十字相乘法因式分解课件
- 格式:ppt
- 大小:1.76 MB
- 文档页数:7
第五讲:十字相乘法进行因式分解(1) 理解二次三项式的意义: 二次三项式1,:多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.2:在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.3:在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式 (2)理解十字相乘法的根据;1:利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则 (1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++注意:这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.例1 把1522--x x 分解因式解:因为 常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数;131 -5所以:)5)(3(1522-+=--x x x x 变式:1.x 2+6x -722.x 2-4x -12;3.x 2+9x -10; x 2-14x-15;例2:把2265y xy x +-分解因式解:将y 看作常数,转化为关于x 的二次三项式,常数项26y 可分为(-2y )(-3y ), 而(-2y )+(-3y )=(-5y )恰为一次项系数.1-2y1 -3y所以:)3)(2(6522y x y x y xy x --=+-. 变式:x 2-10xy -56y 2 练习:分解因式1、x 2-5xy+6y 2.2、x 2-7xy+12y 23、x 2+3xy-102例3、(x+y) 2-8(x+y)-48解:因为可将(x+y )看作一个整体,转化为关于(x+y)的二次三项式,常数项-48可分为(-12)x (4),而(-12)+4=-8,恰好为一次项系数。
十字相乘法讲解观察下列各式由上面各式得到:等式特点:(1) 等式左边是一个关于x 的二次项系数为1的二次三项式.(2) 等式左边的常数项可分解成两个因数的乘积,且这两个数的和等于一次项系数.(3) 等式右边为两个关于x 的一次因式的乘积.例1 分解因式归纳(1)十字相乘法主要对二次三项式进行因式分解;(2)基本步骤:①对二次项系数和常数项进行竖式分解;②验证交叉相乘后,和是否等于一次项系数;③横向相加,分解因式。
=++)2)(3(x x =+-)3)(4(x x =--)7)(6(x x =-+)2)(5(x x =++))((q x p x 652++x x 122--x x 42132+-x x 1032-+x x pqqx px x +++2652++x x )2)(3(++=x x 122--x x )3)(4(+-=x x 42132+-x x )7)(6(--=x x 1032-+x x )2)(5(-+=x x ))(()(2q x p x pq x q p x ++=+++1=++107.12x x =--82.22x x =-+65.32x x =+-107.42x x 2310.5x x --92721.62-+x x探索新知计算:反过来 首项系数非1的整系数二次三项式的因式分解例3 分解因式86.124++x x ()()34.32++-+b a b a 107.222+-xy y x 2223.4y xy x +-()2044.5222---+x x x x =++)1)(32(x x 3522++x x =++3522x x )1)(32(++x x =++c bx ax 2))((2211c x a c x a ++=++276.12x x =++10113.22x x =+-82315.32x x =-+36196.42x x =++-22865.5y xy x 7)(15)(2.62++++b a b a 22224954.7y y x y x --223231.8y xy x +-补充作业分解因式:(1)232++x x (2)672+-x x (3)2142--x x(4)1072++x x (5)822--x x (6)1272+-y y ;(7)1872-+x x (8)101132++x x (9)6752-+x x(10) 3722+-x x (11) 101332+-x x (12) 101332--x x ;(13) 5762--x x (14) ;86522y xy x -+ (15) 223116y xy x +-(16) ;7624-+x x (17) 12322--mn n m (18);1032-+x x()1222.12++++k x k x ()212.222-+++-m m x m x ()2223.32+++-m x m mx课外作业(1);2142-+a a (2);1242-+m m (3);1522-+x x(4);1832--y y (5);122--x x (6).841522b ab a +-(7);2762++x x (8);101162--y y (9);1562-+x x(10);4832+-a a(11);6752-+x x (12)2675m m -+(13)71522++x x ; (14);622-+y y (15);6732--a a(16);61362+-x x(17);15442-+n n (18);10722+-xy y x(19)91024+-x x。
第八讲 十字相乘法因式分解【知识要点】十字相乘法:1.针对q px x ++2的因式:恰好p 可写成b a +,q 可写成ab ,则有: 222()()()()()()x px q x ax bx abx ax bx ab x x a b x a x a x b ++=+++=+++=+++=++ 2.由21122122122111))((c c x c a c c a x a a c x a c x a +++=++,反过来看,就得到c bx ax ++2的因式分解式。
即))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++与c bx ax ++2比较,就知道a 分解成21a a ,c 分解成21c c ,并且把2121,,,c c a a 排列成方阵再交叉相乘后相加,就得到b 。
b c a c a c a c a =+211222113、十字相乘法口诀:拆两头、凑中间、交叉乘、横着写。
【经典例题】例1.分解因式:(1)1492++x x (2)1032+--x x(3)5922-+x x (4)22823y xy x --同步练习:(1)122--x x (2)1032--x x(3)31082---x x (4)221435y xy x --例2.阅读下面的问题,然后回答,分解因式:x 2+2x ﹣3,解:原式=x 2+2x +1﹣1﹣3=(x 2+2x +1)﹣4=(x +1)2﹣4=(x +1+2)(x +1﹣2)=(x +3)(x ﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2﹣4x +3 (2)4x 2+12x ﹣7.例3.阅读与思考:整式乘法与因式分解是方向相反的变形,由(x +p )(x +q )=x 2+(p +q )x +pq ,可得x 2+(p +q )x +pq =(x +p )(x +q ).利用这个式子可以将某些二次项系数是1的二次三项式分解因式.例如:将式子x 2+3x +2分解因式.这个式子的常数项2=1×2,一次项系3=1+2,所以x 2+3x +2=x 2+(1+2)x +1×2.解:x 2+3x +2=(x +1)(x +2).上述分解因式x 2+3x +2的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).请仿照上面的方法,解答下列问题:(1)分解因式:x 2﹣5x +6= ;(2)若x 2+px +8可分解为两个一次因式的积,则整数P 的所有可能值是 .例4.分解因式(1)()a x a x +++12 (2)()k x k kx +++122例5.阅读理解:对于多项式x 2+px +q ,若满足关系式p =a +b ,q =ab ,那么这个多项式可进行如下的因式分解:x 2+px +q =x 2+(a +b )x +ab =(x +a )(x +b ),这种因式分解的方法叫做常数项分解法.例如多项式x 2+5x +6,因为6=2×3,5=2+3,故可因式分解为x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3).(1)多项式x 2+3x ﹣18分解结果正确的是 ;A .(x ﹣6)(x +3)B .(x ﹣9)(x +2)C .(x +6)(x ﹣3)D .(x +9)(x ﹣2)(2)填空:x 2+2x ﹣8=x 2+[ + ]x +[ ]×[ ]=[x + ][x + ];(3)仿照上面的方法分解因式:x 2﹣5x ﹣24.思考题:(1)38844322--+-+y x y xy x (2)612767322-++--y x y xy x【课堂练习】一、填空1.若3,5-+x x 都是152--kx x 的因式,则=k .2.若202++ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是 .3.阅读理解:用“十字相乘法”分解因式2x 2﹣x ﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x +1)(2x ﹣3)=2x 2﹣3x +2x ﹣3=2x 2﹣x ﹣3,则2x 2﹣x ﹣3=(x +1)(2x ﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x 2+5x ﹣12= .二、分解因式1.1072+-x x 2.1492-+-x x 3. 223102ab b a a -+4.22673y xy x -- 5.223108y xy x ++ 6.2252710y xy x ++7.2)(3)(2++-+y x y x 8.8)(6)(2++++y x y x 9. 221y xy a a x +⎪⎭⎫ ⎝⎛++10.()()42522+-+-x x 11.()()2532++++b a b a【课后作业】一、因式分解:(1)(x ﹣4)(x +7)+18. (2)(x 2﹣x )2+(x 2﹣x )﹣6. (3)x 2+x ﹣2(4)a 2﹣2a ﹣15 (5)(x 2﹣2x )2﹣2(x 2﹣2x )﹣3 (6)x 2﹣4x ﹣12(7)2254y xy x -- (8)1032-+x x (9)222212y xy x --8.若041222=+-+-y xy x x ,则=x ,=y . 9.若36412++kx x 是一个完全平方式,则=k . 10.a a a 1216423++-在分解因式时,应提取的公因式是 . 11.多项式78622++-+y x y x 的最小值为 .12.阅读下列问题因式分解:x 2+4x +3.解:原式=x 2+4x +4﹣4+3=(x 2+4x +4)﹣1=(x +2)2﹣1=(x +2+1)(x +2﹣1)=(x +3)(x +1)上述因式分解的方法称为配方法.请仿照上述配方法的解题步骤将下列各式因式分解:(1)x 2﹣6x +5 (2)4x 2+4x ﹣15第八讲 十字相乘法因式分解【知识要点】十字相乘法:1.针对q px x ++2的因式:恰好p 可写成b a +,q 可写成ab ,则有: 222()()()()()()x px q x ax bx abx ax bx ab x x a b x a x a x b ++=+++=+++=+++=++ 2.由21122122122111))((c c x c a c c a x a a c x a c x a +++=++,反过来看,就得到c bx ax ++2的因式分解式。