轴的设计计算和校核
- 格式:pptx
- 大小:5.44 MB
- 文档页数:67
机械设计中轴的强度设计与校核轴是在机械设施中的主要构成零件之一。
全部在机械设施上,用于作展转运动的传动零件,都要先把其装入于轴上才能够把运动和动力传达出去,与此同时,还要经过轴承和机架联接,因此就构成了一个以轴为基准的组合体—轴系零件。
因为在不一样的机器里,轴发挥的作用常常不一样。
而轴的构造主假如由以下的要素决定的:轴在整个设施中的安装地点和发挥的作用,轴上安装的全部零件的种类和大小,载荷的性质、大小、方向和详细散布状况,以及轴的加工流程等。
进行合理的轴的构造设计就要保证:轴上全部零件能够合理地部署,在合理的受力的状况下,轴能够进一步提升强度和刚度;轴和轴上零件要有比较固定的工作地点;轴上零件能够方便地进行装拆调整。
一般来说,在设计时,我们首当其冲的就是考虑轴的作用。
依据作用,为轴选择相应的资料,一般轴的毛坯主假如由圆钢、锻造或焊接获取,因为锻造质量难以保证轴有足够的强度和刚度,因此轴极少会采纳铸件作毛坯。
轴的构成部分有三大块。
轴上被支承,安装轴承的部分叫轴颈;支承轴上零件,安装轮毂的部分称为轴头;联络轴头和轴颈的部分称为轴身。
轴颈上安装转动轴承时,直径尺寸必定要依据转动轴承的国标尺寸来选择,尺寸公差和表面粗拙度必定要依据国家规定的标准来选用;轴头的尺寸必定要联合轮毂的尺寸来做出选择,轴身尺寸确准时要尽可能地保证轴颈与轴头的过渡合理,特别是要根绝截面尺寸变化过大,与此同时,还要有较好的工艺性。
假如在设计时,我们从装置能否简单这一角度来考虑:则合理的设计非定位轴肩,使轴上不一样零件在安装时尽可能减少不用要的配合面;为了保证简单装置,轴端要设计成45°的倒角;在装键的轴段,要保证键槽凑近轴与轮毂先接触的直径变化处,以保证在安装时,零件上的键槽与轴上的键简单瞄准;采纳过盈配合时,考虑到装置的方便性,直径变化能够用于锥面过渡等。
2.轴的强度校核方法2.1 强度校核的定义:强度校核实质上就是对轴的资料或设施的力学性能做好检测工作,并改良轴的设计的一种方式,而且这类方式是不会损坏资料和设计性能的。
轴的强度校核方法摘要轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。
轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。
其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。
本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。
校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
轴的强度校核方法可分为四种:1)按扭矩估算2)按弯矩估算3)按弯扭合成力矩近视计算4)精确计算(安全系数校核)关键词:安全系数;弯矩;扭矩目录第一章引言--------------------------------------- 11.1轴的特点---------------------------------------------1 1.2轴的种类---------------------------------------------1 1.3轴的设计重点-----------------------------------------15)轴的强度校核方法----------------------------42.1强度校核的定义-------------------------------------42.2轴的强度校核计算-----------------------------------42.3几种常用的计算方-----------------------------------52.3.1按扭转强度条件计算-------------------------------52.3.2按弯曲强度条件计算-------------------------------62.3.3按弯扭合成强度条件计算---------------------------72.3.4精确计算(安全系数校核计算)----------------------92.4 提高轴的疲劳强度和刚度的措施---------------------12 第三章总结------------------------------------------13参考文献--------------------------------------------14第一章引言1.1轴的特点:轴是组成机械的主要零件之一。
轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为:一、轴的强度计算1、按扭转强度条件初步估算轴的直径机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的;这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径;根据扭转强度条件确定的最小直径为:mm式中:P为轴所传递的功率KWn为轴的转速r/minAo为计算系数,若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%;以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计;在轴的结构具体化之后进行以下计算;2、按弯扭合成强度计算轴的直径l绘出轴的结构图2绘出轴的空间受力图3绘出轴的水平面的弯矩图4绘出轴的垂直面的弯矩图5绘出轴的合成弯矩图6绘出轴的扭矩图7绘出轴的计算弯矩图8按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值:a扭切应力理论上为静应力时,取α=;b考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=;c对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力;9校核危险断面的当量弯曲应力计算应力:式中:W为抗扭截面摸量mm3,;为对称循环变应力时轴的许用弯曲应力,;如计算应力超出许用值,应增大轴危险断面的直径;如计算应力比许用值小很多,一般不改小轴的直径;因为轴的直径还受结构因素的影响;一般的转轴,强度计算到此为止;对于重要的转轴还应按疲劳强度进行精确校核;此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形;二、按疲劳强度精确校核按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度;即建立轴在危险截面的安全系数的校核条件;安全系数条件为:式中:为计算安全系数;、分别为受弯矩和扭矩作用时的安全系数;、为对称循环应力时材料试件的弯曲和扭转疲劳极限;、为弯曲和扭转时的有效应力集中系数,为弯曲和扭转时的表面质量系数;、为弯曲和扭转时的绝对尺寸系数;、为弯曲和扭转时平均应力折合应力幅的等效系数;、为弯曲和扭转的应力幅;、为弯曲和扭转平均应力;S为最小许用安全系数:~用于材料均匀,载荷与应力计算精确时;~用于材料不够均匀,载荷与应力计算精确度较低时;~用于材料均匀性及载荷与应力计算精确度很低时或轴径>200mm时;三、按静强度条件进行校核静强度校核的目的在于评定轴对塑性变形的抵抗能力;这对那些瞬时过载很大,或应力循环的不对称性较为严重的的轴是很有必要的;轴的静强度是根据轴上作用的最大瞬时载荷来校核的;静强度校核时的强度条件是:式中:——危险截面静强度的计算安全系数;——按屈服强度的设计安全系数;=~,用于高塑性材料≤制成的钢轴;=~,用于中等塑性材料=~制成的钢轴;=~2,用于低塑性材料制成的钢轴;=2~3,用于铸造轴;——只考虑安全弯曲时的安全系数;——只考虑安全扭转时的安全系数;式中:、——材料的抗弯和抗扭屈服极限,MPa ;其中=~;Mmax、Tmax——轴的危险截面上所受的最大弯矩和最大扭矩,;Famax——轴的危险截面上所受的最大轴向力,N;A——轴的危险截面的面积,m;W、W T——分别为危险截面的抗弯和抗扭截面系数,m;四、轴的设计用表表1 轴的常用材料及其主要力学性能材料牌号热处理毛坯直径mm硬度HBS抗拉强度极限σb屈服强度极限σs弯曲疲劳极限σ-1剪切疲劳极限τ-1许用弯曲应力σ-1备注Q235A 热轧或锻后空冷≤100400~42022517010540用于不重要及受载荷不大的轴>100~250375~39021545正火回火≤10170~21759029522514055应用最广泛>100~300162~217570285245135调质≤200217~2556403552751556040Cr 调质≤100>100~300241~28673568554049035535520018570用于载荷较大,而无很大冲击的重要轴40CrNi 调质≤100>100~300270~300240~27090078573557043037026021075用于很重要的轴38SiMnMo 调质≤100>100~300229~286217~26973568559054036534521019570用于重要的轴,性能近于40CrNi38CrMoAlA 调质≤60>60~100>100~160293~321277~302241~27793083578578568559044041037528027022075用于要求高耐磨性,高强度且热处理氮化变形很小的轴20Cr 渗碳淬火回火≤60渗碳56~62HRC64039030516060用于要求强度及韧性均较高的轴3Cr13调质≤100≥24183563539523075用于腐蚀条件下的轴1Cr18Ni9Ti 淬火≤100≤19253019519011545用于高低温及腐蚀条件下的轴180110100~200490QT600-3190~270600370215185用于制造复杂外形的轴QT800-2245~335800480290250表2 零件倒角C与圆角半径R的推荐值直径d>6~10>10~18>18~30>30~50>50~80>80~120>120~180 C或R表3 轴常用几种材料的和A0值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi 12~2012~2520~3030~4040~52A0160~135148~125135~118118~107107~98表4 抗弯抗扭截面模量计算公式。
空心轴强度校核公式
空心轴的强度校核公式主要有两种,分别是按照弯曲强度和扭转强度进行校核。
1. 弯曲强度校核公式:
根据弯曲理论,空心轴的弯曲强度可根据以下公式进行校核:
M = (π/32) * (D^4 - d^4) * f / c
其中,M为轴承受的弯矩,D为外径,d为内径,f为材料的抗弯强度,c为轴的截面中性轴的距离。
2. 扭转强度校核公式:
根据扭转理论,空心轴的扭转强度可根据以下公式进行校核:
T = (π/16) * (D^4 - d^4) * t / l
其中,T为轴承受的扭矩,D为外径,d为内径,t为材料的抗扭强度,l为轴的长度。
以上是两种常用的空心轴强度校核公式,具体使用时还需结合具体材料的力学性质参数进行计算。
在设计实际应用中,建议咨询专业工程师以确保计算结果的准确性。
心轴的设计与校核心轴是一种广泛应用于各类机械装置中的重要部件。
它通常用于传递转动力和承受轴向负载。
心轴的设计与校核是确保机械装置安全运行的关键环节。
本文将介绍心轴的设计与校核的基本步骤和注意事项。
首先,心轴的设计需要根据装置的使用条件和工作要求进行。
对于重载工况的应用装置,心轴需要采用高强度和高硬度的材料,如合金钢或不锈钢。
而对于一些低速和轻载工况的装置,可以选用普通碳素钢材料。
此外,还要注意心轴的尺寸设计。
尺寸设计需要考虑装置的承载能力、振动和转速等因素。
通常,心轴的直径和长度与所传递的功率和转矩成正比。
其次,校核是确保设计的可靠性和安全性的重要步骤。
校核的目的是检查心轴是否符合所要求的承载能力和寿命要求。
校核一般包括两个方面的内容:强度校核和刚度校核。
强度校核是指检查心轴是否足够强度,能够承受来自外界的载荷。
在进行强度校核时,需要计算心轴的应力和变形。
应力可以通过使用梁的理论计算得到,变形则可以采用静力学公式来计算。
这些计算需要考虑心轴材料的力学特性和所受到的载荷情况。
校核的目标是确保心轴在工作过程中不会发生过大的应力和变形。
刚度校核是指检查心轴的刚度是否足够,能够满足装置的要求。
心轴的刚度主要包括轴向刚度和弯曲刚度两个方面。
在进行刚度校核时,需要计算心轴的刚度系数和自然频率。
这些计算通常采用有限元分析方法进行。
校核的目标是确保心轴在工作过程中具有足够的刚度,能够承受来自外界的振动和变形。
最后,还需要进行可靠性评估和寿命预测。
可靠性评估是指根据心轴的使用条件和工作要求,对其进行可靠性分析和评估。
可以采用可靠性模型来进行评估,如故障模式与影响分析(FMEA)和可靠性块图(RBD)等方法。
寿命预测是指通过对心轴的应力和变形进行疲劳分析,预测其使用寿命。
这需要根据心轴材料的疲劳性能和装置的工况来进行分析。
综上所述,心轴的设计与校核是确保机械装置安全运行的关键环节。
在设计心轴时,需要考虑材料选择和尺寸设计。
轴的校核计算过程例题
本文是关于轴的校核计算过程例题的介绍。
首先,要进行轴的校核计算,必须要先确定轴的设计参数,包括轴的外径、长度、承载能力等。
然后,要确定轴承的设计参数,以及支撑轴的架台形式等。
最后,根据设计参数,准备按照轴承校核规程进行校核,计算出轴承的承载能力。
下面给出一个具体的轴的校核计算过程的例子:
假设轴的直径为d = 80 mm,长度为L = 200mm,轴承参数为:轴承类型:角接触球轴承
轴承型号:6202
搭接形式:直线搭接
架台形式:滑动架台
此时,计算轴承承载能力可按照如下步骤进行:
1、根据轴承的设计参数,计算轴承的最大负荷:
Fmax = 0.19 × d2 × c × n × E (kN)
其中d为轴外径(mm),c为轴承的接触角,n为搭接形式,E为轴承的偏心度(mm)。
本例中,c=0.24,n=1,E=0.005,则本轴承的最大负荷为:Fmax = 0.19×802×0.24×1×0.005=24.096 kN
2、根据轴的设计参数及轴承的最大负荷,计算轴的校核承载能力:
Fsc = Fmax × k ×φ(kN)
其中k为架台的滑动系数,φ为轴的倾斜修正系数。
本例中,k=0.8,φ=1,则轴承的校核承载能力为:Fsc = 24.096×0.8×1=19.272 kN
以上就是本文关于轴的校核计算过程例题的介绍,通过本文的介绍,可以了解到,轴的校核计算要综合考虑轴的设计参数及轴承的设计参数,结合架台滑动系数与轴的倾斜修正系数,计算出轴承的校核承载能力。
材料力学课程设计计算说明书设计题目:曲柄轴的强度设计、疲劳强度校核及刚度计算数据号:7.7-6学号:姓名:指导教师:目录一、设计目的 (3)二、设计任务和要求 (3)2.1、设计计算说明书的要求 (3)2.2、分析讨论及说明书部分的要求 (4)2.3、程序计算部分的要求 (4)三、设计题目 (4)3.1、数据1)画出曲柄轴的内力图 (5)2)设计主轴颈D和曲柄颈直径d (8)3)校核曲柄臂的强度 (9)4)校核主轴颈飞轮处的疲劳强度 (15)5)用能量法计算A端截面的转角yθ,zθ (16)四、分析讨论及必要说明 (20)五、设计的改进措施及方法 (20)六、设计体会 (21)七、参考文献 (21)附录一.流程图 (24)二.C语言程序 (25)三.计算输出结果 (28)一、设计目的本课程设计是在系统学完材料力学课程之后,结合工程实际中的问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合利用材料力学知识解决工程实际问题的目的。
同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体,既从整体上掌握了基本理论和现代计算方法,又提高了分析问题、解决问题的能力;既是对以前所学知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)的综合运用,又为后续课程的学习打下基础,并初步掌握工程设计思路和设计方法,使实际工作能力有所提高。
具体有一下六项:(1).使所学的材料力学知识系统化、完整化。
(2).在系统全面复习的基础上,运用材料力学知识解决工程实际中的问题。
(3).由于选题力求结合专业实际,因而课程设计可把材料力学与专业需要结合起来。
(4).综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。
(5).初步了解和掌握工程实际中的设计思路和设计方法。
(6).为后续课程的教学打下基础。
二、设计任务和要求参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并到处计算公式,独立编制计算机程序,通过计算机给出计算结果,并完成设计计算说明书。
一、轴的分类按承受的载荷不同, 轴可分为:转轴——工作时既承受弯矩又承受扭矩的轴。
如减速器中的轴。
虚拟现实。
心轴——工作时仅承受弯矩的轴。
按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。
如火车轮轴。
固定心轴——工作时轴承受弯矩,且轴固定。
如自行车轴。
虚拟现实。
传动轴——工作时仅承受扭矩的轴。
如汽车变速箱至后桥的传动轴。
固定心轴转动心轴转轴传动轴二、轴的材料轴的材料主要是碳钢和合金钢。
钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。
由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。
合金钢比碳钢具有更高的力学性能和更好的淬火性能。
因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。
必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。
但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。
各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。
高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。
轴的常用材料及其主要力学性能见表。
三、轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构尺寸。
轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。
由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。
传动轴布置及校核方法传动轴是机械传动系统中常用的一种零件,主要用于将发动机的动力传递给机械设备。
它是由两个或多个轮毂和中间的轴段组成。
传动轴的布置和校核是确保传动系统正常运转的重要环节。
本文将介绍传动轴布置的基本原则和校核方法。
1.直线布置:传动轴的布置尽量直线,轴段尽量缩短。
直线布置能减小传动轴的弯曲和振动,提高传动效率和传动精度。
同时,采用直线布置还能节省空间,简化传动系统结构。
2.曲线布置:若传动轴无法直线布置(例如传动装置之间相隔较远),可以采用曲线布置。
曲线布置需要考虑轴段的弯曲和转角对传动轴的影响,避免过大的转角和弯曲造成传动轴的过分弯曲和疲劳。
传动轴的校核方法主要包括静力学校核和疲劳校核。
1.静力学校核:静力学校核是指通过计算、分析传动轴在工作负载下的受力情况,来判断传动轴是否具有足够的强度。
静力学校核时需要考虑传动轴的受力情况、材料强度、线性和非线性变形等因素。
常用的静力学校核方法包括弹性力学计算、有限元分析等。
2.疲劳校核:疲劳校核是指通过计算、分析传动轴在长时间循环工作下的疲劳寿命,来判断传动轴是否具有足够的疲劳强度。
疲劳校核时需要考虑传动轴的应力集中情况、材料的疲劳性能、循环载荷和工作条件等因素。
常用的疲劳校核方法包括应力异常修正法、极限剩余应力法、伤害积累理论法等。
在传动轴的校核过程中,需要根据具体的传动方式、传动功率、传动比等因素来选择适当的校核方法和工具。
同时,还需要根据传动轴的实际情况和工作条件,合理选择材料、尺寸和制造工艺,以确保传动轴具有足够的强度、刚度和疲劳寿命。
总之,传动轴布置和校核是机械传动系统设计中重要的环节。
通过合理布置和科学校核,可以保证传动系统的正常运行和稳定工作。
第三节 轴轴的强度计计算、设计计步骤与与设计实例例一.按抗扭强强度计算小直对于传动轴直径,然后进轴,因只受转进行轴的结构矩,可只按转构设计,并用转矩计算轴的弯扭合成强度的直径;对于度校核。
于转轴,先用用此法估算轴的最 对偿弯实心圆轴扭 对于转轴,也弯矩对轴的强扭转的强度条 τ也可用上式初步强度的影响。
条件为0.2T T W ==步估算轴的直由上式可写二.定,M 截面 式中 T P—— n—— [ τ] d——W T ——d ≥C——由轴的通过9-2式按弯扭组合轴的结构设就可以画出对于一般钢e M W σ=e M =式中,e σ为V 分别为水平面的抗弯截面T——轴传递—轴传递的功—轴的转速(r ——许用扭—轴的最小直—轴的抗弯截=的材料和受载式求出的轴的合强度计算设计完成后,轴出轴的受力简钢制的轴,可e=为当量应力(平面和垂直面面系数(mm 递的工作转矩功率(kW);r/min);扭转切应力;直径,估算时如截面模量。
=载情况所决定表9-4 几的直径d,应按算 轴上零件的位简图,然后就可按第三强度M =MPa);e M 为的弯矩(N·3),W=0.1T 3[]dτ≤ 直径,但必须出计算轴的直,也是轴承受如果该处有一 定的系数,其几种轴用材料按表圆整成标位置也确定下可以进行弯扭理论进行强度1[σ−≤为当量弯矩(mm);T 为;为根3d α据 须把轴的许用直径公式:用扭转切应力 (9-1) 力适当降低,以补受的扭矩,(一个键槽,应(N·mm);将所算的最小小直径增加5%; (9-2) 其值见表9-4.料的[及C ]τ值标准直径,作下来,外加载扭合成强度计度计算。
强度]b b(N·mm);M 为轴传递的转矩据转矩性质而作为转轴的最载荷和支反力计算,其具体度条件为为合成弯矩(矩(N·mm)而定的折合因最小直径。
力作用点也相体步骤如下:应确(N·mm);;W 为轴的危因数。
轴的设计计算校核一、轴的设计原则轴是机械传动系统中承载和传递力矩的元件,其设计应遵循以下原则:1.强度足够:轴的设计应保证其强度足够,能够承受传递的力矩和应力,并且在工作条件下不会发生破坏。
2.刚度适当:轴的设计应考虑到其在传动过程中的变形情况,尽量使其刚度足够以减小传动误差和能量损耗。
3.成本合理:轴的设计应综合考虑材料成本和制造成本等方面因素,力求设计出成本合理的轴。
二、轴的计算方法轴的计算方法主要有静态强度计算和动态强度计算两种。
1.静态强度计算静态强度计算主要是根据轴所承受的力矩和力的大小,计算轴的最大应力和挠度等参数,判断轴材料的强度是否满足要求。
常用的计算方法有平衡方法、应力法和变形法等。
平衡方法:根据轴所受力的平衡条件,考虑轴上的切线外力和切线内力,计算轴的弯矩和剪力等参数。
应力法:根据轴在受力过程中的应力分布情况,利用杨氏模量和弹性系数等参数,计算轴的最大应力。
变形法:根据轴在受力过程中的挠度和变形情况,利用弯矩和挠度的关系,计算轴的最大挠度。
2.动态强度计算动态强度计算主要是考虑轴在转动过程中的惯性力和振动情况,计算轴的扭转应力和动载荷等参数,判断轴的强度和稳定性。
常用的计算方法有惯性力法、扭转应力法和动力学方法等。
惯性力法:根据轴的质量和转动惯量等参数,计算轴的惯性力和振动情况,进而计算轴的扭转应力。
扭转应力法:根据轴在受到扭转力矩作用下的应力分布情况,利用杨氏模量和切比雪夫公式等,计算轴的扭转应力。
动力学方法:根据轴的转速和转动惯量等参数,计算轴在转动过程中的相对加速度和相对转速等,进而计算轴的动载荷和强度。
三、轴的校核步骤轴的校核是为了确保其设计和计算的准确性,一般按照以下步骤进行:1.确定轴承载力:根据传动系统的参数,确定轴所受的最大力矩和力大小。
2.确定材料:根据轴的使用条件和载荷情况,选取适当的轴材料。
3.进行静态强度计算:根据选定的材料和设计参数,进行静态强度计算,判断轴的强度是否满足要求。