第3章 晶体管的频率特性
- 格式:ppt
- 大小:6.72 MB
- 文档页数:42
晶体管特征频率的测量晶体管特征频率t f 的测量定义为共射极输出交短路电流放大系数||β随频率增加而下降到1小时的工作频率,它反映了晶体管共发射运用具有电流放大作用的频率极限,是晶体管的一个重要频率特性参数。
t f 主要取决于晶体管的合理的结构设计,但也与晶体管工作时的偏置条件密切相关。
因而,晶体管的特征频率t f 是指在一定集团偏置条件下的测量值 。
其测试原理通常采用“增益-带宽”积的方法。
本实验的目的是掌握晶体管特征频率t f 的测试原理及测量方法,熟悉t f 分别随CE V 和E I 变化的规律,加深其与晶体管结构参数各工作偏置条件的理解,为晶体管的频率特性设计,制造和应用奠定基础。
一、实验原理共发射交流工作下,晶体管发射结电压周期性变化引起发射结,收集结空间电荷区的电荷和其区,发射区,收集区的少子,多子也随之不断重新分布,这种现象可视为势垒电容各扩散电容的充放电作用。
势垒电容各扩散电容的充放电使由发射区通过基区传输的载流子减少,传输的电流幅度值下降,同时产生载流子传输的延时,加之载流子渡越收集结空间电荷区时间的影响,使输入,输出信号产生相移,电流放大系数β变为复数,并且其幅值随频率的升高 而下降,相位移也随频率的升高而增大,因此,晶体管共发射极交流短路放大系数β的幅值和相位移是工作频率的函数。
理论上晶体管共发射交流短路放大系数可表示为β=b b j jm ωωωωβ/1)/exp(0+- (1)其幅值和相位角随频率变化的有关系分别为||β=2/120])/(1[ββf f + (2)ϕ=]/)/([ββωωωωm arctg +- (3)可见,当工作频率f <<βf 时,0ββ≈,几乎与频率无关;当f =βf 时,||β=0β/2, ||β下降3dB ;当时,f >>βf ,||βf =0ββf 。
根据定义,||β=1时的工作频率即为特征频率T f ,则有T f =||βf =0ββf (4) 另外,当晶体管共基极截止频率a f <500MHz 时近似有T f ≈a f /(1+m),微波管中T f =a f 。
第3章高频信号放大器3.1自测题3.1-1晶体管的截止频率fß是指当短路电流放大倍数|ß|下降到低频ß 0的时所对应的工作频率。
3.1-2矩形系数是表征放大器好坏的一个物理量。
3.1-3消除晶体管y re的反馈作用的方法有和。
3.1-4.为了提高效率,高频功率放大器应工作在状态。
3.1-5.为了兼顾高的输出功率和高的集电极效率,实际中多选择高频功率放大器工作在状态。
3.1-6.根据在发射机中位置的不同,常将谐振功率放大器的匹配网络分为、、三种。
3.2 思考题3.2-1 影响谐振放大器稳定性的因素是什么?反向传输导纳的物理意义是什么?3.2-2声表面波滤波器、晶体滤波器和陶瓷滤波器各有什么特点,各适用于什么场合?3.2-3说明fβ、f Tβ、fɑ和f max的物理意义。
分析说明它们之间的关系3.2-4为什么晶体管在高频工作时要考虑单向化或中和,而在低频工作时,可以不必考虑?3.2-5. 谐振功率放大器工作于欠压状态。
为了提高输出功率,将放大器调整到临界状态。
可分别改变哪些参量来实现?当改变不同的量时,放大器输出功率是否一样大?3.2-6.为什么高频功率放大器一般要工作于乙类或丙类状态?为什么采用谐振回路作负载?谐振回路为什么要调谐在工作频率?3.2-7.为什么低频功率放大器不能工作于丙类?而高频功率放大器可以工作于丙类?3.2-8.丙类高频功率放大器的动态特性与低频甲类功率放大器的负载线有什么区别?为什么会产生这些区别?动态特性的含意是什么?3.2-9.一谐振功放如图3.2-9所示,试为下列各题选取一正确答案:(1)该功放的通角θ为:(a)θ>90。
;(b)θ=90。
;(c)θ<90o。
(2)放大器的工作状态系:(a) 由E c、E B决定;(b)由U m、U bm决定;(c)由u BE max、u CE min决定。
(3)欲高效率、大功率工作,谐振功放应工作于:(a)欠压状态(b)临界状态(c) 过压状态(4)当把图中的A点往上移动时,放大器的等效阻抗是:(a)增大;(b)不变;(c)减小。
实验三 晶体管特征频率f T 的测量
f T 定义为共射极输出交流短路电流放大糸数β随频率增加而下降到 1时的工作频率, 它反映了晶体管共发射极运用具有电流放大作用的频率极限, 是晶体管的一个重要频率特性参数. f T 的大小主除了与晶体管的结构有关外, 还与晶体管工作点有关, 测量原理通常采用增益-带宽积的方法.
一, 实验原理
晶体管发射结电压周期变化引起发射结,收集结空间电荷区的电荷和基区,发射区, 收集区内的多子,少子也随之重新分布, 这种现象可视为势垒电容和扩散电容的充放电作用, 传输电流幅值下降,载流子传输延时, 使输入, 输出信号产生相移, 使电流放大系数β变为复数, 幅值随频率的升高而下降, 相移随频率升高而增大
β=()[]2120/1ββf f +
当f 》f β βf=β0f β β=1
f T =β0f β
二, 实验方法
1, V CE = 10V, I C = 10mA 测量晶体管的f T
2, V CE= 15V I C=0.5mA~15mA, 每隔0.5mA测一点, 绘制f T~I CE关系曲线
3, I CE= 10mA, V CE=1V~20V, 每隔2V测一点, 绘制
f T~V CE关系曲线
4, 改变测试频率重新进行1~3的实验。
晶体管手册第一章:引言1.1 概述晶体管是一种非常重要的电子器件,被广泛应用于各种电子设备中。
本手册旨在介绍晶体管的基本原理、结构、特性以及常见的应用领域。
1.2 历史回顾晶体管的发展与研究可以追溯到20世纪40年代,由于其在电子行业的革命性作用,晶体管取代了真空管,成为当时电子技术领域的一个重要突破。
第二章:晶体管的基本原理2.1 PN结晶体管的基本原理是基于PN结的特性。
本节将介绍PN结的构成、特性以及在晶体管中的作用。
2.2 工作原理晶体管的工作原理是通过控制电场来控制电流。
本节将详细介绍晶体管的三个重要区域:发射区、基区和集电区的工作原理。
第三章:晶体管的结构和类型3.1 结构晶体管的结构通常包括基底、集电极、基极和发射极等组成部分。
本节将详细介绍每个部分的结构及其作用。
3.2 类型根据结构和应用的不同,晶体管可以分为多种类型,例如NPN型和PNP型。
本节将对不同类型的晶体管进行详细描述和比较。
第四章:晶体管的特性4.1 放大特性晶体管具有放大作用,可以将微弱的输入信号放大到较大的输出信号。
本节将介绍晶体管的放大特性及其测量方法。
4.2 饱和特性晶体管的饱和特性是指当输入信号过大时,晶体管的输出信号达到最大幅度。
本节将对晶体管的饱和特性进行详细介绍。
4.3 频率特性晶体管的频率特性是指输入信号在不同频率下,晶体管的放大能力。
本节将介绍晶体管的频率特性及其对电子设备的影响。
第五章:晶体管的应用5.1 放大器晶体管的最主要应用之一是作为放大器,可以放大音频和射频信号。
本节将介绍放大器的工作原理以及常见的放大器电路。
5.2 开关晶体管也可以用作开关,可用于数字电路、计算机和通信系统中。
本节将详细介绍晶体管作为开关的工作原理和应用场景。
5.3 震荡器晶体管还可用于制造震荡器,产生高频振荡信号。
本节将介绍晶体管在震荡器中的应用以及常见的震荡电路。
第六章:晶体管的未来发展6.1 小型化随着电子设备的小型化趋势,未来的晶体管将更加微小化,以适应更小尺寸的电子设备。
第3章习题解答习题来源:严国萍,龙占超,通信电子线路,科学出版社,2006年第一版,2009年第五次印刷,P89~P913-1. 解答晶体管低频放大器主要采用混合参数(H参数)等效模型分析方法;而晶体管高频小信号放大器主要采用形式等效电路(Y参数)以及物理模拟等效电路(混合π参数)分析方法。
分析方法的不同,本质原因在于晶体管在高频运用时,它的等效电路不仅包含着一些和频率基本没有关系的电阻,而且还包含着一些与频率有关的电容,这些电容在频率较高时的作用是不能忽略的。
高频小信号放大器不能用特性曲线来分析,这是因为特性曲线是晶体管低频运用时的工作曲线,是不随工作频率变化的;但晶体管在高频运用时,其结电容不可忽略,从而使得晶体管的特性随频率变化而变化。
因此在分析高频小信号时,不可用特性曲线来分析。
3-2. 解答r bb’含义:从晶体管内部结构可知,从基极外部引线b到内部扩散区中某一抽象点b’之间,是一段较长而又薄的N型(或P型)半导体,因掺入杂质很少,因而电导率不高,所以存在一定体积电阻,故在b-b’之间,用集总电阻r bb’表示。
r b’c含义:晶体管内部扩散区某一抽象点b’到集电极c之间的集电结电阻。
r bb’的影响:r bb’的存在,使得输入交流信号产生损失,所以r bb’的值应尽量减小,一般r bb’为15~50Ω。
r b’c的影响:因为集电结为反偏,所以r b’c较大,r b’c一般为10k~10MΩ,特别是硅管,r b’c很大,和放大器负载相比,它的作用往往可以忽略。
3-3. 解答g m是晶体管的跨导,反映晶体管的放大能力,即输入对输出的控制能力。
它和晶体管集电极静态电流(I E )大小有关。
3-4. 解答因为高频小信号放大器的负载是一个谐振回路,如果阻抗不匹配,会使输出信号幅度减小,而且会失真,为此,必须考虑阻抗匹配的问题。
3-5. 解答小信号放大器主要质量指标有:增益,通频带,选择性,工作稳定性,噪声系数这5个指标。
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
一、晶体管的种类晶体管有多种分类方法。
(一)按半导体材料和极性分类按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。
按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
(二)按结构及制造工艺分类晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
(三)按电流容量分类晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
(四)按工作频率分类晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
(五)按封装结构分类晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。
其封装外形多种多样。
(六)按功能和用途分类晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
二、晶体管的主要参数晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
(一)电流放大系数电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
晶体管特征频率的测量一、 目的1、通过实验进一步了解特征频率f T 的物理意义并掌握其测量方法。
2、通过实验了解f T 随偏流、偏压的变化情况。
二、 原理晶体管有高频管和低频管之分,一般来说低频管只能用在3MC 以下的频率范围;而高频管则可以用到几十或者几百MC 的高频范围,有时称超过75MC 的管子为超高频晶体管。
如果使用频率超过了晶体管的频率范围,则晶体管的放大特性就显著地变坏,甚至无法使用。
晶体管放大特性的变坏,是由于讯号频率超过某一值以后,晶体管的电流放大系数开始下降而造成的。
晶体管的共射极电流放大系数β与信号频率f 间的关系为:βββf f j +=10(10-1)式中β0为低频是的电流放大系数,f β为共射极的截止频率(也就是共射极电流放大系数β下降到21β0或0.707β0的频率)。
图10-1画出了晶体管发射极电流放大系数β随频率的变化曲线。
由图可见,在频率比较低时,β基本不随频率变化,它的数值被定义为β0。
当频率比较高时,β值随频率f 升高而下降。
如果讯号频率超过发射极截止频率f β,晶体管的共射极β电流放大系数β就比低频时的β0小的多。
但是,f β并不是晶体管所能使用的最高频率,因为f β下的β值(即0.707β0)仍比1大的多,所以晶体管此时还是有电流放大作用的。
晶体管的实际使用频率可以比f β高。
由10-1式可见,当频率远大于f β(比如f>2f β就可以认为f>>f β),时有f •β=f •β0=常数 (10-2)因为f T 是β等于1的f 值,因此上式中的常数就是f T 。
所以β•f=f T (10-3)比较确切地反映了晶体管的频率特性。
当频率低于f T 时,电流放大系数β>1,晶体管有电流放大作用;当f<f T ,β<1,没有电流放大作用,所以特征频率f T 是晶体管可以起电流放大作用的最高频率的限度,是共射极电路设计的一个重要依据。
晶体管频率晶体管是一种半导体元件,成型后可用于放大、开关、稳压等不同的应用中。
晶体管的主要优点是尺寸小、重量轻、易于制造和集成电路,它的性能已经得到了不断的提高和改进。
晶体管内部结构复杂,但是可简单地描述成一个三层结构,它有一个n型半导体、一个p型半导体和一个n型半导体组成。
中间的p型半导体称为基区,它的宽度和掺杂浓度是决定晶体管电流放大因子的关键因素。
晶体管的基本工作原理是通过控制基区内的电场来控制晶体管的电流。
在一个npn晶体管中,当基极施加电压,电子从发射区射出,经由基区进入集电区,同时由基极吸收并流回给控制区的离子,将整个晶体管置于放大模式。
晶体管数量庞大,但它们都具有基本的工作特性。
其中最重要的特性之一是频率响应。
频率响应可以定义为晶体管的高频限制,也就是其最大工作频率。
如果晶体管的频率响应不足,则其传输功率将会降低,因此,低频率的信号会被过滤掉。
但是,如果正好能够使用高于中断频率的信号,则会观察到晶体管的非常不同的行为。
例如,晶体管可以被用作功率放大器。
在高频率操作条件下,频率响应是一个非常重要的性能参数。
晶体管频率响应的高低限在一定程度上取决于晶体管的内部结构、集电区的宽度、掺杂浓度、温度等因素。
在高频率操作条件下,晶体管的频率响应可以通过调整基区宽度和收集结电容来提高。
造成高频噪音和减少开关速度的一个重要因素是晶体管收集结电容。
在高频驱动条件下,收集结电容为晶体管钳位的负载,阻碍了收集器的响应,并让晶体管的放大变得更加困难。
为了尽量减少这种影响,通常会选择高功率噪声低、静态电流大、电容小且时间常数短的晶体管。
掺杂过度会导致与内部电路之间的隔离耦合,进而影响到高频特性。
总之,晶体管是现代电子器件最重要的元件之一。
晶体管的现状和未来发展仍然是研究和探索的主题。
频率响应对晶体管的性能有很大影响,因此在应用中需要根据所需的功能和操作频率选择适当的晶体管。
随着技术的不断发展,越来越多的高性能晶体管将涌现出来,推动电子器件的发展和进步。
简述晶体管高频放大能力及频率参数晶体管高频放大能力及频率参数晶体管高频放大能力是指晶体管在某一频域内,其具有良好的信号放大能力,能够对输入信号进行功率放大。
晶体管高频放大能力取决于晶体管的频率特性,通常这些特性用多个参数来进行表示,它们包括频率增益特性、最大增益、工作频率、-3dB频率、-20dB频率、最小脉冲宽度、负载电容、负载电阻、失真度和耦合电容等。
频率增益特性:晶体管在不同频率下的增益值,也就是晶体管的频率增益特性,是衡量晶体管高频放大能力的一个重要指标,通常以dB为单位。
最大增益:指晶体管在某一特定频率下的增益最大值,也就是晶体管最大增益,它也是衡量晶体管高频放大能力的一个重要参数。
通常以dB为单位。
工作频率:晶体管的工作频率是指晶体管在保持增益良好的前提下,可以正常工作的最高频率,也是衡量晶体管高频放大能力的一个重要参数。
-3dB频率:指晶体管的增益值从最大增益降落到-3dB的频率,它也是衡量晶体管高频放大能力的一个重要参数。
-20dB频率:指晶体管的增益值从最大增益降落到-20dB的频率,它也是衡量晶体管高频放大能力的一个重要参数。
最小脉冲宽度:指晶体管在放大一个脉冲信号时,所需要的最小脉冲宽度,也是衡量晶体管高频放大能力的一个重要参数。
负载电容:晶体管的负载电容是指晶体管的输出接口上,与输出信号线路相连接的电容,它也是衡量晶体管高频放大能力的一个重要参数。
负载电阻:晶体管的负载电阻是指晶体管的输出接口上,与输出信号线路相连接的电阻,它也是衡量晶体管高频放大能力的一个重要参数。
失真度:晶体管在高频放大时,所产生的信号失真程度,也是衡量晶体管高频放大能力的一个重要参数。
耦合电容:晶体管的耦合电容是指晶体管的输入接口上所连接的电容,它也是衡量晶体管高频放大能力的一个重要参数。
晶体管特征频率晶体管特征频率是指晶体管的最高工作频率,也称为截止频率。
它是晶体管在高频工作时的一个重要参数,决定了晶体管能够承受的最高频率。
在实际应用中,晶体管特征频率越高,其应用范围就越广泛。
一、晶体管特征频率的定义晶体管特征频率是指当输入信号的频率超过该值时,输出信号将被截止或减弱至一个可忽略的水平。
通常情况下,它是指当放大器增益下降至-3dB时对应的输入信号频率。
因此,晶体管特征频率也被称为-3dB截止频率。
二、影响晶体管特征频率的因素1. 晶体管结构:不同类型和尺寸的晶体管具有不同的特征频率。
例如,小尺寸、高电子迁移速度和短载流子寿命等因素可以提高特征频率。
2. 工艺制造:制造过程中使用的材料和技术也会影响晶体管的特性和性能。
例如,在制造过程中使用更加精细的光刻技术可以提高晶体管的特征频率。
3. 工作环境:温度、湿度、电磁场等因素都会对晶体管的特性产生影响,从而影响其特征频率。
三、如何提高晶体管特征频率1. 选择合适的晶体管类型:不同类型的晶体管具有不同的特性和性能,选择合适的晶体管可以提高其特征频率。
2. 优化制造工艺:采用更加精细的制造工艺可以提高晶体管的特征频率。
3. 优化电路设计:通过优化电路设计,例如减小输入和输出电容、增加负载阻抗等方式可以提高晶体管的特征频率。
四、应用场景1. 高频放大器:在无线通信、雷达、卫星通信等领域中,需要使用高频放大器进行信号放大。
此时,需要使用具有较高特征频率的晶体管来实现放大器设计。
2. 射频开关:在射频开关中,需要使用快速切换功能和较高带宽的元器件。
此时,具有较高特征频率的晶体管是一种理想选择。
3. 混合信号集成电路:在混合信号集成电路中,需要同时处理模拟和数字信号。
此时,需要使用具有较高特征频率的晶体管来实现高速数字信号的处理。
五、总结晶体管特征频率是晶体管在高频工作时的一个重要参数,决定了其能够承受的最高频率。
影响晶体管特征频率的因素包括晶体管结构、工艺制造和工作环境等。