化工原理 第一章6
- 格式:ppt
- 大小:1.48 MB
- 文档页数:58
化工原理思考题答案第一章流体流动与输送机械1、压力与剪应力的方向及作用面有何不同(P7、P9)答:压力垂直作用于流体表面,方向指向流体的作用面,剪应力平行作用于流体表面,方向与法向速度梯度成正比。
2、试说明黏度的单位、物理意义及影响因素(P9)答:单位是N∙s∕∏f即Pa∙s,也用CP(厘泊),1CP=ImPa∙s,物理意义:黏度为流体流动时在与流动方向相垂直的方向上产生单位速度梯度所需的剪应力(分子间的引力和分子的运动和碰撞)。
影响因素:流体的种类、温度和压力。
3、采用U型压差计测某阀门前后的压力差,压差计的读数与U型压差计放置的位置有关吗?(P12T3例1-3)答:无关,对于均匀管路,无论如何放置,在流量及管路其他条件一定时,流体流动阻力均相同,因此U型压差计的读数相同,但两截面的压力差却不相同。
4、流体流动有几种类型?判断依据是什么?(P25)答:流型有两种,层流和湍流,依据是:Re<2000时,流动为层流;Re⅛4000时,为湍流,2000WReW4000时,可能为层流,也可能为湍流5、雷诺数的物理意义是什么?(P25)答:雷诺数表示流体流动中惯性力与黏性力的对比关系,反映流体流动的湍动程度。
6、层流与湍流的本质区别是什么?(P24、P27)答:层流与湍流的本质区别是层流没有质点的脉动,湍流有质点的脉动。
7、流体在圆管内湍流流动时,在径向上从管壁到管中心可分为哪几个区域?(P28)答:层流内层、过渡层和湍流主体三个区域。
8、流体在圆形直管中流动,若管径一定而流量增大一倍,则层流时能量损失时原来的多少倍?完全湍流时流体损失又是原来的多少倍?(P31、32、33)答:层流时Wfxu,管径一定流量U增大一倍,Wf增大一倍能量损失是原来的2倍,完全湍流时Wf8/,管径一定流量U增大一倍,Wf增大流量增大四倍,能量损失是原来的4倍。
9、圆形直管中,流量一定,设计时若将管径增加一倍,则层流时能量损失时原来的多少倍?完全湍流时流体损失又是原来的多少倍?(P32、32、33)答:层流时Wf8u,流量一定管径d增加一倍,d2增大四倍,Wf减小为原来的1/4,能量损失是原来的1/4倍,完全湍流时Wf8tl2,流量一定管径d增加一倍,cP增大四倍,管径增加一倍能量损失是原来的1/4倍。
第一章 流体力学与应用一、填空(1)流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的 2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/4 倍。
(2)离心泵的特性曲线通常包括 H-Q 曲线、 η-Q 和 N-Q 曲线,这些曲线表示在一定 转速 下,输送某种特定的液体时泵的性能。
(3) 处于同一水平面的液体,维持等压面的条件必须是 静止的 、 连通着的 、 同一种连续的液体 。
流体在管内流动时,如要测取管截面上的流速分布,应选用 皮托 流量计测量。
(4) 如果流体为理想流体且无外加功的情况下,写出: 单位质量流体的机械能衡算式为常数=++=ρp u gz E 22; 单位重量流体的机械能衡算式为常数=++=gp g u z E ρ22; 单位体积流体的机械能衡算式为;常数=++=p u gz E 22ρρ(5) 有外加能量时以单位体积流体为基准的实际流体柏努利方程为z 1ρg+(u 12ρ/2)+p 1+W s ρ= z 2ρg+(u 22ρ/2)+p 2 +ρ∑h f ,各项单位为 Pa (N/m 2) 。
(6)气体的粘度随温度升高而 增加 ,水的粘度随温度升高而 降低 。
(7) 流体在变径管中作稳定流动,在管径缩小的地方其静压能 减小 。
(8) 流体流动的连续性方程是 u 1A ρ1= u 2A ρ2=······= u A ρ ;适用于圆形直管的不可压缩流体流动的连续性方程为 u 1d 12 = u 2d 22= ······= ud 2 。
(9) 当地大气压为745mmHg 测得一容器内的绝对压强为350mmHg ,则真空度为 395mmHg 。
测得另一容器内的表压强为1360 mmHg ,则其绝对压强为2105mmHg 。
(10) 并联管路中各管段压强降 相等 ;管子长、直径小的管段通过的流量 小 。
第一章流体流动一、压强1、单位之间的换算关系:2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式二、牛顿粘性定律为速度梯度; 为流体的粘度;τ为剪应力;dudy粘度是流体的运动属性,单位为Pa·s;物理单位制单位为g/(cm·s),称为P(泊),其百分之一为厘泊cp液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hfρ∆∆∆++=-∑ 22u pgz E ρ++=称为流体的机械能单位重量流体的能量衡算方程:z :位压头(位头);22u g:动压头(速度头) ;p gρ:静压头(压力头)有效功率:Ne WeWs = 轴功率:NeN η=五、流动类型雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型(2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
即,由几个物理量组成的这种数称为准数。
六、流动阻力1、直管阻力——范宁公式(1)层流时的磨擦系数:64Reλ=,层流时阻力损失与速度的一次方成正比,层流区又称为阻力一次方区。
(2)湍流时的摩擦系数 ①(Re,)f d ελ=(莫狄图虚线以下):给定Re ,λ随dε增大而增大;给定dε,λ随Re 增大而减小。
第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。
第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。
此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。
三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。
第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121pu g z p u g z ++=++4. 实际流体机械能衡算方程:f W pu g z p u g z ∑+++=++ρρ222212112121+5. 雷诺数:λμρ64Re ==du 6. 范宁公式:ρρμλfp dlu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆8.局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ9.混合液体密度的计算:n wnB wB A wA m x x x ρρρρ+++=....1ρ液体混合物中个组分得密度,10. Kg/m 3,x--液体混合物中各组分的质量分数。
10 。
表压强=绝对压强-大气压强 真空度=大气压强-绝对压强 11. 体积流量和质量流量的关系:w s =v s ρ m 3/s kg/s 整个管横截面上的平均流速:A Vs=μ A--与流动方向垂直管道的横截面积,m 2流量与流速的关系:质量流量:μρ===A v A w G ss G 的单位为:kg/(m 2.s)12. 一般圆形管道内径:πμsv d 4=13. 管内定态流动的连续性方程:常数=====ρμρμρμA A A s w (222111)表示在定态流动系统中,流体流经各截面的质量流量不变,而流速u 随管道截面积A 及流体的密度ρ而变化。
对于不可压缩流体的连续性方程:常数=====A A A s v μμμ (2211)体积流量一定时流速与管径的平方成反比:()22121d d =μμ 14.牛顿黏性定律表达式:dy duμτ= μ为液体的黏度1Pa.s=1000cP15平板上边界层的厚度可用下式进行评估:对于滞留边界层5.0Re 64.4xx=δ 湍流边界层2.0Re 376.0xx=δ式中Re x 为以距平板前缘距离x 作为几何尺寸的雷诺数,即μxp u s x =Re ,u s 为主流区的流 速16 对于滞留流动,稳定段长度x 。
第一章 液体流 体 流 动一.基本内容1. 流体静力学方程及应用2. 稳定流动系统物料衡算——连续性方程机械能衡算——柏努利方程 3. 管内流体流动阻力: (1) 两种流动类型及判断。
(2) 流动阻力计算:直管阻力和局部阻力 二.基本概念1. 稳定流动:与流动有关的物理量不随时间的改变,但可随位置而改变,其质量流量为常数。
2. 等压面:静止连续同一流体,同一水平面。
3. 滞流与湍流,滞流底层: (1) 两种流动类型本质区别在于流体质点运动规律不同; (2) 在湍流流体中近壁面处总存在一薄层滞流流体,称为滞流底层(层流内层); (3) 滞流与湍流之速度分布:a . 层流:点速度ur 与其所处半径r 成抛物线关系,平均流速u 为管中心线处最大速度umax 的1/2倍。
b .湍流:平均流速u 为umax 的0.8~0.82倍。
4. 流体流动阻力产生的原因:流体存在粘性,流动时产生粘滞力(内摩檫力),质点的相互作用(包括质点的脉动以及由于流道截面大小及方向的改变引起的); 5. 串联管路,并联管路及其特点: (1) 串联管路:管径不同的管段串联而成特点:①w 1=w 2=……=w ,㎏/s 各管段相同;ρ=常数, V1=V2=……=V ,s m /3; ②⋅⋅⋅⋅⋅⋅++=∑21f f f h h h ,J/㎏ 总阻力等于各段阻力之和。
(2) 并联管路:先分后合的管路特点:①w=w 1+w 2+……,㎏/s 总管流率等于各管段流率之和;②∑∑∑==21f f f h h h ……, J/kg 各支管段(每kg 流体)阻力相等。
6.管路视作一整体,存在能量平衡:(1)任何局部阻力的增加,将使管内流量下降; (2)下游阻力↑,使上游压力↑(3)上游阻力↑,使下游压力↓(4)阻力损失总是表现为势能的降低。
7.当量直径ed ,水力半径hr :∏==A r d k e 44,∏=A r h三.基本公式:1. 流体静力学方程:gh p p ρ+=12,PaJ/kg2211,ρρp gz p gz +=+,水平液柱差压计:0()p R gρρ∆=-,Pa 。
第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
第一章 流体流动gh p p ρ+=024dq u v π=uA q v =(m3/s ) ρρuA q q v m ==(kg/s)质量流速w=q m /A u 1/u 2=(d 2/d 1)2 柏努利方程式:∑+++=+++fe hp u gz w p u gz ρρ2222121122(J/Kg)局部摩擦阻力损失与流体动能成正比h f =ζ(u 2/2) 管径突然扩大ζ=1;缩小ζ=0.5层流(Re<2000):摩擦系数λ=64/Re Re=du ρ/μ 层流时直管摩擦阻力的压差:Δ P=32(μlu/d 2) 湍流(Re>4000),1/√λ=-1.8Lg{[(ε/d)/3.7]1.11+6.9/Re} ε/d 相对粗糙度 ε绝对粗糙度 ζ局部阻力系数 总摩擦阻力损失Σhf=[λ(l+Σle)/d+Σζ]u 2/2 第二章 流体输送机械杨程H=h 0+(P M -Pv)/ρg+(u 22-u 21)/2g+ΣHf安装高度(防止汽蚀)允许气蚀余量Δh P 0(液面上方的绝对压力) Pv (液体饱和蒸汽压)Hg 允许=P 0/ρg-Pv/ρg-Δh-ΣHf Q v2/q v1=n 2/n 1 H 2/H 1=(n 2/n 1)2 P 2/P 1=(n 2/n 1)3 第四章 传热傅里叶定律:Q=-λA(dt/dx)单壁热传导(W )Q=(λ/b)A Δt 多壁Q=Q 1=Q 2=Q 3=Δt 1/(b 1/λ1A)单位面积的导热速率(W/m 2)q =Q/A Q=KA Δt m Δt m =(Δt1-Δt2)/Ln(Δt1/Δt2) 热量恒算;Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1) 第六章 蒸馏拉乌尔定律P A =P 0A x A 杠杆定律:L/V=(y-x s )/(x s -x) p 0A 轻组分的饱和蒸汽压 泡点:x=(P-P 0B )/(p 0A -P 0B ) 露点;y=(p 0A /P)x 相对挥发度:α=p 0A / P 0B 理想溶液的气液相平衡方程式y=αx/[1+(α-1)x] x=y/[α-(α-1)y]F=D+W D/F W/F=1-D/F L=RD(精馏段下降液体流量) V=D+L(精馏段上升气体流量) L ’=L+qF V ’=(q-1)F V=(R+1)D 精馏段操作线方程111++-+=R x Xn R R yn D 提馏段操作方程''1'1R xxn R R yn w -+=+ 塔釜气相回流比R ’=V ’/W 回流比R=L/D 液气比L/V=R/(R+1) L ’/V ’=(R ’+1)/R ’R ’=(R+1)(X F -X W )/X D -X F )+(q-1)(X D -X W )/(X D -X F ) X f =[R+1)X F +(q-1)X D ]/(R+q)第三章 流体流动gh p p ρ+=024dq u v π=uA q v =(m3/s ) ρρuA q q v m ==(kg/s)质量流速w=q m /A u 1/u 2=(d 2/d 1)2 柏努利方程式:∑+++=+++fe hp u gz w p u gz ρρ2222121122(J/Kg)局部摩擦阻力损失与流体动能成正比h f =ζ(u 2/2) 管径突然扩大ζ=1;缩小ζ=0.5层流(Re<2000):摩擦系数λ=64/Re Re=du ρ/μ 层流时直管摩擦阻力的压差:Δ P=32(μlu/d 2) 湍流(Re>4000),1/√λ=-1.8Lg{[(ε/d)/3.7]1.11+6.9/Re} ε/d 相对粗糙度 ε绝对粗糙度 ζ局部阻力系数 总摩擦阻力损失Σhf=[λ(l+Σle)/d+Σζ]u 2/2 第四章 流体输送机械杨程H=h 0+(P M -Pv)/ρg+(u 22-u 21)/2g+ΣHf安装高度(防止汽蚀)允许气蚀余量Δh P 0(液面上方的绝对压力) Pv (液体饱和蒸汽压)Hg 允许=P 0/ρg-Pv/ρg-Δh-ΣHf Q v2/q v1=n 2/n 1 H 2/H 1=(n 2/n 1)2 P 2/P 1=(n 2/n 1)3 第四章 传热傅里叶定律:Q=-λA(dt/dx)单壁热传导(W )Q=(λ/b)A Δt 多壁Q=Q 1=Q 2=Q 3=Δt 1/(b 1/λ1A)单位面积的导热速率(W/m 2)q =Q/A Q=KA Δt m Δt m =(Δt1-Δt2)/Ln(Δt1/Δt2) 热量恒算;Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1) 第六章 蒸馏拉乌尔定律P A =P 0A x A 杠杆定律:L/V=(y-x s )/(x s -x) p 0A 轻组分的饱和蒸汽压 泡点:x=(P-P 0B )/(p 0A -P 0B ) 露点;y=(p 0A /P)x 相对挥发度:α=p 0A / P 0B 理想溶液的气液相平衡方程式y=αx/[1+(α-1)x] x=y/[α-(α-1)y]F=D+W D/F W/F=1-D/F L=RD(精馏段下降液体流量) V=D+L(精馏段上升气体流量) L ’=L+qF V ’=(q-1)F V=(R+1)D 精馏段操作线方程111++-+=R x Xn R R yn D 提馏段操作方程''1'1R xxn R R yn w -+=+ 塔釜气相回流比R ’=V ’/W 回流比R=L/D 液气比L/V=R/(R+1) L ’/V ’=(R ’+1)/R ’R ’=(R+1)(X F -X W )/X D -X F )+(q-1)(X D -X W )/(X D -X F ) X f =[R+1)X F +(q-1)X D ]/(R+q)第五章 流体流动gh p p ρ+=024dq u v π=uA q v =(m3/s ) ρρuA q q v m ==(kg/s)质量流速w=q m /A u 1/u 2=(d 2/d 1)2 柏努利方程式:∑+++=+++fe hp u gz w p u gz ρρ2222121122(J/Kg)局部摩擦阻力损失与流体动能成正比h f =ζ(u 2/2) 管径突然扩大ζ=1;缩小ζ=0.5层流(Re<2000):摩擦系数λ=64/Re Re=du ρ/μ 层流时直管摩擦阻力的压差:Δ P=32(μlu/d 2) 湍流(Re>4000),1/√λ=-1.8Lg{[(ε/d)/3.7]1.11+6.9/Re} ε/d 相对粗糙度 ε绝对粗糙度 ζ局部阻力系数 总摩擦阻力损失Σhf=[λ(l+Σle)/d+Σζ]u 2/2 第六章 流体输送机械杨程H=h 0+(P M -Pv)/ρg+(u 22-u 21)/2g+ΣHf安装高度(防止汽蚀)允许气蚀余量Δh P 0(液面上方的绝对压力) Pv (液体饱和蒸汽压)Hg 允许=P 0/ρg-Pv/ρg-Δh-ΣHf Q v2/q v1=n 2/n 1 H 2/H 1=(n 2/n 1)2 P 2/P 1=(n 2/n 1)3 第四章 传热傅里叶定律:Q=-λA(dt/dx)单壁热传导(W )Q=(λ/b)A Δt 多壁Q=Q 1=Q 2=Q 3=Δt 1/(b 1/λ1A)单位面积的导热速率(W/m 2)q =Q/A Q=KA Δt m Δt m =(Δt1-Δt2)/Ln(Δt1/Δt2) 热量恒算;Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1) 第六章 蒸馏拉乌尔定律P A =P 0A x A 杠杆定律:L/V=(y-x s )/(x s -x) p 0A 轻组分的饱和蒸汽压 泡点:x=(P-P 0B )/(p 0A -P 0B ) 露点;y=(p 0A /P)x 相对挥发度:α=p 0A / P 0B 理想溶液的气液相平衡方程式y=αx/[1+(α-1)x] x=y/[α-(α-1)y]F=D+W D/F W/F=1-D/F L=RD(精馏段下降液体流量) V=D+L(精馏段上升气体流量) L ’=L+qF V ’=(q-1)F V=(R+1)D 精馏段操作线方程111++-+=R x Xn R R yn D 提馏段操作方程''1'1R xxn R R yn w -+=+ 塔釜气相回流比R ’=V ’/W 回流比R=L/D 液气比L/V=R/(R+1) L ’/V ’=(R ’+1)/R ’R ’=(R+1)(X F -X W )/X D -X F )+(q-1)(X D -X W )/(X D -X F ) X f =[R+1)X F +(q-1)X D ]/(R+q)第七章 流体流动gh p p ρ+=024dq u v π=uA q v =(m3/s ) ρρuA q q v m ==(kg/s)质量流速w=q m /A u 1/u 2=(d 2/d 1)2 柏努利方程式:∑+++=+++fe hp u gz w p u gz ρρ2222121122(J/Kg)局部摩擦阻力损失与流体动能成正比h f =ζ(u 2/2) 管径突然扩大ζ=1;缩小ζ=0.5层流(Re<2000):摩擦系数λ=64/Re Re=du ρ/μ 层流时直管摩擦阻力的压差:Δ P=32(μlu/d 2) 湍流(Re>4000),1/√λ=-1.8Lg{[(ε/d)/3.7]1.11+6.9/Re} ε/d 相对粗糙度 ε绝对粗糙度 ζ局部阻力系数 总摩擦阻力损失Σhf=[λ(l+Σle)/d+Σζ]u 2/2 第八章 流体输送机械杨程H=h 0+(P M -Pv)/ρg+(u 22-u 21)/2g+ΣHf安装高度(防止汽蚀)允许气蚀余量Δh P 0(液面上方的绝对压力) Pv (液体饱和蒸汽压)Hg 允许=P 0/ρg-Pv/ρg-Δh-ΣHf Q v2/q v1=n 2/n 1 H 2/H 1=(n 2/n 1)2 P 2/P 1=(n 2/n 1)3 第四章 传热傅里叶定律:Q=-λA(dt/dx)单壁热传导(W )Q=(λ/b)A Δt 多壁Q=Q 1=Q 2=Q 3=Δt 1/(b 1/λ1A)单位面积的导热速率(W/m 2)q =Q/A Q=KA Δt m Δt m =(Δt1-Δt2)/Ln(Δt1/Δt2) 热量恒算;Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1) 第六章 蒸馏拉乌尔定律P A =P 0A x A 杠杆定律:L/V=(y-x s )/(x s -x) p 0A 轻组分的饱和蒸汽压 泡点:x=(P-P 0B )/(p 0A -P 0B ) 露点;y=(p 0A /P)x 相对挥发度:α=p 0A / P 0B 理想溶液的气液相平衡方程式y=αx/[1+(α-1)x] x=y/[α-(α-1)y]F=D+W D/F W/F=1-D/F L=RD(精馏段下降液体流量) V=D+L(精馏段上升气体流量) L ’=L+qF V ’=(q-1)F V=(R+1)D 精馏段操作线方程111++-+=R x Xn R R yn D 提馏段操作方程''1'1R xxn R R yn w -+=+ 塔釜气相回流比R ’=V ’/W 回流比R=L/D 液气比L/V=R/(R+1) L ’/V ’=(R ’+1)/R ’R ’=(R+1)(X F -X W )/X D -X F )+(q-1)(X D -X W )/(X D -X F ) X f =[R+1)X F +(q-1)X D ]/(R+q)。
1. 米糠油在管中作层流流动,若流量不变,管径、管长不变,油温升高,粘度为原来的1/2 ,则摩擦阻力损失为原来的_____倍。
2. 流体在圆形直管中作层流流动,如果流量等不变,只是将管径增大一倍,则阻力损失为原来的_________。
3. 当20℃的甘油(ρ=1261kg.m-3,,μ=1499厘泊)在内径为100mm的管内流动时,若流速为2.52.5m.s-1时,其雷诺准数Re为__________,其摩擦阻力系数λ为________.4. 当量直径的定义是de=____________,对边长为a正方形风管当量直径de =__________。
5. 当量直径的定义是de=____________,在套管环间流动的流体,外管的内径是d2,内管的外径是d1,则当量直径de=________。
6. 当Re 为已知时,流体在圆形管内呈层流时的摩擦系数λ=__________,在管内呈湍流时,摩擦系数λ与____________、_____________有关。
7. 水由敞口恒液位的高位槽通过一管道流向压力恒定的反应器,当管道上的阀门开度减小后,水流量将__________,摩擦系数____________,管道总阻力损失________(增大、减小、不变)。
8. 当流体在园管内流动时,管中心流速最大,滞流时的平均速度与管中心的最大流速的关系为( )A. Um=3/2.UmaλB. Um=0.8UmaλC. Um=1/2.Umaλ9. 学习流体流动与输送,你认为应解决些什么问题?答:10. 什么叫化工单元操作?常用的化工单元操作有哪些?答:11. 什么叫化工单元操作?常用的化工单元操作有哪些?答:2、1/163、210.3; 0.3044、de=4×流通截面积/浸润周边, de=a5、de=4×流通截面积/浸润周边de=d2-d16、64/Re; Re; ε/d7、减小;增大;不变8、C9、学习流体流动与输送一般应解决以下问题:1、合理选择流体输送管道的管径2、确定输送流体所需的能量和设备。