十字相乘法分解因式
- 格式:ppt
- 大小:163.50 KB
- 文档页数:11
因式分解-十字相乘法一、十字相乘法分解因式十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明:1、首项系数是1的二次三项式的因式分解,我们学习了多项式的乘法,即()()()x a x b x a b x ab ++=+++2将上式反过来,()()()x a b x ab x a x b 2+++=++得到了因式分解的一种方法——十字相乘法,用这种方法来分解因式的关键在于确定上式中的a 和b ,例如,为了分解因式x px q 2++,就需要找到满足下列条件的a 、b ;a b pab q +==⎧⎨⎩如把762-+x x 分解因式,首先要把二次项系数2x 分成x x ⨯,常数项-7分成)1(7-⨯,写成十字相乘,左边两个数的积为二次项,右边两个数的积为常数项。
交叉相乘的和为x x x 67)1(=⨯+-⨯,正好是一次项。
从而)1)(7(762-+=-+x x x x 。
2、二次项系数不为1的二次三项式的因式分解二次三项式ax bx c 2++中,当a ≠1时,如何用十字相乘法分解呢?分解思路可归纳为“分两头,凑中间”,例如,分解因式2762x x -+,首先要把二次项系数2分成1×2,常数项6分成()()-⨯-23,写成十字相乘,左边两个数的积为二次项系数。
右边两个数相乘为常数项,交叉相乘的和为()()13227⨯-+⨯-=-,正好是一次项系x =-+762x )1)(7(-+x x xx⇓⨯⇓71-xx x 67=+-数,从而得()()2762232x x x x -+=--。
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x 分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
十字相乘法分解因式举例十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能用于二次三项式的分解因式(不一定是整数范围内)。
对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。
那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
运算举例a²+a-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a + ?)×(a -?),然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成-21×2 或者21×(-2)。
首先,21和2无论正负,通过任意加减后都不可能是1,只可能是7或者6,所以排除后者。
然后,再确定是-7×6还是7×(-6)。
﹣7﹢6=﹣1,7﹣6=1,因为一次项系数为1,所以确定是7×﹣6。
所以a²+a-42就被分解成为(a+7)×(a-6),这就是通俗的十字分解法分解因式。
分解因式例1、因式分解。
x²-x-56分析:因为7x + (-8x) =-x解:原式=(x+7)(x-8)例2、因式分解。
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
十字相乘法讲解观察下列各式由上面各式得到:等式特点:(1) 等式左边是一个关于x 的二次项系数为1的二次三项式.(2) 等式左边的常数项可分解成两个因数的乘积,且这两个数的和等于一次项系数.(3) 等式右边为两个关于x 的一次因式的乘积.例1 分解因式归纳(1)十字相乘法主要对二次三项式进行因式分解;(2)基本步骤:①对二次项系数和常数项进行竖式分解;②验证交叉相乘后,和是否等于一次项系数;③横向相加,分解因式。
=++)2)(3(x x =+-)3)(4(x x =--)7)(6(x x =-+)2)(5(x x =++))((q x p x 652++x x 122--x x 42132+-x x 1032-+x x pqqx px x +++2652++x x )2)(3(++=x x 122--x x )3)(4(+-=x x 42132+-x x )7)(6(--=x x 1032-+x x )2)(5(-+=x x ))(()(2q x p x pq x q p x ++=+++1=++107.12x x =--82.22x x =-+65.32x x =+-107.42x x 2310.5x x --92721.62-+x x探索新知计算:反过来 首项系数非1的整系数二次三项式的因式分解例3 分解因式86.124++x x ()()34.32++-+b a b a 107.222+-xy y x 2223.4y xy x +-()2044.5222---+x x x x =++)1)(32(x x 3522++x x =++3522x x )1)(32(++x x =++c bx ax 2))((2211c x a c x a ++=++276.12x x =++10113.22x x =+-82315.32x x =-+36196.42x x =++-22865.5y xy x 7)(15)(2.62++++b a b a 22224954.7y y x y x --223231.8y xy x +-补充作业分解因式:(1)232++x x (2)672+-x x (3)2142--x x(4)1072++x x (5)822--x x (6)1272+-y y ;(7)1872-+x x (8)101132++x x (9)6752-+x x(10) 3722+-x x (11) 101332+-x x (12) 101332--x x ;(13) 5762--x x (14) ;86522y xy x -+ (15) 223116y xy x +-(16) ;7624-+x x (17) 12322--mn n m (18);1032-+x x()1222.12++++k x k x ()212.222-+++-m m x m x ()2223.32+++-m x m mx课外作业(1);2142-+a a (2);1242-+m m (3);1522-+x x(4);1832--y y (5);122--x x (6).841522b ab a +-(7);2762++x x (8);101162--y y (9);1562-+x x(10);4832+-a a(11);6752-+x x (12)2675m m -+(13)71522++x x ; (14);622-+y y (15);6732--a a(16);61362+-x x(17);15442-+n n (18);10722+-xy y x(19)91024+-x x。