了解SOR法迭代矩阵谱半径和迭代参数的关系
- 格式:doc
- 大小:79.51 KB
- 文档页数:2
sor迭代法手算例题SOR迭代法是求解线性方程组的一种经典方式,其基本思想是通过不断迭代来逼近方程组的解。
这种方法在大规模问题上具有很好的效率,因此得到了广泛的应用。
本文将介绍SOR迭代法的基本原理,并以一个手算例题来展示其具体步骤和计算结果。
一、SOR迭代法的基本原理在介绍SOR迭代法的原理之前,我们先来看一下迭代法本身的思想。
假设有一个线性方程组:$$Ax=b$$其中,A是一个$n\times n$的系数矩阵,b是一个$n\times 1$的常数向量,x是一个$n\times 1$的未知向量。
迭代法的基本思想是将方程组表示为:$$x^{(k+1)}=Tx^{(k)}+C$$其中,$x^{(k)}$表示第k次迭代的近似解,$T$是一个$n\times n$的矩阵,$C$是一个$n\times 1$的常数向量。
迭代法的步骤是从一个初始点$x^{(0)}$开始,不断应用上述公式来寻找更好的解$x^{(k+1)}$。
当接近真解时,迭代的过程会不断收敛,即$x^{(k+1)}$会不断逼近真解$x$。
那么,如何确定矩阵$T$和向量$C$呢?最简单的方法是将方程组表示为:$$x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b$$其中,I是$n\times n$的单位矩阵,$\omega$是一个常数,称作松弛因子。
当$\omega=1$时,这就是最基本的迭代法——雅克比迭代法。
但是,雅克比迭代法的收敛速度比较慢,因此需要调整$\omega$的值,从而得到更好的迭代效果。
SOR迭代法就是一种改良的迭代方法,其基本思想是通过加速松弛因子的变化来改善雅克比迭代法的效率。
具体来说,SOR迭代法的公式为:$$x_i^{(k+1)}=(1-\omega)x_i^{(k)}+\frac{\omega}{a_{ii}}\left(b_i-\sum_{j<i}a_{ij}x_j^{(k+1)}-\sum_{j>i}a_{ij}x_j^{(k)}\right)$$其中,$i=1,2,\cdots,n$。
sor方法
SOR方法是一种迭代数值解法,主要被用于求解线性系统Ax=b,其中A是系数矩阵,b是右端向量。
SOR方法的全称为"Successive Over-Relaxation Method",意为迭代超松弛法。
在使用SOR方法求解线性方程组时,首先需要将系数矩阵A分解为L、D和U 三个部分,其中L是A的严格下三角矩阵,D是A的对角线矩阵,U是A的严格上三角矩阵。
同时,SOR方法还需要一个松弛因子w。
SOR方法的迭代公式为:
x(k+1) = (1-w)x(k) + w(D-wL)^(-1)(b-Ux(k))
其中x(k)表示第k次迭代求得的解向量,x(k+1)表示x(k)的下一次迭代,^(−1)表示逆矩阵。
可以发现,SOR方法是基于Gauss-Seidel方法的改进,它在每一次迭代中添加了一个松弛因子w,从而使得解向量的迭代更快、更稳定。
在实际应用中,我们需要选择一个合适的松弛因子w,以使得SOR方法能够收敛并且收敛速度较快。
一般来说,选择一个小于1的w能够保证SOR方法的收敛性,而选择一个大于1的w能够加快SOR方法的收敛速度。
需要注意的是,SOR方法只能够求解特定条件下的线性方程组,如系数矩阵为对称正定矩阵、对角占优矩阵等。
当系数矩阵不满足这些条件时,SOR方法可能出现发散的情况。
总的来说,SOR方法是一种简单而有效的数值解法,被广泛应用于工程计算等领域。
在使用时,需要根据具体问题选择合适的松弛因子w,并且注意其收敛性和收敛速度。
用SOR法解方程组引言方程组是数学中常见的问题,解决方程组可以帮助我们理解和预测各种实际问题。
解方程组的方法有很多种,其中一种常用的方法是SOR(Successive Over Relaxation)法。
SOR法是一种迭代法,通过不断迭代逼近解的过程来求解方程组。
本文将对SOR法进行详细的介绍和分析。
SOR法概述SOR法是一种求解线性方程组的迭代算法,其基本思想是通过引入松弛因子来加速收敛速度。
对于线性方程组Ax=b,SOR法的迭代公式为:x^(k+1) = (1-w)x^(k) + w * D^(-1) * (b - L * x^(k+1) - U * x^(k))其中,x(k)表示第k次迭代的解向量,x(k+1)表示第k+1次迭代的解向量,w为松弛因子(0 < w< 2),A被分解为下三角矩阵L、上三角矩阵U和对角矩阵D。
算法流程SOR法的算法流程如下:1.初始化解向量x^(0)2.对于每次迭代k = 0, 1, 2, …–计算下一次迭代的解向量x^(k+1): x^(k+1) = (1-w)x^(k) + w * D^(-1) * (b - L * x^(k+1) - U * x^(k))–判断迭代是否收敛:如果迭代误差小于预设的阈值就停止迭代,否则继续迭代3.返回最终的解向量x^(k+1)SOR法特点SOR法具有以下几个特点:1.相对于传统的迭代法,SOR法引入了松弛因子,能够加速迭代的收敛速度。
2.当松弛因子w=1时,SOR法等价于高斯-赛德尔迭代法。
3.大部分情况下,SOR法是收敛的。
收敛速度与松弛因子w有关,一般来说,选择一个合适的松弛因子可以加快算法的收敛速度。
4.SOR法对于对角占优的线性方程组具有较好的收敛性能,但对于一般的线性方程组效果可能不理想。
SOR法的数值实验为了验证SOR法的性能,我们进行了一系列的数值实验。
我们选取了不同规模的线性方程组,通过对比SOR法的迭代次数和收敛速度来评估其性能。
SOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i);endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);end常微分方程的数值解法实验目的:熟悉在Matlab平台上直接求解常微分方程初值问题试验方法1、利用改进欧拉法解方程:程序内容为:fun=@(x,y)x^(-2)-y/x;h=0.05;X=1:h:2;Y(1)=1;for i=2:21Y(i)=Y(i-1)+h/2*(fun(X(i-1),Y(i-1))+fun(X(i),Y(i-1))+h*fun(X(i-1),Y(i-1))); end;Y运行结果为:Y =Columns 1 through 91.0000 0.9989 0.9957 0.9909 0.9848 0.9778 0.9701 0.9618 0.9530Columns 10 through 180.9440 0.9348 0.9254 0.9160 0.9065 0.8971 0.8876 0.8783 0.8690Columns 19 through 210.8598 0.8508 0.8418真实解的求法为:x=1:0.05:2;y=1./x.*(log(x)+1)y =Columns 1 through 81.0000 0.9988 0.9957 0.9911 0.9853 0.9785 0.9710 0.9630Columns 9 through 160.9546 0.9459 0.9370 0.9279 0.9188 0.9096 0.9004 0.8912Columns 17 through 210.8821 0.8731 0.8641 0.8553 0.8466用四阶R-K算法解常微分方程的程序为:fun=@(x,y)x^(-2)-y/x;h=0.1;X=1:h:2;Y(1)=1;for n=2:11k1=fun(x(n-1),Y(n-1));k2=fun(x(n-1)+h/2,Y(n-1)+h/2*k1);k3=fun(x(n-1)+h/2,Y(n-1)+h/2*k2);k4=fun(x(n-1)+h,Y(n-1)+h*k3);Y(n)=Y(n-1)+h/6*(k1+2*k2+2*k3+k4)end;Y运行后了结果为:Y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466真实解的求法为:x=1:0.1:2;y=1./x.*(log(x)+1)y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466可见其精确度至少已达到0.0012、MATLAB中数值解法“ode45”为:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],y0);符号解法“dsolve”求解为:dsolve('Dy=x^(-2)-y/x','y(1) = 1','x')ans =(log(x)+1)/x画出两种算法的图形位:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],1);fplot('(log(x)+1)/x',[1,2]);hold on, plot(x1,y1,'ro');数值算法同解析算法几乎完全吻合。
数值分析Python 实现系列——⼆、逐次超松弛迭代法(SOR )⼆、超松弛迭代法(SOR)1.原理:回顾:在⼀般情况下 : 收敛过慢甚⾄不收敛的B 与f ,经过对系数矩阵A 分裂成A =M −N 的形式, 使得迭代公式变为: x k +1=(I −M −1)Ax k +M −1f 雅克⽐迭代法选取 : 现将A 如下分解A =D −L −U ,D 为对⾓阵,L 为下三⾓阵,U 为上三⾓阵,取M ≡D ,取N ≡L +U ,在这⼀章中我们选取下三⾓矩阵M =1ω(D −ωL ),ω>0,其中ω为松弛因⼦,我们可以发现当ω为1时,M =D −L ,正是⾼思-赛德尔迭代法,下⾯推导迭代公式:x k +1=I −M −1A x k +M −1bx k +1=I −ω(D −ωL )−1A x k +ω(D −ωL )−1bx k +1=(D −ωL )−1((1−ω)D +ωU )x k +ω(D −ωL )−1b推导完毕,我们较为常⽤的是下式:(D −ωL )x k +1=((1−ω)D +ωU )x k +ωb以及:x (0)=(x (0)1,...,x (0)n )T ,x (k +1)i =x (k +)i +Δx i Δx i =ωb i −i −1∑j =1a ij x (k +1)j −n ∑j =1a ij x (k )j a ii i =1,2,...,n ,k =0,1,...,ω为松弛因⼦当ω>1时为超松弛迭代,当ω<1时为低松弛迭代迭代终⽌条件:max 1≤i ≤n |Δx i |=max1≤i ≤n |x (k +1)i −x (k )i |<ε,下⾯我们试试⽤Python 实现这⼀功能.2.实现:import numpy as npimport matplotlib.pyplot as pltMAX = 110 # 遍历最⼤次数A = np.array([[-4, 1, 1, 1], [1, -4, 1, 1], [1, 1, -4, 1], [1, 1, 1, -4]])b = np.array([[1], [1], [1], [1]]) # 注意这⾥取列向量omega_list = [1 + 0.005 * i for i in range(100)] # 取到不同的omega 值,观察趋势length = len(A)count = [] # 记录遍历的次数for omega in omega_list: # 遍历每⼀个omega 值times = 0x_0 = np.zeros((length, 1))x_hold = x_0 + np.ones((length, 1))while (np.linalg.norm(x_hold - x_0, ord=2) >= 10 ** (-5)) and (times <= MAX):# 遍历停⽌条件以k+1次与k 次迭代的向量差的⼆范数以及遍历最⼤次数为标准x_hold = x_0.copy() # 这⾥不要⽤赋值,要⽤copyx_new = x_0.copy()for i in range(length):# 根据迭代公式迭代x_new[i][0] = x_0[i][0] + omega * (b[i][0] - sum([A[i][j] * x_new[j][0] for j in range(i)]) - sum([A[i][j] * x_0[j][0] for j in range(i, length)])) / A[i][i]x_0 = x_new.copy()times += 1count.append(times)plt.plot(omega_list, count) # 观察omega 与迭代次数的关系plt.show()思路:1.遍历设限:第⼀种是到达精度,到达精度停⽌迭代,第⼆种是到达规定最⼤次数,这个可以⾃⼰设定.2.在根据迭代公式改变各个向量分量时,要注意遍历范围.结果:{。
线性⽅程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代⽅法西京学院数学软件实验任务书【实验课题】雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代【实验⽬的】学习和掌握线性代数⽅程组的雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代法,并且能够熟练运⽤这些迭代法对线性⽅程组进⾏求解。
【实验内容】 1、问题重述:对于线性⽅程组A b X =,即:1111221n 12112222n 21122nn n n n n n na x a x a xb a x a x a x b a x a x a x b +++=??+++=??+++= (1),其中,111212122111 0 - - 0 - 0 0 () - - - 0 n ij n nn n nn nn a a a a a a a a a a ?--A ==--??0n D L U≡--()1,n b b b T=如何运⽤雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代法对线性⽅程组进⾏求解。
2、⽅法原理: 2.1雅克⽐迭代迭代思想:⾸先通过A b X =构造形如()x f x =的等式,然后给定⼀个初值(0)(0)(0)(0)12(,,)n x x x X = ,再通过(1)()()k k f +X =X 进⾏迭代。
step1 :对(1)相应第i ⾏中的i x ⽤其它元素表⽰为:11111121111122,12211111()()11()()11()()n nj j j j j j n ni i ij ji j j j i j i j iin nn n nj j n n nj j j j nn nn x b a x x b a x a a x b a x x b a x a a x b a x x b a x a a ===≠=-==?=-=+-??=-=+-??=-=+-∑∑∑∑∑∑即:()D b L U X =-+XStep 2 :进⾏迭代(0)(0)(0)(0)12(1)11()(,,)()n k k x x x D b D L U +--?X =?X=-+X ? ,0,1,2k = ,取它的判断条件为()(1)k k -X -X ⼩于⼀个确定的误差值ε,跳出循环。
华南理工大学数值分析教学内容及复习提纲全日制硕士生“数值分析”教学内容与基本要求一、教学重点内容及其要求(一)引论1、误差的基本概念理解截断误差、舍入误差、绝对(相对)误差和误差限、有效数字、算法的数值稳定性等基本概念。
2、数值算法设计若干原则掌握数值计算中应遵循的几个原则:简化计算步骤以节省计算量(秦九韶算法),减少有效数字的损失选择数值稳定的算(避免相近数相减),法。
重点:算法构造(如多项式计算)、数值稳定性判断(舍入误差的分析)(二)插值方法1、插值问题的提法理解插值问题的基本概念、插值多项式的存在唯一性。
2、Lagrange插值熟悉Lagrange插值公式(线性插值、抛物插值、n次Lagrange 插值),掌握其余项表达式(及各种插值余项表达式形式上的规律性)。
3、Newton插值熟悉Newton插值公式,了解其余项公式,会利用均差表和均差的性质计算均差。
4、Hermite插值掌握两点三次Hermite插值及其余项表达式,会利用承袭性方法构造非标准Hermite插值。
5、分段线性插值知道Runge现象,了解分段插值的概念,掌握分段线性插值(分段表达式)。
6、三次样条函数与三次样条插值概念了解三次样条函数与三次样条插值的定义。
重点:多项式插值问题(唯一性保证、构造、误差余项估计)(三)曲线拟合与函数逼近1、正交多项式掌握函数正交和正交多项式的概念(函数内积、2-范数、权函数,正交函数序列,正交多项式),了解Legendre多项式(授课时,将其放在课高斯型数值积分这部分介绍)。
2、曲线拟合的最小二乘法熟练掌握曲线拟合最小二乘法的原理和解法(只要求线性最小二乘拟合),会求超定方程组的最小二乘解(见教材P103)。
3、连续函数的最佳平方逼近了解最佳平方逼近函数的概念,掌握最佳平方逼近多项式的求法(从法方程出发)。
重点:最小二乘拟合法方程的推导、求解;拟合与插值问题的异同。
(四)数值微积分1、数值求积的基本思想、插值型求积公式与代数精度掌握插值型求积公式(系数表达式),理解代数精度概念,会利用代数精度构造求积公式。