钒提取技术
- 格式:ppt
- 大小:3.78 MB
- 文档页数:73
从含钒钢渣中富集钒的方法与流程钒是一种重要的金属元素,被广泛应用于钢铁、航空航天、化工等领域。
然而,由于钒资源的稀缺性,从矿石中提取钒成本较高。
因此,富集含钒钢渣中的钒成为一种重要的手段,可以有效地回收和利用这一价值元素。
本文将介绍从含钒钢渣中富集钒的方法与流程。
一、酸法浸取富集钒酸法浸取是一种常用的从含钒钢渣中富集钒的方法。
具体流程如下:1. 粉碎:将含钒钢渣进行粉碎,以增加其比表面积,便于后续的浸取操作。
2. 酸浸:将粉碎后的钢渣与稀硫酸或盐酸进行浸取。
浸取条件包括浸取时间、浸取温度、酸液浓度等,需根据具体情况进行优化。
3. 分离固液:将浸取后的固液混合物进行固液分离,通常采用离心或过滤等方法,将固体渣滓和酸液分离。
4. 钒溶液处理:将得到的含钒酸液进行进一步处理,包括除杂、浓缩等步骤。
除杂可采用萃取、溶剂萃取等方法,去除杂质离子,提高钒的纯度。
5. 钒的回收:经过处理后的含钒酸液,可以通过还原、电解等方式回收纯钒。
二、矩阵冶金法富集钒矩阵冶金法是另一种常用的从含钒钢渣中富集钒的方法。
具体流程如下:1. 热处理:将含钒钢渣进行热处理,使其中的钒转化为易溶性的钒化合物。
热处理温度和时间需要根据钢渣的组成和性质进行调控。
2. 酸浸:将经过热处理的钢渣与酸性溶液进行浸取。
浸取酸液的浓度和温度需要根据钢渣的特性进行优化。
3. 分离固液:将浸取后的固液混合物进行分离,得到固体渣滓和酸液。
4. 钒溶液处理:对得到的含钒酸液进行杂质去除和钒的富集。
杂质去除可以采用萃取、溶剂萃取等方法。
5. 钒的回收:经过处理后的含钒酸液,可以通过还原、电解等方式回收纯钒。
三、其他方法与流程除了酸法浸取和矩阵冶金法,还有一些其他方法可以用于富集含钒钢渣中的钒,如氧化焙烧法、浸出熔融法等。
这些方法具体流程与条件有所不同,但核心思想都是通过化学反应实现钒的富集与回收。
在实际应用中,根据含钒钢渣的成分和性质选择合适的方法进行钒的富集。
钒的选矿方法和步骤:钒铁生产的主要原料是钒钛磁铁矿,经选矿富集后,通过高炉炼出含钒生铁,在雾化炉或转炉吹炼过程中提取钒渣。
钒渣经粉碎后配加钠盐(纯碱、食盐或无水芒硝)进行氧化钠化焙烧,使钒成为可溶的偏钒酸钠(NaVO3),浸取净化后加硫酸铵沉淀出多钒酸铵[(NH4)2V6O16],再经脱氨熔化,铸成片状五氧化二钒。
要求成分为V2O597~99%,P<0.05%,S<0.05%,Na2O+K2O <1.5%。
此外也从含钒铁精矿或含钒炭质页岩直接通过化学处理提取五氧化二钒。
电硅热法片状五氧化二钒用75%硅铁和少量铝作还原剂,在碱性电弧炉中,经还原、精炼两个阶段炼得合格产品。
还原期将一炉的全部还原剂与占总量60~70%的片状五氧化二钒装入电炉,在高氧化钙炉渣下,进行硅热还原。
当渣中V2O5小于0.35%时,放出炉渣(称为贫渣,可弃去或作建筑材料用),转入精炼期。
此时,再加入片状五氧化二钒和石灰,以脱除合金液中过剩的硅、铝等,俟合金成分达到要求,即可出渣出铁合金。
精炼后期放出的炉渣称为富渣(含V2O5达8~12%),在下一炉开始加料时,返回利用。
合金液一般铸成圆柱形锭,经冷却、脱模、破碎和清渣后即为成品。
此法一般用于含钒40~60%的钒铁冶炼。
钒的回收率可达98%。
炼制每吨钒铁耗电1600千瓦?时左右。
铝热法用铝作还原剂,在碱性炉衬的炉筒中,采用下部点火法冶炼。
先把小部分混合炉料装入反应器中,即行点火。
反应开始后再陆续投加其余炉料。
通常用于冶炼高钒铁(含钒60~80%),回收率较电硅热法略低,约90~95%钒和钻常呈铁的类质同像分别赋存于钛磁铁矿和黄铁矿中。
此类矿石的选矿,一般是先用弱磁选分出钒铁精矿,再用重选、强磁选、浮选、电选联合方法从尾矿中回收钛铁矿和用浮选回收黄铁矿。
钒铁精矿所含的钛是选矿无法除去的,可以在冶炼中分离。
为了满足高钛渣炼铁必需的渣量,过分提高钒铁精矿的铁品位,有时是不合理的。
从磁选尾矿中回收钛的流程,首先要保证得到优质钛精矿。
铁矿石提取钒的原理
铁矿石提取钒的原理主要包括以下几个步骤:选矿、矿浆造粒、焙烧还原、浸出和分离。
1. 选矿:首先需要对铁矿石中的不同矿石类型进行选矿,选择富含钒的矿石。
常见的富钒铁矿石主要有伊利石、斜方铁矿和镁铁矿等。
通过矿石的物理和化学性质,以及矿石的矿物成分进行分析和鉴定,确定矿石的品位和适用性。
2. 矿浆造粒:选取的铁矿石经过粉碎和分类处理后,得到一定粒度的矿浆。
矿浆通常会经过搅拌和调整浓度等工艺控制,以便在后续的工艺步骤中顺利进行。
3. 焙烧还原:将矿浆经过干燥处理,然后进行焙烧还原工艺。
焙烧还原利用高温氧化反应将铁矿石中的钒氧化物转化为钒酸钠,同时还原出水合钒酸钠。
这一步骤的目的是将矿石中的钒转化为溶解性的钒化物。
4. 浸出:通过将焙烧还原后的矿石与酸溶液进行浸入反应,使其中的钒化物溶解在酸溶液中。
常见的浸出剂有硫酸和氯化物等。
在浸出过程中,还可能需要控制温度、浓度和压力等工艺参数,以提高钒的浸出率。
5. 分离:将钒溶液与其他杂质进行分离。
分离过程中,可以通过一系列的分离技术,如萃取、离子交换、溶液蒸馏和晶体分离等,将杂质与钒溶液分离。
通过调整分离工艺参数,可获得纯度较高的钒产品。
总的来说,铁矿石提取钒的原理是通过选矿、矿浆造粒、焙烧还原、浸出和分离等一系列工艺步骤,通过合适的化学反应和物理分离,将铁矿石中的钒转化为溶解性的钒化物,并分离出钒溶液中的杂质,最终得到纯度较高的钒产品。
硫酸浸出法提钒
硫酸浸出法提钒是使用硫酸来处理含钒矿石或废钒催化剂,以释放并提取钒的方法。
这种方法具有以下优点:
1.高效提取:浓硫酸能够有效分解矿石中的有机物质,并将钒从矿石基质中释放出来。
相对于传统的提取方法,该技术能够实现更高的钒提取率和回收率。
2.可控性强:通过调节熟化处理的温度、浓硫酸的用量和熟化时间等参数,可以实现对钒的选择性提取,减少其他有害元素的提取。
3.处理效果稳定:与其他钒提取方法相比,浓硫酸熟化浸出提取钒的方法稳定性较高,具有较好的工程可操作性。
4.成本效益:从废钒催化剂中提取钒不仅可以解决硫酸生产废料的问题,还可以降低提取成本。
在硫酸浸出法提钒的过程中,通常包括以下步骤:
1.矿石破碎和研磨:将含钒矿石破碎并研磨成细小的颗粒,以便与硫酸更好地接触和反应。
2.酸浸出:将破碎研磨后的矿石与硫酸混合,在一定温度和压力下进行反应,使钒从矿石中释放出来,形成钒硫酸盐。
3.分离和纯化:通过过滤、洗涤、干燥等步骤,将钒硫酸盐从其他杂质中分离出来,并进行纯化处理,得到高纯度的钒产品。
需要注意的是,硫酸浸出法提钒的具体工艺流程和参数可能会因不同的矿石类型和杂质含量而有所不同。
因此,在实际操作中,需要根据具体情况进行工艺优化和调整。
钠盐焙烧法是一种常用的提取钒的方法。
该方法利用钠盐在高温下氧化还原反应,将钒从矿物中提取出来。
下面将从原理、优缺点和应用等方面进行论述。
原理:
钠盐焙烧法是一种氧化还原反应。
在高温下,钠盐与钒矿物反应生成钒酸钠和钠氧化物,钒酸钠可溶于水,而钠氧化物则在空气中被氧化成钠碱,从而实现钒的提取。
优缺点:
钠盐焙烧法的优点在于操作简单,提取效率高,适用范围广,能够提取出多种钒矿物。
同时,该方法还可以使矿物中的其他金属元素转化成易于分离的化合物。
缺点则在于需要高温条件,而且钠盐的使用量较大,对环境造成一定的污染。
应用:
钠盐焙烧法广泛应用于钒矿物的提取中。
例如,对于钒钛磁铁矿、钒钛石等含钒矿物的处理中,钠盐焙烧法是一种较为常用的方法。
此外,该方法还可以用于其他金属元素的提取,如铜、铅等。
基本步骤:
1.将含钒矿石(如钒钛磁铁矿)粉碎,并与适量的氧化钠混合。
2.将混合物放入高温炉内进行焙烧,温度一般在800℃-1000℃之间,时间为1-3小时。
3.经过焙烧后,矿石中的钒以钠钒酸盐的形式存在于炉渣中。
4.将炉渣进行酸浸,钒酸根离子(VO4)与酸反应生成钒酸溶液。
5.通过沉淀和过滤等步骤,将钒从钒酸溶液中分离出来。
该方法具有操作简便、成本低廉、适用范围广等优点,但其钠消耗量大,反应后产物的处理也比较复杂。
总之,钠盐焙烧法是一种有效的提取钒的方法。
虽然存在一定的缺点,但其简单易行、提取效率高的特点使得其在工业生产中得到广泛应用。
无污染提钒工艺新技术一、酸法提取五氧化二钒工艺(一)工艺流程矿石破碎→球磨→酸浸→固液分离→预处理→萃取反萃取沉钒→红钒热解→五氧化二钒。
石煤钒矿石破碎后湿式球磨至粒度-60目占80%以上,然后用占矿石质量15%的硫酸连续搅拌,温度85℃,液固体积质量比(0.85~1):1,钒以四价形式转入溶液。
固液分离后,矿渣堆放,溶液预处理后,以P 204+TBP +磺化煤油为萃取剂,经7级箱式半逆流萃取,然后用1~1. 5mol/L的硫酸5级反萃取,得到质量浓度80~120 g/L的含钒溶液,加热氧化沉淀得红钒(多钒酸铵),红钒于550℃下加热分解得五氧化二钒。
(二)工艺原理及应用陕西山阳县境内的石煤钒矿石中的钒一部分在云母中以类质同象形式置换六次配位的三价铝而存在于云母晶格中{云母分子式为K (Al,V)2[AlSi3O10](OH)2},若从云母中浸出钒必须破坏云母结构,故这部分钒难于浸出。
直接用酸破坏云母结构,即在一定温度和酸度下,让氢离子进入云母晶格中置换A13,使离子半径发生变化,将钒释放出来。
钒被氧化成四价后用酸溶解,反应式为:(V2O3)·x+2H2SO4+1/2O2→V2O2(SO4)2+4H2O+x,V2O2(OH)4+2H2SO4→V2O2>(SO4)2+4H2O,得到的是蓝色的硫酸钒酰溶液,经过后续处理得五氧化二钒产品。
该工艺在陕西山阳县10余家钒加工厂得到广泛应用,总收率达65%~71%,生产成本控制在5.5~6.8万元/t。
生产废水中的Fe2+,Fe3+、A13+等金属离子通过氧化、沉淀、过滤、澄清去除,氨态氮通过调pH、加热、吹脱可除去90%,废水可循环使用;生产过程中不产生有害气体,对大气无污染。
二、无盐焙烧提取五氧化二钒工艺(一)工艺流程矿石破碎→烘干→球磨→无盐焙烧→酸浸→固液分离→预处理→萃取反萃取→沉淀→红钒热解→五氧化二钒。
石煤钒矿石经破碎、烘干、球磨后,粒度-60目占80%以上。
电解法从废催化剂中提纯钒元素的流程
电解法是一种常见的从废催化剂中提纯金属元素的方法,下面是从废催化剂中提纯钒元素的电解法流程步骤:
1. 准备工作:首先,收集废催化剂,将其破碎或磨粉,以增加金属钒的暴露面积。
2. 溶液制备:将破碎的废催化剂与酸溶液(如盐酸)进行混合,使金属元素溶解为钒离子。
溶液中还可能存在其他杂质离子,如铁离子。
因此,需要对溶液进行调整,以达到适当的钒离子浓度和PH值。
3. 电解槽设定:将制备好的溶液倒入电解槽中,并安装阳极(一般选用铂或铂-铱合金电极)和阴极(一般选用不锈钢电极)。
4. 电解过程:将电解槽连接到电源,开始电解过程。
在电解过程中,钒离子会被还原成金属钒在阴极上析出。
同时,其他杂质离子也可能在阴极上析出,需要定期清理以确保纯净的钒元素的产生。
5. 钒元素提取:清理和收集析出的金属钒,进行过滤和洗涤,然后将其干燥。
这样就得到了纯净的钒元素。
需要注意的是,以上流程仅为一般性的提纯过程,实际操作中需要根据具体情况进行调整和优化。
此外,在废催化剂中可能
还存在其他金属元素,所以还需要对钒元素进一步纯化和分离,以得到高纯度的金属钒。
钒渣提取新技术(钒渣-五氧化二钒-三氧化二钒-金属钒-钒铁-钒铝合金-碳氮化钒-钒电池)原创邹建新崔旭梅教授等随着攀钢提钒炼钢厂为代表的钒渣提取技术不断得以提升,及时根据铁水条件变化调整供氧强度、吹炼时间、冷却强度等工艺参数,提高铁水中的钒氧化率,尽可能降低残钒含量。
另外,通过优化复吹提钒、出渣炉次添加无烟煤等技术措施,克服铁水成分波动对钒渣生产的影响;开展煤氧枪烧结补炉、提钒炉口防粘、4210镗孔机打炉口等技术研究,改善提钒转炉维护质量。
转炉提钒生产的主要国家是俄罗斯和我国,已经使用静态模型对提钒过程进行控制的国家是俄罗斯,俄罗斯对提钒控制模型开展了深入的研究,现在取得了不错的效果。
不过正在使用的模型一般是根据复杂的物理化学规律开发的机理模型,这对工艺要求非常高,需要有非常稳定的工艺条件和生产流程,因此不适用于铁水成分、生产设备等变化波动大的情况。
也就是说,这种模型系统不能很好地适应复杂生产过程和现代化柔性生产的需要,模型移植困难,模型价格昂贵。
在我国对转炉提钒的研究与发展比较缓慢,主要为人工操作模式,操作和控制基本上依赖于现场操作人员的经验和感觉进行操作,自动化水平低,存在着钒渣质量和半钢质量不稳定的问题。
因此利用人工智能技术研制具有高性价比的转炉提钒模型,建立具有自适应、自学习能力的控制模型是未来提钒控制的发展趋势。
目前,对提钒这样的复杂冶金工业过程建模的研究,也是国内外的研究热点之一。
近年钒渣提取领域的代表性新技术如下:①中国恩菲工程技术有限公司发明了一种从原料钒渣制备精细钒渣的方法。
包括:将原料钒渣进行破碎,然后进行磁选铁得到铁渣和选铁后的钒渣,将钒渣进行一次球磨,然后进行一次选粉得到一次粗粉和作为精细钒渣的一次细粉,然后进行筛分得到筛上粉和筛下粉,将筛下粉进行二次球磨和二次选粉得到二次粗粉和作为精细钒渣的二次细粉。
利用该方法能够降低精细钒渣中铁含量。
②攀钢集团公开了一种高品位钒渣富氧钙化焙烧的方法,包括如下步骤:将高品位钒渣与钙化剂混合形成混合料,将混合料在氧气体积含量为12-21%的气氛下进行焙烧。
钒资源清洁提取与高值利用新技术一、引言钒资源是一种重要的金属矿产资源,广泛应用于钢铁、电力、化工等领域。
近年来,随着钒资源的开采和利用量不断增加,对钒资源的清洁提取和高值利用提出了新的要求。
在这种情况下,需要引入新技术,实现钒资源的清洁提取和高值利用,以满足现代工业的发展需求。
二、钒资源的清洁提取技术1.生物法提取:生物法是一种利用微生物和植物等生物体对钒矿石进行生物浸出的方法。
通过在适宜的温度、PH值和氧化还原条件下,利用微生物的代谢活性对钒矿石中的有用矿物进行浸出,实现钒资源的清洁提取。
2.超声法提取:超声波是一种机械波,具有强大的穿透能力和搅拌作用。
利用超声波对钒矿石进行超声波浸出,可以有效地将钒矿石中的有用矿物溶解出来,实现钒资源的清洁提取。
3.化学浸出法:化学浸出法是一种利用化学试剂对钒矿石进行浸出的方法。
通过在适宜的温度、PH值和氧化还原条件下,利用化学试剂对钒矿石中的有用矿物进行溶解,实现钒资源的清洁提取。
三、钒资源的高值利用技术1.钒电解法:钒电解法是一种利用电解的方法将钒矿石中的有用金属提取出来。
通过在适宜的电流密度和温度条件下,利用电解将钒矿石中的有用金属析出,实现钒资源的高值利用。
2.钒熔炼法:钒熔炼法是一种利用高温熔炼的方法将钒矿石中的有用金属提取出来。
通过在适宜的温度和氧化还原条件下,利用高温熔炼将钒矿石中的有用金属分离出来,实现钒资源的高值利用。
3.钒合金制备技术:钒合金是一种具有特殊性能的合金材料,广泛应用于制造业、航天航空等领域。
利用钒矿石中的有用金属制备钒合金,可以实现钒资源的高值利用。
四、新技术在钒资源清洁提取与高值利用中的应用随着生物技术、超声技术、化学技术、电化学技术等领域的不断进步,新技术在钒资源清洁提取与高值利用中的应用也越来越广泛。
通过引入新技术,可以实现钒资源的高效提取和利用,降低资源消耗、减少环境污染。
五、结论随着新技术的不断引入和应用,钒资源的清洁提取与高值利用将迎来新的发展机遇。