解:(1)此问题只与取出元素有关,而与元素的安排顺序无关,是组 合问题.
(2)当取出3个数字后,如果改变三个数字的顺序,会得到不同的三 位数,此问题不但与取出元素有关,而且与元素的安排顺序有关,是 排列问题.
反思 区别排列与组合的关键是看取出元素之后,在安排这些元 素时,是否与顺序有关,“有序”则为排列,“无序”则为组合.
m!
计算;公式Cnm
=
m
n! !(n-m
)!(m∈N,n∈N+,且
m≤n),一般用于化简证
明.
12
【做一做 2-1】 计算:C52 + C54=
.
解析:C52
+
C54
=
5×4 2×1
+
54××43××32××21=10+5=15.
答案:15
【做一做 2-2】 若 6C������������--37=10A2������-4,则 x 的值为
第一课时 组合及组 合数公式
1.理解组合的概念及组合数公式. 2.会利用组合数公式解决一些简单的组合问题.
12
1.组合的有关概念 (1)一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组, 叫做从n个不同元素中任取m个元素的一个组合.从排列和组合的 定义可知,排列与取出元素的顺序有关,而组合与取出元素的顺序 无关. (2)从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数, 叫做从n个不同元素中,任意取出m个元素的组合数,用符号 C������������表示.
∵m∈{m|0≤m≤5,m∈N},∴m=2.
1234 5
1.给出下面几个问题:
①由1,2,3,4构成的含两个元素的集合; ②五个队进行单循环比赛的分组情况; ③由1,2,3组成的不同两位数; ④由1,2,3组成无重复数字的两位数.