当前位置:文档之家› 了解SOR法迭代矩阵谱半径和迭代参数的关系

了解SOR法迭代矩阵谱半径和迭代参数的关系

了解SOR法迭代矩阵谱半径和迭代参数的关系
了解SOR法迭代矩阵谱半径和迭代参数的关系

实验目的:了解SOR 法迭代矩阵谱半径和迭代参数的关系

实验内容:10.50010.50.501A ?? ?= ? ???

,画出求Ax b =的SOR 迭代谱半径和ω之间的曲线,分析一下ω取何值时收敛速度最快(ω取1~3-)。

实验结果:

SOR 方法迭代公式为

(1)().k k x L x f ω+=+

其中

11([(1))],).(L D b L D U f D L ωωωωωω--+=-=--

使迭代过程收敛较快,应选择因子ω使)(min L ωω

ρ=.

采用Matlab 编程求出)(L ωρ的最小值为0.3381,此时的ω值为0.9410.

ωρ(L ω)

图1 )(L ωρω-对应关系曲线

另外,还可以看出,ω在(0,1.5)区间上,谱半径1()L ωρ<,迭代收敛。

[Matlab 程序]

A =[1 0.5 0;0 1 0.5;0.5 0 1];

D =[1 0 0;0 1 0;0 0 1];

L =[0 0 0;0 0 0;-0.5 0 0];

U =[0 -0.5 0;0 0 -0.5;0 0 0];

p=zeros(1,4001);

n=1;

for w=-1:0.001:3

Lw=(D-w*L)\((1-w)*D+w*U); p(n)=vrho(Lw);

n=n+1;

end

w=-1:0.001:3;

plot(w,p);

xlabel('\omega');

ylabel('\rho(L_\omega)');

k=find(p==min(p));

wmin=w(k);

用SOR迭代法

一、数值求解如下正方形域上的Poisson 方程边值问 二、2222(,)2,0,1 (0,)(1,)(1),01(,0)(,1)0, 01u u f x y x y x y u y u y y y y u x u x x ??? ??-+==<

数值分析实验报告1——Hilbert矩阵的求解

数值分析课程实验报告 题目:病态线性方程组的求解 理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组的求解 Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ?=,1 1 ij h i j =+-,i ,j = 1,2,…,n 1. 估计矩阵的2条件数和阶数的关系 2. 对不同的n ,取(1,1,,1)n x =∈ ,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭代,SOR 迭代和共轭梯度法求解,比较结果。 3. 结合计算结果,试讨论病态线性方程组的求解。 解答过程 1.估计矩阵的2-条件数和阶数的关系 矩阵的2-条件数定义为:1 222 ()Cond A A A -=?,将Hilbert 矩阵带入有: 1222 ()Cond H H H -=? 调用自编的Hilbert_Cond 函数对其进行计算,取阶数n= 50,可得从1阶到50阶的2-条件数,以五位有效数字输出,其中前10项见表1。 表1.前十阶Hilbert 矩阵的2-条件数 从表1可以看出,随着阶数每递增1,Hilbert 矩阵的2-条件数都至少增加一个数量级,但难以观察出明显的相依规律。故考虑将这些数据点绘制在以n 为横轴、Cond (H )2为纵轴的对数坐标系中(编程用Hilbert_Cond 函数同时完成了这个功能),生成结果如图1。

图1.不同阶数下Hilbert矩阵的2-条件数分布 由图可见,当维数较小时,在y-对数坐标系中Cond(H)2与n有良好的线性关系;但n超过10后,线性趋势开始波动,n超过14后更是几乎一直趋于平稳。事实上,从n = 12开始,系统便已经开始提出警告:“Warning: Matrix is close to singular or badly scaled.Results may be inaccurate.”。也就是说,当n较大时,H矩阵已经接近奇异,计算结果可能是不准确的。通过查阅相关资料,我找到了造成这种现象的原因:在matlab中,用inv函数求条件数过大的矩阵的逆矩阵将是不可靠的。而调用系统自带的专门对Hilbert矩阵求逆的invhilb(n)函数则不存在这个问题,生成结果如图2。 图2. 修正后的不同阶数下Hilbert矩阵的2-条件数分布

基于matlab平台的三种迭代法求解矩阵方程

数值分析第二次作业学院:电子工程学院

基于matlab平台的三种迭代法求解矩阵方程组 求解系数矩阵由16阶Hilbert方程组构成的线性方程组的解,其中右端项为[2877/851,3491/1431,816/409,2035/1187,2155/1423,538/395,1587/1279,573/502,947 /895,1669/1691,1589/1717,414/475,337/409,905/1158,1272/1711,173/244]. 要求:1)Gauss_Sedel迭代法; 2)最速下降法; 3)共轭梯度法; 4)将结果进行分析对比。 解:根据题目要求,编写了对应算法的matlab程序,求解结果如下:(求解精度为10e-4,最大迭代次数1000) 1、方程的解:如下图1所示 图1 三种方法求解的结果对比 图2 Gause_Sedel算法收敛特性

图3 最速下降法收敛特性 图3 共轭梯度法收敛特性 从图中可以看到,在相同的最大迭代次数和预设求解精度条件下,共轭梯度算法仅需要4次迭代便可求出方程组的解,耗时0.000454秒,而且求出解的精度最高;Gauss_Sedel方法需要465次迭代,耗时0.006779秒,求解精度最差;最速下降法需要398次迭代,耗时0.007595秒,求解精度与共轭梯度算法差不多,因此两者求出的解也几乎相同。从中可以得出结论,共轭梯度算法无论从求解精度还是求解速度上都优于其他两种,最速下降法在求解精度上几乎与共轭梯度算法持平,但求解速度更慢。Gauss_Sedel方法在求解精度和速度两方面都最差。 具体的解为: Gauss_Sedel迭代法:(共需465次迭代,求解精度达到9.97e-5) X=[0.995328360833192 1.01431732497804 1.05286123930011 0.934006974137998 0.931493373808838 0.966508138403066 1.00661848511341 1.03799789809258 1.05180690303654

矩阵迭代和Dijkstra两种算法在交通运输路径选择中的对比

矩阵迭代和Dijkstra 两种算法在交通运输路径选择中的对比 本文基于矩阵迭代算法及 Dijkstra 算法,对两者在最短路径问题中的差异性进行了对比。结果表明: Dijkstra 算法可一次求得一点到其他各点的最小阻抗,该算法在进行最短路径的计算时,需要对相邻点进行反复搜寻,计算效率较低,收敛速度较慢。矩阵迭代算法没有严格路径次序限制迭代顺序,可实现算法并行计算,计算速度较高。在阻抗矩阵为对称矩阵时,在经过迭代后,得到的矩阵仍为对称矩阵,这样可使每次迭代的计算量得到减少。通过在重庆市路网上随机选取 8个终点及起点,对起始点 1 点到 8 点的最短路径及阻抗进行计算表明,Dijkstra 算法所用时间为 0.673s ,迭代矩阵算法所用时间为 0.501s ,矩阵迭代算法的计算速度更快。在矩阵4X4、6X 6、8X8中,矩阵 迭代算法的运算时间均比 Dijkstra 算法的运算时间要小,其迭代次数次数也远远小于 Dijkstra 算法的迭代次数,这进一步表明,矩阵迭代算法的计算效率要比 Dijkstra 算法的计算效率高。 1引言随着我国经济发展越来越快,城市交通运输路径也日趋紧张,在我国大中型城市中,普遍存在公共交通结构的不合理状况 [1- 4] 。城市公共交通网络由众多路径及网络节点构成。由于城市人口和城市规模的不断增长,优化交通运输路径,解决交通出行者出行时间最小、服务最大化、线网效率最大等,方便居民出行[5-7] 。在城市交通严

重堵塞时,要使交通出行者出行便利,则必须对最短交通路径及交通状态信息进行实时全面了解;在一定程度上,这种信息诱导作用能对重点道路的拥堵起到缓解作用 [8] 。最短路径的算法有多种,对各种算法进行分析、理解、应用,比较这些算法的在实际应用效率,具有非常重要的实用意义 [9-11] 。通常情况下,典型最短路径问题算法有两种,分别为矩阵迭代算法、 Dijkstra 算法。本文基于这两种典型算法,对两者在最短路径问题中的差异性进行了对比,方便交通出行者对交通运输路径的选择。 2最短路径及路网阻抗 在交通流分配中,最基本的算法就是最短路径算法。最短路径是指在一个网络中,已知相邻节点间的线路长度,要在某一起点到某一终点间找出一条长度最短的路线。在交通领域,最短路径研究较多,在路网中,因受道路条件、道路绕行距离、交通条件影响,使得不同交通路径,所需交通费用有一定的差异。在广义上,交通费用包括道路通行时间、通行距离、燃料的使用等;在狭义上,道路通行时间是阻抗,或将影响出行的其它因素进行折算,转化成通行时间,将其作为道路网交通阻抗,交通阻抗最小的路径就是最短路径。图 1为路网的阻抗,表 1 为道路的可用阻抗矩阵。 3Dijkstra 算法和矩阵迭代算法 3.1Dijkstra 算法 最短路径使用最广泛、最基本的算法就是 Dijkstra 算法,在求网络中某一节点到其他各节点的最短路径时,网络中的节点被 Dijkstra

SOR迭代法超松弛因子选取

《计算方法》实验报告(二) 实验名称:SOR 迭代法松弛因子的选取 班级: 数学1402班 姓名: 高艺萌 学号:14404210 一、 实验目的 通过本实验学习线性方程组的SOR 迭代解法以及SOR 迭代法的编程与应用。对比分析不同条件下的超松弛因子w 的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的w 不同取值会对方程组的解产生的影响。培养编程与上机调试能力。 二、 实验题目 用逐次超松弛(SOR )迭代法求解方程组b Ax =,其中 ?????????? ????????????=????????????????????????????????????????????=555555122-12-122-112-122-112-122-112-122-12-12201918321 x x x x x x A (1)给定迭代误差,选取不同的超松弛因子1>ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; (2)给定迭代误差,选取不同的超松弛因子1<ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; 三、 实验原理 1.逐次超松弛迭代法可以看作Gauss-Seidel 迭代法的加速, b D Ux D Lx D x k k k 1)(1)1(1)1(--+-+++= 2.SOR 迭代计算格式 b D L wD I w x U wD I w L wD x k k 111)(111)1()(])1[()-1(------+-++-= 其中,w 叫松弛因子,当w>1时叫超松弛,0

解线性方程组基本迭代法实验(ca)

Lab .解线性方程组的基本迭代法实验 【实验目的和要求】 1.使学生深入理解Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法; 2.通过对Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的程序设计,以提高学生程序设计的能力; 3.应用编写的程序解决具体问题,掌握三种基本迭代法的使用,通过结果的分析了解每一种迭代法的特点。 【实验内容】 1.根据Matlab 语言特点,描述Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法。 2.编写Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的M 文件。 3.给定2020?∈R A 为五对角矩阵 ??????????????? ???????????????? ?---- -------- ------ 32 141213214 141213214141213214 141213 2141213 (1)选取不同的初始向量)0(x 及右端面项向量b ,给定迭代误差要求,分别用编写Jacobi 迭代 法和Gauss-Seidel 迭代法程序求解,观察得到的序列是否收敛?若收敛,通过迭代次数分析 计算结果并得出你的结论。 (2)用编写的SOR 迭代法程序,对于(1)所选取的初始向量) 0(x 及右端面项向量b 进行求解,松驰系数ω取1<ω<2的不同值,在5 )1()(10-+≤-k k x x 时停止迭代,通过迭代次数分析计算结果 并得出你的结论。 【实验仪器与软件】 1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ; 2.Matlab 6.0及以上版本。 实验讲评:

雅可比迭代法与矩阵的特征值

实验五 矩阵的lu分解法,雅可比迭代法 班级: 学号: :

实验五 矩阵的LU 分解法,雅可比迭代 一、目的与要求: ? 熟悉求解线性方程组的有关理论和方法; ? 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; ? 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。 二、实验容: ? 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解 各种方法的优缺点。 三、程序与实例 ? 列主元高斯消去法 算法:将方程用增广矩阵[A ∣b ]=(ij a )1n (n )+?表示 1) 消元过程 对k=1,2,…,n-1 ①选主元,找{}n ,,1k ,k i k +∈使得 k ,i k a =ik a n i k max ≤≤ ②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③。 ③如果k i k ≠,则交换第k 行与第k i 行对应元素位置, j i k j k a a ? j=k,┅,n+1 ④消元,对i=k+1, ┅,n 计算 kk ik ik a a l /= 对j=l+1, ┅,n+1计算 kj ik ij ij a l a a -= 2) 回代过程 ①若0=nn a ,则矩阵A 奇异,程序结束;否则执行②。 ②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算 ii n i j j ij n i i a x a a x /11,???? ? ?- =∑+=+ 程序与实例 程序设计如下:

#include #include using namespace std; void disp(double** p,int row,int col){ for(int i=0;i>p[i][j]; } } int findMax(double** p,int start,int end){ int max=start; for(int i=start;iabs(p[max][start])) max=i; } return max; } void swapRow(double** p,int one,int other,int col){ double temp=0; for(int i=0;i

SOR迭代法求解线性方程组

实验三:用SOR 迭代法求解线性方程组 ?????? ? ??=??????? ????????? ??----------74.012.018.168.072.012.006.016.012.001.103.014.006.003.088.001.016.014.001.076.04321x x x x 取初始点T x )0,0,0,0()0(=,松弛因子05.1=ω,精度要求610-=ε。 1,建立SOR.m 函数文件,此函数文件可调用,程序源码如下: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4 eps= 1.0e-6;%精度要求 M = 200; elseif nargin<4 error; return elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A 的对角矩阵 L=-tril(A,-1); %求A 的下三角阵 U=-triu(A,1); %求A 的上三角阵 B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) disp('Warning: 迭代次数太多,可能不收敛!'); return; end end

2,输入矩阵。并根据要求调用函数,运行结果如下图所示: 即经过7次迭代算出结果,且求得: 1.27151.28440.48581.2843x ?? ? ?= ? ???

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

矩阵雅克比迭代算法

雅克比迭代 实验目的: 1.学习和掌握线性代数方程组的jacobi 迭代法。 2.运用jacobi 迭代法进行计算。 方法原理: 设方程组Ax=b 的系数矩阵A 非奇异而且),...,2,1(0n i a ii =≠,将A 分裂为 A=D+L+U,可以使计算简便。其中),,...,,(2211nn a a a diag D = ????????????= 0... ............0...00 (002) 1 21n n a a a L ,????? ? ??????=0... ...............00...02112n n a a a U A=D+L+U ,其中),,...,,(2211nn a a a diag D = ????????? ???=0... ............0...00 (002) 1 21 n n a a a L ,????? ? ??????=0... ...............00...02112n n a a a U 将方程组 n ,...,2,1i ,b x a i n 1j j ij ==∑ =乘以 ii a 1,得到等价的方程组 ??? ? ? ? ?- =∑ ≠=n i j 1 j j ij i ii i x a b a 1x ,i=1,2,…n ,简记为x Bx f =+。 其中 11()B I D A D L U --=-=-+, 1f D b -=. 我们称 x Bx f ?=+为迭代函数。任取初始向量(0) x x =,按照 (1) ( ) k k x Bx f +=+形成迭代格式,称这种迭代方法为Jacobi 迭代法。 算法描述: Step1:给定一组x ,即初值。 Step2:用for 循环计算: x[k+1]=(b[i]-∑∑+=-=- n 1 i j 1 i 1 j ]j [x ]j ][i [a ]j [x ]j ][i [a )/a[i][i].

数值实验报告

数值实验报告五 班级:2017级学号:**** 姓名:*** 2017.12.5 1.数值实验问题 试用雅可比迭代法,高斯-赛德尔迭代法,超松驰迭代计算线性方程组: 取=(0,0,0,松弛因子分别取w=0.1t,1要求达到精度 。试通过数值计算得出不同的松弛因子所需要的迭代次数和收敛最快的松弛因子,并指出哪些松弛因子使得迭代发散。 2.数值方法 A=, L=-, U=-, D=diag() (1)雅可比迭代公式:

D. (2)高斯-赛德尔迭代法公式: (3)超松驰迭代方法公式: 其中w为松弛因子。 3.数值结果 如下表

最后四组,测得其在前10次内迭代所产生的结果,其中每一列为一

次迭代结果,分别如图: SOR-1.6 SOR-1.7 SOR-1.8 SOR-1.9 由于计算数据限制,其前五十列数据基本为空,所以取51到60列

由此看出,最后四组数据是发散的,数据结果不稳定,不收敛。所以最后四组得不到所需数据。 4.讨论 本次实验,分别用雅可比迭代公式,高斯-赛德尔迭代公式,超松驰迭代公式计算了此线性方程组。其中,雅可比和高斯迭代能够很好的进行运算,而超松驰迭代方法中,若松弛因子取得不够恰当,则会导致整个运算失败,得不到所需的结果,迭代不收敛,发散。此外,在进行初始值的赋值中,我是对每个矩阵都进行了赋值操作,而更简便的是,调用matlab中存在的函数,对矩阵进行运算,从而简化操作和代码,也使程序适用性更广。 程序代码: 1.雅可比迭代 function [x]=yakebi(D,L,U,b,j) format long B=D\(L+U);

数值分析实验报告-Sor法分析

数值分析实验报告 一、 实验目的 1、会使用Sor 法求解一个线性方程组 2、熟悉matlab 语言并结合原理编程求方程组 3、改变ω的值观察实验结果 4、会分析实验结果 二、实验题目 编制Sor 迭代格式程序进行求解一个线性方程组的迭代计算情况,运行中要选用不同的松弛因子ω进行尝试 三、 实验原理 Jacobi 迭代和seidel 迭代对具体的线性方程组来说,逼近*x 的速度是固定不变的,遇到收敛很慢的情况时就显得很不实用。 Sor 法是一seidel 迭代为基础,并在迭代中引入参数ω以增加迭代选择的灵活性,具体为: ! 用seidel 迭代算出的,)()1()()1(k k J k k J x x x x x -=?++相减得到差向量与再用参数ω乘之再加上 )1()()()1()1()()()1(++++-=?+=k J k k k k k k x x x x x x x x ωωω,即的下一步迭代作为,由seidel 迭代的公式可以得到Sor 法的迭代格式为 n i x a x a b a x x k j n i j ij k j i j ij i ii k i k i ,2,1),()1()(1)1(11)()1( =--+-=∑∑+=+-=+ω ω 式中ω称为松弛因子。 四、 实验内容 用matlab 编程得到Sor 法求线性方程组的算法为: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4

eps= ; M = 200; elseif nargin<4 error return : elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵( U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) (

数学实验“线性方程组的J-迭代,GS-迭代,SOR-迭代解法”实验报告(内含matlab程序代码)

西京学院数学软件实验任务书 课程名称数学软件实验班级数0901 学号0912020107 姓名李亚强 实验课题线性方程组的J-迭代,GS-迭代,SOR-迭代方法。 实验目的 熟悉线性方程组的J-迭代,GS-迭代,SOR-迭代方法。 实验要求运用Matlab/C/C++/Java/Maple/Mathematica等其中一种语言完成。 实验内容线性方程组的J-迭代;线性方程组的GS-迭代;线性方程组的SOR-迭代。 成绩教师

实验四实验报告 一、实验名称:线性方程组的J-迭代,GS-迭代,SOR-迭代。 二、实验目的:熟悉线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法,编程实现雅可比方法和高斯-赛德尔方法求解非线 性方程组121231 235210 64182514 x x x x x x x x +=?? ++=??++=-?的根,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,利用迭代思想编程求解线性方程组的解。 四、实验原理: 1、雅可比迭代法(J-迭代法): 线性方程组b X A =*,可以转变为: 迭代公式(0)(1)() k 0,1,2,....k k J X X B X f +???=+=?? 其中b M f U L M A M I B J 111),(---=+=-=,称J B 为求解 b X A =*的雅可比迭代法的迭代矩阵。以下给出雅可比迭代的 分量计算公式,令),....,() ()(2)(1)(k n k k k X X X X =,由雅可比迭代公式 有 b X U L MX k k ++=+) () 1()(,既有i n i j k i ij i j k i ij k i ij b X a X a X a +- -=∑∑+=-=+1 )(1 1 )() 1(, 于

迭代解法的matlab实现

解线性方程组b AX =的迭代法是从初始解出发,根据设计好的步骤用逐次求出的近似解逼近精确解.在第三章中介绍的解线性方程组的直接方法一般适合于A 为低阶稠密矩阵(指n 不大且元多为非零)的情况,而在工程技术和科学计算中常会遇到大型稀疏矩阵(指n 很大且零元较多)的方程组,迭代法在计算和存贮两方面都适合后一种情况.由于迭代法是通过逐次迭代来逼近方程组的解,所以收敛性和收敛速度是构造迭代法时应该注意的问题.另外,因为不同的系数矩阵具有不同的性态,所以大多数迭代方法都具有一定的适用范围.有时,某种方法对于一类方程组迭代收敛,而对另一类方程组迭代时就发散.因此,我们应该学会针对具有不同性质的线性方程组构造不同的迭代. 4.1 迭代法和敛散性及其MATLAB 程序 4.1.2 迭代法敛散性的判别及其MATLAB 程序 根据定理4.1和谱半径定义,现提供一个名为pddpb.m 的M 文件,用于判别迭代公H=eig(B);mH=norm(H,inf); if mH>=1 disp('请注意:因为谱半径不小于1,所以迭代序列发散,谱半径mH 和B 的所 有的特征值H 如下:') else disp('请注意:因为谱半径小于1,所以迭代序列收敛,谱半径mH 和B 的所有 的特征值H 如下:') end mH 4.1.3 与迭代法有关的MATLAB 命令 (一) 提取(产生)对角矩阵和特征值 可以用表4–1的MATLAB 命令提取对角矩阵和特征值. (二) 提取(产生)上(下)三角形矩阵

可以用表4–2的MATLAB命令提取矩阵的上三角形矩阵和下三角形矩阵. (三)稀疏矩阵的处理 对稀疏矩阵在存贮和运算上的特殊处理,是MA TLAB进行大规模科学计算时的特点和优势之一.可以用表4–3的MATLAB命令,输入稀疏矩阵的非零元(零元不必输入),即可进行运算. 4.2 雅可比(Jacobi)迭代及其MATLAB程序 4.2.2 雅可比迭代的收敛性及其MATLAB程序 [n m]=size(A); for j=1:m a(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0 disp('请注意:系数矩阵A不是严格对角占优的,此雅可比迭代不一定收敛') return end end if a(i)<0 disp('请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛') end 例4.2.2 用判别雅可比迭代收敛性的MATLAB主程序,判别由下列方程组的雅可比迭

实验五矩阵的LU分解法雅可比迭代

实验五矩阵的LU分解法,雅可比迭代 实 验 报 告 学院:计算机科学与软件学院班级:116班 姓名:薛捷星 学号:112547

一、目的与要求: 熟悉求解线性方程组的有关理论和方法; 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。 二、 实验内容: 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解各种方法的优缺点。 三、 程序与实例 列主元高斯消去法 算法:将方程用增广矩阵[A ∣b ]=(ij a )1n (n )+?表示 1) 消元过程 对k=1,2,…,n-1 ①选主元,找{}n ,,1k ,k i k +∈使得 k ,i k a =ik a n i k max ≤≤ ②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③。 ③如果k i k ≠,则交换第k 行与第k i 行对应元素位置, j i kj k a a ? j=k,┅,n+1 ④消元,对i=k+1, ┅,n 计算 kk ik ik a a l /=

对j=l+1, ┅,n+1计算 kj ik ij ij a l a a -= 2) 回代过程 ①若0=nn a ,则矩阵A 奇异,程序结束;否则执行②。 ②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算 ii n i j j ij n i i a x a a x /11,??? ? ? ?- =∑+=+ 程序与实例 例1 解方程组 ?? ? ??=++-=++-=++035 .3643x .5072x .1835x .2137.2623x .43712x 347x .1 1.183 3.555x 2.304x 0.101x 321321321 输出结果如下: X[0]=-0.398234 X[1]= 0.013795 X[2]= 0.335144 程序如下: #include #include main() { int i,j,p,o,l,q; double a[3][4]={{0.101,2.304,3.555,1.183},{-1.347,3.712,4.623,2.137},{-2.835,1.072,5.643,3.035}}; double x[3],z[4]; printf("列主元消去法\n"); for(j=0;j<2;j++) { for(i=j+1;i<3;i++) { if(fabs(a[j][j])

c编的sor迭代法解线性方程组的程序

c编的sor迭代法解线性方程组的程序 2010-12-15 20:33 #include #include double norm(double *x,double *y,int n) { int i=0; double s=0; for(i=0;i

SOR迭代(算法分析和数值算例)

SOR 迭代 基本思想 Gauss-Seidel 迭代(1) 1() (1) ()() k k x D L U x D L +--=-+-的结果作为中间值,记为 (1) k x + 。SOR 方法是将(1) k x + 与上次计算的结果() k x 做加权平均作为最后结果。迭 代格式为: 1(1) (1) ()() 1 1 1[](1),1,2i n k k k k i i ij j ij j i j j i ii x b a x a x x i n a ω ω-++==+=- - +-=∑ ∑ 或者 1(1) () (1) () 1 1[],1,2i n k k k k i i i ij j ij j j j i ii x x b a x a x i n a ω -++===+- - =∑ ∑ 算法: 1. 0,,,A b x t e ω输入迭代初值松弛参数,为迭代次数初始值为0,为记录误差 2. 当1,2i n = 时,1 1:[]n i i i i j j j ii x x b a x a ω == +- ∑ ,结果仍然存储在i x 中。迭 代次数:1t t =+ 3. 计算误差* e x x =-(真解已知) 4. 如果6 510 e -

迭代法实验报告

迭代法实验报告 一. 实验目的:掌握迭代方法的用处 二. 实验环境:Cfree5.0 三. 实验时间:2013年6月20日 四. 实验地点:电子信息楼1201教室 五. 实验内容:运用编程实现迭代方法可以更好的解线性方程组,得到线性方程的解。 六. 实验理论依据: 高斯-赛德尔(Gauss-Seidel )迭代公式 我们注意到在雅可比迭代法中并没有对新算出的分量11k x +,12k x +, , 11k i x +-进行充分利用.不妨设想,在迭代收敛的条件下,我们把 (1)()()()11211331111(1)()()()22112332222(1)()()()1122,111()1(1(k k k k n n k k k k n n k k k k n n n n n n nn x a x a x a x b a x a x a x a x b a x a x a x a x b a +++--?=---+???=---+?????=---+?? 式中第一个方程算出的11k x +立即投入到第二个方程中,代替()1k x 进行计算,当12 k x +算出后代替()2k x 马上投入到第三个方程中计算,依次进行下去,这样也许会得到 更好的收敛效果.根据这种思路建立的一种新的迭代格式,我们称为高斯-赛德尔(Gauss-Seidel )迭代公式, 高斯=赛德尔迭代法的分量形式:

(1)()()()11211331111(1)(1)()()22112332222(1)(1)(1)(1)1122,111()1(1(k k k k n n k k k k n n k k k k n n n n n n nn x a x a x a x b a x a x a x a x b a x a x a x a x b a +++++++--?=---+???=---+?????=---+?? 高斯-赛德尔迭代法的矩阵形式: (1)(),(0,1,2,)k k x Bx f k +=+= 其中 1()B D L U -=- ,1()f D L b -=- B 称为高斯-赛德尔迭代矩阵,f 称为高斯-赛德尔迭代常量.. 七. 运行代码如下: #include"stdio.h" #include"math.h" int main() { bool pan1=true; int n,n1,n2=0,k=0; double num[100][100],L[100][100],U[100][100],x[100],y[100],num1=0,b[100],D[100][100],x1[200][200],x2[200][200]; printf("\n"); printf("*******************************高斯迭代法解如下********************************"); printf("输入要输入矩阵的阶数为(按Enter 输入矩阵数字):");//

第4章 线性方程组和矩阵特征值的迭代解法

第4章 线性方程组和矩阵特征值的迭代解法 线性代数计算方法中的迭代解法(即迭代法)是一类重要方法。其基本思想是构造适当的矩阵序列或向量序列,使其逐步逼近所求问题的精确解,故又称矩阵迭代方法。在求解阶数较高且零系数较多的大型稀疏线性代数方程组时,迭代法是很有效的。矩阵特征值问题的求解通常也要用迭代法。本章着重介绍求解线性代数方程组常用的简单迭代法及其收敛条件,并对计算矩阵特征值问题的雅可比方法和QR 方法作一些介绍。 4.1 线性代数方程组的迭代解法 线性方程组(3.1)的迭代解法其基本思想与一元非线性方程的迭代解法类似,即构造适当的迭代公式,任选一个初始向量)0(x 进行迭代计算,使生成的向量序列,,)1()0(x x …,)(k x ,…收敛于方程组的精确解。 4.1.1 简单迭代法的一般形式 设方程组(3.1)的系数矩阵非奇异,把它化为等价的方程组 g Mx x += (4.1) 其中 ????? ? ??????=????????????=??????? ?? ???=n n nn n n n n x x x g g g m m m m m m m m m M M Λ ΛΛΛ 21212122221 11211,,x g M 按(4.1)构造迭代公式 Λ,2,1,0,)()1(=+=+k k k g x M x (4.2) 其中),1,0(],,,[T )()(2 )(1)(ΛΛ==k x x x k n k k k x 。任取初始向量)0(x ,用(4.2)逐次计算近似解向量,,x ,,x ,x ΛΛ)()2()1(k 这种方法称为简单迭代法,称(4.2)为简单迭代公式,M 为迭代矩阵。 公式的分量形式是 ???????++++=++++=++++=+++n k n nn k n k n k n k n n k k k k n n k k k g x m x m x m x g x m x m x m x g x m x m x m x )()(22)(11)1(2 )(2)(222)(121)1(21) (1)(212)(111) 1(1ΛΛ ΛΛΛΛΛ

matlab Jacobi迭代法Gauss-seidel和SOR迭代

1.Jacobi迭代法 例1 用jacobi迭代法求解代数线性代数方程组,保留四位有效数字(err=1e-4) 其中A=[8 -1 1;2 10 -1;1 1 -5];b=[1 ;4; 3]。 解:编写jacobi迭代法的函数文件,保存为jacobi.m function [x,k]=jacobi(A,b,x0,eps,N) % 求解Ax=b;x0为初始列向量;eps为误差容限;N为最大迭代次数 % 输出x为近似解;k为迭代次数 n=length(A); x=zeros(n,1); for k=1:N for i=1:n ――――――― end if norm(x-x0,inf)

end x0=x; end 编写主程序如下 format long clear A=[8 -1 1;2 10 -1;1 1 -5]; b=[1 ;4; 3]; x0=[0.125; 0.4 ;-0.6 ]; % x0为初始列向量N为最大迭代次数err=1e-4; % err为误差容限 N=25; % N为最大迭代次数 [x,k]=jacobi(A,b,x0,err,N) 得到结果如下 x = 0.22492315625000 0.30561995000000 -0.49388680000000

k = 6 2.Gauss-seidel迭代法 例2 用Gauss-seidel迭代法求解代数线性代数方程组,保留四位有效数字(err=1e-4) 其中A=[8 -1 1;2 10 -1;1 1 -5];b=[1 ;4; 3]。 解:编写Gauss-seidel迭代法的函数文件,保存为gaus.m function [x,k]=gaus(A,b,x0,eps,N) % 求解Ax=b;x0为初始列向量;eps为误差容限;N为最大迭代次数% 输出x为近似解;k为迭代次数 n=length(A); x=zeros(n,1); for k=1:N for i=1:n ―――――― end if norm(x-x0,inf)

相关主题
文本预览
相关文档 最新文档