3.4实际问题与一元一次方程(销售问题教案)
- 格式:doc
- 大小:27.00 KB
- 文档页数:5
x8答;要8天可以铺好这条管线.三、课堂小结:1. 用一元一次方程解决实际问题的基本过程有几个步骤?1.审(找)、2.设、3.列、4.解、5.答2.本节课主要学习了配套问题和工程问题。
四、作业教科书第106页习题3.4第2、3、4、5题板书设计3.4实际问题与一元一次方程第一课时配套、工程问题例1 例23.4实际问题与一元一次方程第二课时销售中的盈亏教学目标:1.理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念.2.能利用一元一次方程解决商品销售中的一些实际问题.3.进一步培养建模能力,以及分析问题、解决问题的能力.教学重点:运用方程解决实际问题教学难点:如何把实际问题转化为数学问题,列方程解决实际问题教学过程:复习:销售中的盈亏问题1.填空:探究1:某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%, 另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?学生行动:利用上面有关商品盈亏的数量关系,先估算,再小组讨论用方程思想求解验证估算.师生合作探究:卖这两件衣服总的是盈利还是亏损,取决于这两件衣服售价多少, 进价多少,若售价大于进价,就盈利,反之就亏损.现已知这两件衣服总售价为 60×2=120(元),现在要求出这两件衣服的进价.假设一件商品地进价是40元,如果卖出后盈利25%,那么商品的利润是.如果卖出后亏损25%,商品的利润是.本题中,设盈利25%的那件衣服的进价是元,它的商品利润就是.x 根据进价与利润的和等于售价,列出方程:.60=25.0+x x 由此得.48=x 类似地,可以设另一件衣服的进价为元,它的利润是元,列出方程y y 25.0-.6025.0=-y y 由此得.80=y 两件衣服的进价是元,而两件衣服的售价是60+60=120元,进价大于售价,128=+y x 由此可知卖这两件衣服总共亏损8元.教师总结:解:设盈利25%的那件衣服的进价是元, 另一件的进价为元,依题意,得x y 60=25.0+x x 解得48=x3.4实际问题与一元二次方程第三课时球赛积分表问题教学目标:1.了解以表格形式传递信息的问题,能利用一元一次方程解决球赛积分等实际问题.2.通过探索球赛积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.3.鼓励学生自主探究,合作交流,养成自觉反思的良好习惯.教学重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断教学难点:从图表信息中找出有用的数量关系,把实际问题转化为数学问题.教法:互动探究法学法:小组合作讨论法、练习法教学过程一、情境引入问题1:某篮球队在联赛中已经进行10场比赛,总比分是14分,该队共胜8场,负一场,已知胜一场得2分,那么你知道该联赛负一场得几分吗?学生活动:小组讨论回答.教师总结:可设负一场得分,根据胜、负的积分和等于总积分,得x .14228=+⨯x 解方程得.1-=x 问题2:教师师总结:每两个队赛一场,共赛11场,题目中的相等关系是:胜场数=负场数+2,胜场得分+负场得分=18分,胜场数+平场数+负场数=11场解:设该队胜了场,则负了场,平了场,根据题意,得x ()2-x ()[]211---x x .()[]182113=---+x x x 解得.5=x 答:该队胜了5场.三、巩固拓展1.姚明在NBA2008赛季常规赛的一场比赛中29投18中,拿下28分,其中9个罚球全中,(罚球投中一个得一分),请问姚明三分球投中几个?两分球投中几个?学生活动:独立完成教师总结:解:设姚明三分球投中个,两分球x 投中个,依题意,得()x --918()28991823=+--+x x 解得,1=x 8918=--x 答:姚明三分球投中1个,两分球投中8个.2.足球比赛计分规则是胜一场得3分,平一场得1分,负一场得0分,一个队打了14场负5场共得19分,则求这个队胜多少场?平多少场?学生活动:小组合作探究教师总结:解:设这个队胜场,则平场,依题意,得x ()x --514()195143=--+x x 解得5=x 4514=--x 答:这个队胜5场,则平4场.四、课堂总结1.本节课主要学习了球赛积分表问题,其中的基本相等关系是总分等于胜、负、平场数乘以它们的单场积分的和.2. 用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.五、作业教科书第106页习题练习第3题板书设计例1 例2。
人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)这一节主要讲述了一元一次方程在实际销售问题中的应用。
通过本节课的学习,学生能够理解盈亏问题的实质,掌握用一元一次方程解决实际问题的方法,培养学生的数学应用能力。
二. 学情分析七年级的学生已经掌握了二元一次方程的知识,对于一元一次方程也有了一定的了解。
但是,将一元一次方程应用于实际问题的解决中,对于他们来说还是一个新的领域。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题能力。
三. 教学目标1.理解盈亏问题的实质,能够找出关键的等量关系。
2.掌握一元一次方程在解决实际问题中的应用方法。
3.培养学生的数学应用能力和解决实际问题的能力。
四. 教学重难点1.重点:理解盈亏问题的实质,掌握解决盈亏问题的方法。
2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程进行求解。
五. 教学方法1.情境教学法:通过创设生动的实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。
2.案例分析法:通过分析具体的盈亏问题案例,让学生理解并掌握解决盈亏问题的方法。
3.小组合作学习法:引导学生分组讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的盈亏问题案例,用于课堂分析和讨论。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的销售盈亏问题,如商品打折、农产品销售等,引导学生关注盈亏问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现一个具体的盈亏问题案例,如某商品原价为100元,打八折后售价为80元,问商家是否盈利?引导学生分析问题,找出关键的等量关系。
3.操练(10分钟)让学生分组讨论,尝试用一元一次方程来解决这个盈亏问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组不同的盈亏问题,让学生独立解决,巩固所学知识。
教学目标知识技能1.会根据实际问题中数量关系列方程解决问题,熟练掌握一元一次方程的解法.2.使学生理解用一元一次方程解工程问题的本质规律.过程方法通过对“工程问题”的分析,进一步培养学生建模能力、分析问题、解决问题的能力.情感态度通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣.重点销售问题中的进价、售价、利润的关系,以及找出相等关系.难点从实际问题中抽象出数学模型.3.4实际问题与一元一次方程—销售问题念的理解.自主探究合作探究【问题2】:1.对上面商品销售中的盈亏问题里有哪些?成价(进价),标价,销售价,利润,盈利,亏损,利润率2.对上面这些量有何关系?售价、进价、利润的关系式:商品利润= 商品售价-商品进价进价、利润、利润率的关系:利润率=利润/进价*00%标价、折扣数、商品售价关系:商品售价=标价*折扣数/10,商品售价进价利润率的关系:商品售价=进价*(1+利润率)【问题3】教师提问:例1:某商品的进价是15000元,售价是18000元。
求商品的利润、利润率。
2、某商品的进价是200元,售价是260元。
求商品的利润、利润率。
3、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服师出示题目学生独立思考,找学生回教师板书小组合作,写出它们的关系式。
板书:所以应先分别求出两件衣服的进价,才能判断是盈还是亏.明亏损如何判定是盈还是亏盈利率、亏损率指的是什么? 这一问题情境中哪些是已知量?哪些未知量?如何设未知数?相等关系是什么?如何列方程?小组合作交流写出正确的、完整的解总的是盈利还是亏损,或是不盈不看这家商店买进这件衣服时花了多少钱。
解:设盈利的衣服进价为x 根据题意得,0.25x+x=60题意得,y- 0.25y=60,题售价=进价+利润售价= (1+利润率)进价尝试应用1.:某商品的进价为250元,按标价的九折销售时,利润率为15.2%,商品的标价是多少?2、平邑县某琴行同时卖出两台钢琴,每台售价为9600 元.其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏? 3.一商店把某商品按标价的八折出售仍可获得10%的利润.若该商品的进价是每件1600 该商品的标价是多少元变式一:商店对某商品打折出售,已知它的标价是2200 元,打折后的利润是10%,求此商品的进价? 变式二:商店对标价为2200 出售,已知它的进价为1600元,求此商品打折后的利润率? 变式三:商店对标价为2200 元的一生板演师生评定趁热打铁,使学生们积极的加入到这一环节中,以巩固学生对所学知识的理解. 应用所学的知识来探究身边的问题,让学生看到所学知识在生活中的价值,学习兴趣会更浓. 一题多变,避免了接触多个题目,使学生充分地应用了利润问题的公式,感受数学万变不离其宗! 学生分组讨论完成变式题目. 三生板演师生共同纠错适当补充股票交易的简单知识,再次让学生体会数学某商品打折出售,打折后仍可获得10%的利润,已知它的进价为1600 元,问此商品是按几折出售的? 3.在我们的身边有一些股民,在每一次的股票交易中是或盈利或亏损.某股民将甲、乙两种股票卖出,甲种股票卖出1500 元,盈利20%;乙种股票卖出1600 元,但亏损20%,该股民在这次交易中是盈利还是亏损? 盈利或亏损多少元?的应用价值.成果展示1. 销售问题常见相等关系: 2.注意利润率是成本进价的百分数,注意利润率与折扣的区别 3.同步学习练习题。
人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》这一节主要讲述了如何利用一元一次方程解决销售中的盈亏问题。
通过前面的学习,学生已经掌握了一元一次方程的定义、解法和应用。
本节内容将引导学生将理论知识应用于实际问题中,培养学生的实际问题解决能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于一元一次方程已经有了一定的了解。
但是,学生在解决实际问题时,可能会遇到不知道如何将实际问题转化为方程,或者在列方程时出现错误。
因此,在教学过程中,教师需要引导学生正确地将实际问题转化为方程,并加以解决。
三. 教学目标1.理解销售中的盈亏问题,并能够将其转化为一元一次方程。
2.掌握一元一次方程在解决销售盈亏问题中的应用。
3.培养学生的实际问题解决能力。
四. 教学重难点1.重点:如何将销售中的盈亏问题转化为一元一次方程。
2.难点:在列方程时,如何正确地找到等量关系,并解方程。
五. 教学方法1.讲授法:讲解销售盈亏问题的模型和列方程的方法。
2.案例分析法:分析具体的销售盈亏问题,引导学生自己列方程并解决问题。
3.小组讨论法:分组讨论,分享解题心得,互相学习。
六. 教学准备1.PPT课件:展示销售盈亏问题的案例和列方程的过程。
2.练习题:提供一些销售盈亏问题的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示一个销售盈亏的案例,引导学生思考如何解决这个问题。
例如,某商品的原价为100元,商家进行了8折优惠,求顾客实际支付的价格。
2.呈现(10分钟)讲解销售盈亏问题的模型,如何将其转化为一元一次方程。
以原价、折扣和实际支付价格为例,展示等量关系,并引导学生理解。
3.操练(10分钟)让学生分组讨论,分析具体的销售盈亏问题,并尝试自己列方程解决问题。
教师巡回指导,解答学生的疑问。
3.4实际问题与一元一次方程《销售中的盈亏》课堂教学实录双凤镇初级中学周庆昌一、复习导入1、上节课我们学习了一元一次方程的解,这节课我们继续来探究实际问题与一元一次方程2、随着社会进步和经济的发展,在现实生活中出现了广告,那么这些广告主要是吸引更多的顾客(课件显示清仓处理跳楼价5折大酬宾满200返160 )这些都是商家的一些手段,其中涉及到了我们数学销售中的问题。
那么今天一起学习《实际问题与一元一次方程的销售问题》——板书课题二、探究新知1、我们在探究销售问题之前,先来做一些小学里学过的简单的问题(课件显示)知识探究探究销售中的盈亏问题(想一想)(1)、商品原价200元,九折出售,则售价是元.(2)、商品进价是30元,售价是50元,则利润是元.(3)、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是元.(4)、某商品按定价的八折出售,售价是16元,则原定售价是元.①学生练习,教师巡视指导②汇报交流好,完成了没有,我们一起来看下。
商品原价200元,九折出售,则售价是()元.(个别回答:180元)我们再来看商品进价是30元,售价是50元,则利润是()元. (个别回答:利润=50-30=20元)对了吗?对了。
再看某商品原来每件零售价是a 元, 现在每件降价10%,降价后每件零售价是( )元. (个别回答:0.9a 或90% a 元),最后一题 看某商品按定价的八折出售,售价是16元,则原定售价是 元. (个别回答:20元)对了没有?(对了)刚才我们的同学对小学里这些问题掌握得较好。
2、那么,在上面商品销售中的盈亏问题里出现了下面的量 成本价(进价)、标价、 售价、利润、 盈利、 利润率,这些量之间有什么关系呢?(课件显示 )(1)售价、进价、利润的关系式:利润=(教师边问边板书)(2)进价、利润、利润率的关系:利润率=100% (教师边问边板书)(3)标价、折扣、商品售价关系 : 商品售价=标价×折扣 (教师边问边板书)(4)商品售价、进价、利润率的关系:商品售价=进价 +进价× 利润率 (教师边问边板书)教师边总结边让学生把这些等量关系写一写。
3.4实际问题与一元一次方程
教学目标
知识与技能
1.理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间的关系.
2.能利用一元一次方程解决商品销售中的实际问题.
过程与方法
通过列方程解决实际问题,让学生逐步建立方程思想,能够将实际问题抽象为数学问题.
情感、态度与价值观
让学生在问题情境中感受到数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣.
重点难点
重点
把握盈亏问题中的等量关系,培养学生运用方程解决实际问题的能力.
难点
根据问题背景分析数量关系,找出可以作为列方程依据的相等关系,正确列方程.
教学设计
知识探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是180 元.
2、商品进价是30元,售价是50元,则利润是20 元.
3、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是0.9a 元.
4、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为1.25a元.
5、某商品按定价的八折出售,售价是14.8元,则原定售价是18.5 元.
思考?
对上面商品销售中的盈亏问题里有哪些量?
进价标价售价
利润折扣数利润率
对上面这些量有何关系?
销售中的盈亏
售价、进价、利润的关系式:
商品售价= 商品进价+商品利润
进价、利润、利润率的关系:
商品利润率=商品利润/商品进价×100%
标价、折扣数、商品售价关系:
商品售价=标价×折扣数/10
商品售价、进价、利润率的关系:
商品售价=商品进价×(1+利润率)
问题&情境
探究1
某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25﹪,另一件亏损25﹪,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
想一想:
1.盈利率、亏损率指的是什么?
2.这一问题情境中有哪些已知量?哪些未知量?如何设未知数?相等关系是什么?
3.如何判断是盈是亏?
分析:①设盈利25%衣服的进价是x 元,则商品利润是0.25x 元;依题意列方程
x + 0.25x = 60
由此得x = 48
②设亏损25%衣服的进价是y 元,则商品利润是-0.25y 元;
依题意列方程
y +(-0.25y)=60
由此得y = 80
两件衣服的进价是x+y= 48+80=128 (元)
两件衣服的售价是60×2=120 (元)
因为进价> 售价
所以可知卖这两件衣服总的盈亏情况是亏损.
解:设盈利25%的那件衣服的进价是x元,它的利润是0.25x 元,则x+0.25x=60
得x=48
设亏损25%的那件衣服的进价是y元,它的利润是-0.25y 元,则
y-0.25y=60
得y=80
所以两件衣服进价为128元,而售价为120元,进价大于售价,因此两件衣服总的盈利情况为亏本8元。
课内练习
(1)随州某琴行同时卖出两台钢琴,每台售价为960元。
其中一台盈利20%,另一台亏损20%。
这次琴行是盈利还是亏损,或是不盈不亏?
解:设盈利20%的那台钢琴进价为x元,它的利润是0.2x元,则x+0.2x=960
得x=800
设亏损20%的那台钢琴进价为y元,它的利润是–0.2y元,则y-0.2y=960
得y=1200
所以两台钢琴进价为2000元,而售价1920元,进价大于售价,因此两台钢琴总的盈利情况为亏本80元。
请再做一做:
(2)某文具店有两个进价不同的计算器都卖64元,其中一个盈利
60%,另一个亏本20%.这次交易中的盈亏情况?
解:设盈利60%的那个计算器进价为x元,它的利润是0.6x元,则x+0.6x=64
得x=40
设亏本20%的那个计算器进价为y元,它的利润是–0.2y元,则y–0.2y=64
得y=80
所以两个计算器进价为120元,而售价128元,进价小于售价,因此两个计算器总的盈利情况为盈利8元.
探索新知
问题2 某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为元.
解:设该商品的标价为x元.
0.8x=1980(1+0.1)
得x=2722.5
答:设该商品的标价为2722.5元.
做一做
我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2012年涨价30%后,2014降价70%至a元,则这种药品在2012年涨价前价格为元.
解:设在2012年涨价前的价格为x元.
(1+0.3)(1-0.7)x=a
解得x=100a/39
答:在2012年涨价前的价格为100a/39元.
小结:
通过本节课的学习你有哪些收获?你还有哪些疑惑?
熟记下列关系式
售价、进价、利润的关系式:
商品利润= 商品售价—商品进价
进价、利润、利润率的关系:
商品利润率=商品利润/商品进价×100%
标价、折扣数、商品售价关系:
商品售价=标价×折扣数/10
商品售价、进价、利润率的关系:
商品售价=商品进价×(1+利润率)
大展身手
思考题
1、某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可降多少元出售此商品?
2、一年定期的存款,年利率为1.98%, 到期取款时须扣除利息的20%,作为利息税上缴国库,假如某人存入一年的定期储蓄1000元,到期扣税后可得利息多少元?
3、某商场将某种DVD产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD 的进价是多少元?
4、国家规定个人发表文章或出书获得稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4000元的应交超过800元那一部分稿费14%的税;(3)稿费高于4000元的应交全部稿费的11%的税。
王老师曾获得一笔稿费,并交纳个人所得税280元,那么王老师的这笔稿费共多少元?
布置作业:
P106练习题的第一题。