。
我们来定义什么是函数极限。
给定一个实函数f(x),如果存在一个实数a,对于任意给定的正实数ε,都存在一个正实数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立,其中L为一个实数,那么我们就说函数f在x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
为了更好地理解和证明函数极限的定义,我们可以通过一些例子来说明。
首先考虑一个简单的函数f(x)=2x,我们来证明lim(x→1)f(x)=2。
根据函数极限的定义,我们需要证明对于任意给定的正实数ε,存在一个正实数δ,使得当0<|x-1|<δ时,有|f(x)-2|<ε成立。
首先假设ε>0是任意给定的正实数,我们可以选择δ=ε/2。
当0<|x-1|<δ时,即|x-1|<ε/2,我们有2|x-1|<2(ε/2)=ε。
又因为f(x)=2x,所以|f(x)-2|=|2x-2|=2|x-1|。
因此,当0<|x-1|<δ时,有|f(x)-2|=2|x-1|<ε成立,即lim(x→1)f(x)=2。
通过这个例子,我们可以看到如何利用函数极限的定义来证明一个函数在某一点的极限。
首先,我们需要根据给定的ε,选择一个合适的δ,使得当x在某一范围内时,函数值与极限值的差小于ε。
然后,我们通过对x与极限值的差的估计,找到一个与ε相关的不等式,进而确定合适的δ。
除了以上的直接证明法,我们还可以利用函数极限的性质来证明一些复杂的极限。
例如,我们可以利用函数极限的局部性质,将一个复杂的函数极限问题转化为一系列简单的函数极限问题,然后利用已知的函数极限的结果来推导出所求的极限。
函数极限也有一些基本的性质。