轴的设计、计算、校核
- 格式:doc
- 大小:186.00 KB
- 文档页数:7
机械设计中轴的强度设计与校核轴是在机械设施中的主要构成零件之一。
全部在机械设施上,用于作展转运动的传动零件,都要先把其装入于轴上才能够把运动和动力传达出去,与此同时,还要经过轴承和机架联接,因此就构成了一个以轴为基准的组合体—轴系零件。
因为在不一样的机器里,轴发挥的作用常常不一样。
而轴的构造主假如由以下的要素决定的:轴在整个设施中的安装地点和发挥的作用,轴上安装的全部零件的种类和大小,载荷的性质、大小、方向和详细散布状况,以及轴的加工流程等。
进行合理的轴的构造设计就要保证:轴上全部零件能够合理地部署,在合理的受力的状况下,轴能够进一步提升强度和刚度;轴和轴上零件要有比较固定的工作地点;轴上零件能够方便地进行装拆调整。
一般来说,在设计时,我们首当其冲的就是考虑轴的作用。
依据作用,为轴选择相应的资料,一般轴的毛坯主假如由圆钢、锻造或焊接获取,因为锻造质量难以保证轴有足够的强度和刚度,因此轴极少会采纳铸件作毛坯。
轴的构成部分有三大块。
轴上被支承,安装轴承的部分叫轴颈;支承轴上零件,安装轮毂的部分称为轴头;联络轴头和轴颈的部分称为轴身。
轴颈上安装转动轴承时,直径尺寸必定要依据转动轴承的国标尺寸来选择,尺寸公差和表面粗拙度必定要依据国家规定的标准来选用;轴头的尺寸必定要联合轮毂的尺寸来做出选择,轴身尺寸确准时要尽可能地保证轴颈与轴头的过渡合理,特别是要根绝截面尺寸变化过大,与此同时,还要有较好的工艺性。
假如在设计时,我们从装置能否简单这一角度来考虑:则合理的设计非定位轴肩,使轴上不一样零件在安装时尽可能减少不用要的配合面;为了保证简单装置,轴端要设计成45°的倒角;在装键的轴段,要保证键槽凑近轴与轮毂先接触的直径变化处,以保证在安装时,零件上的键槽与轴上的键简单瞄准;采纳过盈配合时,考虑到装置的方便性,直径变化能够用于锥面过渡等。
2.轴的强度校核方法2.1 强度校核的定义:强度校核实质上就是对轴的资料或设施的力学性能做好检测工作,并改良轴的设计的一种方式,而且这类方式是不会损坏资料和设计性能的。
轴得设计、计算、校核以转轴为例,轴得强度计算得步骤为:一、轴得强度计算1、按扭转强度条件初步估算轴得直径机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。
这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。
根据扭转强度条件确定得最小直径为:(mm)式中:P为轴所传递得功率(KW)n为轴得转速(r/min)Ao为计算系数,查表3若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。
以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。
在轴得结构具体化之后进行以下计算。
2、按弯扭合成强度计算轴得直径l)绘出轴得结构图2)绘出轴得空间受力图3)绘出轴得水平面得弯矩图4)绘出轴得垂直面得弯矩图5)绘出轴得合成弯矩图6)绘出轴得扭矩图7)绘出轴得计算弯矩图8)按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值:a)扭切应力理论上为静应力时,取α=0、3。
b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。
c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。
9)校核危险断面得当量弯曲应力(计算应力):式中:W为抗扭截面摸量(mm3),查表4。
为对称循环变应力时轴得许用弯曲应力,查表1。
如计算应力超出许用值,应增大轴危险断面得直径。
如计算应力比许用值小很多,一般不改小轴得直径。
因为轴得直径还受结构因素得影响。
一般得转轴,强度计算到此为止。
对于重要得转轴还应按疲劳强度进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。
3轴的设计计算3.1轴的材料选择和最小直径估算3.1.1轴的材料选用45号钢,调质处理。
3.1.2高速轴直径和轴长的确定初算直径时,若最小直径段开于键槽,应考虑键槽对轴强度的影响,当该段截面上有一个键槽时,d增加5%~7%,两个键槽时,d增加10%~15%,由教材表12-2,高速轴,同时要考虑电动机的外伸直径d=48mm。
所以:高速轴:3.1.3低速轴直径和轴长的确定所以低速轴的轴长初步确定为3.2轴的强度校核(低速轴所受转矩大,且两轴的直径相差很小,只校核低速轴)(1)求齿轮上作用力的大小、方向齿轮上作用力的大小:(2)求轴承的支反力水平面上支力垂直面上支力(3)画弯矩图水平面上的弯矩垂直面上的弯矩合成弯矩(4)画转矩图(5)画当量弯矩图因单向回转,视转矩为脉动转矩,,已知,查表12-1可得,剖面C处的当量弯矩:(6)判断危险剖面并验算强度a)剖面C当量弯矩最大,而且直径与相邻段相差不大,故剖面C为危险面。
已知则b)轴7的剖面虽仅受弯矩,但其直径最小,则该剖面为危险面。
所以轴的强度足够。
4滚动轴承的选择与计算4.1滚动轴承的选择高速轴和低速轴的轴承段的直径分别为40mm,45mm,在轴的设计计算部分已经选用如下表所示深沟球轴承:轴号装轴承处的轴径轴承型号Ⅰ50mm 滚动轴承6210 GB/T276--94Ⅱ55mm 滚动轴承6211 GB/T276--944.2滚动轴承的校核由于低速轴的转矩大于高速轴,同时低速轴和高速轴的直径相差很小,所以只需校核低速轴的深沟球轴承。
4.2.1 水平面上的支反力:N 717..14752/F F F t2RB RA ===垂直面上的支反力: NF d F F NF d F F R a RB R a RA 994.810162/]81)2/[(894.375162/]81)2/[(222'222'=⨯+==⨯+-=轴承所承受的径向载荷NF F F N F F F RB RB R RA RA R 880.1683994.810717.1475838.1522894.375717.1475222'22222'21=+=+==+=+= 轴向外载荷N F A 417.1538=轴承的转速n=191r/min4.2.2求当量动载荷低速轴受轴向载荷1A A F F =,则,)(A R p YF XF f P +=由教材表14-13可得,减速器中等冲击取3.1=p f 查有关轴承手册可得。
轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52160~135148~125135~118118~107107~982、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
?? 1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。
轴上零件的定位、轴的分类各轴段直径和长度的确定轴结构设计和强度校核轴的结构设计是指确定轴的外形和尺寸。
这个设计的主要因素包括轴的安装位置、轴上安装的零件类型和数量、载荷性质和大小以及加工工艺等。
由于这些因素比较多,轴的结构形式没有标准,需要根据具体情况进行分析。
不过,轴的结构都应该满足准确的工作位置、便于装拆和调整以及良好的制造工艺性等要求。
在轴的结构设计中,需要考虑几个主要问题。
首先是拟定轴上零件的装配方案,其次是确定各轴段直径和长度,然后是轴上零件的定位,接着是提高轴的强度的常用措施,最后是轴的结构工艺性。
根据承受的载荷不同,轴可以分为转轴、心轴和传动轴。
其中,转轴既承受弯矩又承受扭矩,心轴仅承受弯矩,传动轴仅承受扭矩。
心轴根据工作时轴是否转动,又可分为转动心轴和固定心轴。
轴的材料主要是碳钢和合金钢。
碳钢比合金钢价廉,对应力集中的敏感性较低,因此在一般工作温度下采用碳钢制造尤为广泛。
45号钢是最常用的碳钢。
合金钢比碳钢具有更高的力学性能和更好的淬火性能,因此在传递大动力、要求减小尺寸与质量、提高轴颈的耐磨性以及处于高温或低温条件下工作的轴,常采用合金钢。
在选择钢的种类和决定钢的热处理方法时,应该根据强度与耐磨性而不是轴的弯曲或扭转刚度。
可以选择强度较低的钢材,然后通过增大轴的截面面积来提高轴的刚度。
各种热处理和表面强化处理对提高轴的抗疲劳强度都有显著的效果。
高强度铸铁和球墨铸铁具有良好的吸振性和耐磨性,可以用于制造外形复杂的轴。
下表列出了轴的常用材料以及它们的主要力学性能。
轴的定位是为了防止轴上零件在工作时出现沿轴向或周向的相对运动。
除了那些需要游动或空转的零件,其他轴上零件都需要进行必要的轴向和周向定位,以保证它们的正确工作位置。
轴上零件的轴向定位可以通过轴肩、套筒、圆螺母、轴端挡圈和轴承端盖等部件来实现。
轴肩分为定位轴肩和非定位轴肩两种。
虽然采用轴肩定位是最方便可靠的方法,但是它会使轴的直径加大并且轴肩处会引起应力集中。
轴的设计、计算、校核
以转轴为例,轴的强度计算的步骤为:
一、轴的强度计算
1、按扭转强度条件初步估算轴的直径
机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。
这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。
根据扭转强度条件确定的最小直径为:
(mm)式中:P为轴所传递的功率(KW)
n为轴的转速(r/min)
Ao为计算系数,查表3
若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。
以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。
在轴的结构具体化之后进行以下计算。
2、按弯扭合成强度计算轴的直径
l)绘出轴的结构图
2)绘出轴的空间受力图
3)绘出轴的水平面的弯矩图
4)绘出轴的垂直面的弯矩图
5)绘出轴的合成弯矩图
6)绘出轴的扭矩图
7)绘出轴的计算弯矩图
8)按第三强度理论计算当量弯矩:
式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值:
a)扭切应力理论上为静应力时,取α=。
b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=。
c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。
9)校核危险断面的当量弯曲应力(计算应力):
式中:W为抗扭截面摸量(mm3),查表4。
为对称循环变应力时轴的许用弯曲应力,查表1。
如计算应力超出许用值,应增大轴危险断面的直径。
如计算应力比许用值小很多,一般不改小轴的直径。
因为轴的直径还受结构因素的影响。
一般的转轴,强度计算到此为止。
对于重要的转轴还应按疲劳强度进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
二、按疲劳强度精确校核
按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度。
即建立轴在危险截面的安全系数的校核条件。
安全系数条件为:
式中:为计算安全系数;
、分别为受弯矩和扭矩作用时的安全系数;
、为对称循环应力时材料试件的弯曲和扭转疲劳极限;
、为弯曲和扭转时的有效应力集中系数,
为弯曲和扭转时的表面质量系数;
、为弯曲和扭转时的绝对尺寸系数;
、为弯曲和扭转时平均应力折合应力幅的等效系数;
、为弯曲和扭转的应力幅;
、为弯曲和扭转平均应力。
S为最小许用安全系数:
~用于材料均匀,载荷与应力计算精确时;
~用于材料不够均匀,载荷与应力计算精确度较低时;
~用于材料均匀性及载荷与应力计算精确度很低时或轴径>200mm时。
三、按静强度条件进行校核
静强度校核的目的在于评定轴对塑性变形的抵抗能力。
这对那些瞬时过载很大,或应力循环的不对称性较为严重的的轴是很有必要的。
轴的静强度是根据轴上作用的最大瞬时载荷来校核的。
静强度校核时的强度条件是:
式中:——危险截面静强度的计算安全系数;
——按屈服强度的设计安全系数;
=~,用于高塑性材料(≤)制成的钢轴;
=~,用于中等塑性材料(=~)制成的钢轴;
=~2,用于低塑性材料制成的钢轴;
=2~3,用于铸造轴;
——只考虑安全弯曲时的安全系数;
——只考虑安全扭转时的安全系数;
式中:、——材料的抗弯和抗扭屈服极限,MPa;其中=~;
Mmax、Tmax——轴的危险截面上所受的最大弯矩和最大扭矩,;
Famax——轴的危险截面上所受的最大轴向力,N;
A——轴的危险截面的面积,m;
W、W T——分别为危险截面的抗弯和抗扭截面系数,m。
四、轴的设计用表
淬火
回火
≤6056~62HRC64039030516060性均较高的轴
3Cr13调质≤100≥24183563539523075
用于腐蚀条件下的
轴
1Cr18Ni9Ti淬火
≤100
≤192
530
195
190115
45
用于高低温及腐蚀
条件下的轴
180110
100~200490
QT600-3190~270600370215185用于制造复杂外形
的轴QT800-2245~335800480290250
表2 零件倒角C与圆角半径R的推荐值
直径d>6~10>10~18>18~30>30~50>50~80>80~120>120~180 C或R
表3 轴常用几种材料的[]和A0值
轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52
A0160~135148~125135~118118~107107~98
表4 抗弯抗扭截面模量计算公式。